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On the Spectral Efficiency of
CDMA Downlink Cellular Mobile Networks

Khairi Ashour Hamdi, Senior Member, IEEE, and Pongsatorn Sedtheetorn, Member, IEEE

Abstract—A new accurate mathematical analysis is presented
for the efficient computation of the spectral efficiency of CDMA
downlink wireless communication systems in the presence of
multipath Rayleigh fading and log-normal shadowing. A new
explicit expression is derived for the spectral efficiency, which is
based on an accurate interference model that accounts for both
intra-cell and inter-cell interferences. This is used to investigate
the performance of downlink CDMA in different multipath
delay profiles. The numerical results has shown that the loss
of orthogonality deteriorates the spectral efficiency significantly
at high signal-to-noise ratios (SNR) levels. On the other hand,
the diversity gain will compensate the loss of orthogonality at
low SNR levels.

Index Terms—Spectral efficiency, CDMA, orthogonality factor,
self interference, Rayleigh fading.

I. INTRODUCTION

THIS paper presents a new accurate analysis for the
spectral efficiency of downlink CDMA multi-cellular

mobile communication systems. Previous research results on
CDMA cellular mobile networks have not provided accurate,
computationally efficient explicit expressions for computing
the spectral efficiency in CDMA downlink multi-cellular sys-
tems.

The difficulty of the present problem can be explained
as follows. The signal-to-interference-plus-noise-ratio (SINR)
experienced by an arbitrary mobile in a downlink CDMA
system is a ratio of a mixture of non-identical random vari-
ables. Moreover, the presence of multipath fading leads to the
lost of orthogonality between signals transmitted by the same
base station, which results in additional self interference. The
existence of this self-interference renders the problem of com-
puting the spectral efficiency even more difficult, as the SINR
becomes now a ratio of non-independent random variables.
Direct methods to compute the average spectral efficiency in
this case would require at least K–fold integrations (K is
the number of neighboring cells). Consequently, it is quite
common in the previous research on the spectral efficiency
of downlink CDMA to approximate the intercell interference
by its average (e.g. [1]-[4]). Other common methods include
considering only an isolated cell environment [5], Monte Carlo
simulation [6], or bounding techniques [7].
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Fig. 1. oordinates of the co-channel cells in the first and second tier on
uv-plane. The interfered mobile is located at (u0, v0) with its home base
station being at the origin. Note that the scale of both u and v axes is 1 unit
=

√
3R.

In this paper, based on an accurate SINR model that
accounts for both intercell and intra-cell interference, we
derive a new computationally efficient explicit expression for
the spectral efficiency of a CDMA downlink in a multipath
Rayleigh fading environment. This reduces significantly the
required computational complexity required to compute the
spectral efficiency by direct methods, and thus facilitates
accurate evaluation of the impacts of the lost of orthogonality
on the overall efficiency of a downlink CDMA. The main
contribution of this paper is therefore to provide a simple
explicit expression for the spectral efficiency of downlink
CDMA. To the best of our knowledge, no such simple
analytical expressions for the spectral efficiency are available
in the open literature.

The rest of this paper is organized as follows. Section
II describes the CDMA downlink interference model. The
spectral efficiency analysis is presented in Section III. The
extension of the basic results to include log-normal shadow
fading is include in Section IV. Simulation and numerical
results are given in Section V, and Section VI concludes the
paper.

II. DOWNLINK SINR ANALYSIS

Consider a downlink CDMA multicellular system in a
frequency-selective Rayleigh fading channel, Fig. 1, and let
the composite CDMA downlink signal comprises M mutually
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SINRm =
Pnd−β

0,m

L∑
l=1

|hl,0|2

ΓP−Pm

G d−β
0,m

L∑
l=1

|hl,0|2 + P
G

K∑
k=1

L∑
l=1

d−β
k,m|hl,k|2 + N0

, m = 1, 2, . . . , M (1)

orthogonal signals, which are destined to M different mobiles
in the same cell. Though these signals appear orthogonal at
the transmitter side, however, the orthogonality is lost at the
receiver side after being propagated over a multipath fading
environment, resulting in intra-cell interference (self interfer-
ence). This interference adds to the white Gaussian noise
(AWGN) and the intercell interference from neighboring cells.
Therefore, the signal-to-interference-plus-noise-ratio (SINR)
experienced by an arbitrary mobile, say mobile m, at the
output of the Rake receiver is a random variable, that can
be written as shown in (1). (e.g. [13])

Here, K is the number of neighboring cells, G is the
processing gain (a constant parameter, which equals to the
number of chips per bit), and L is the number of faded
paths. It is worth mentioning that the number of paths L is
related to the maximum delay spread of the channel and is
assumed to be less than the processing gain G. hl,k, l = 1, ..L,
k = 0, 1, 2, .., K are mutually independent zero-mean complex
Gaussian path gains, with E

[
|hl,k|2

]
= αl, that models the

multipath Rayleigh fading channel.

Pm in (1) is the transmit power allocated to the reference
mobile, and P is the total transmit power in the cell. N0 is
the variance of the AWGN, and β is the path loss exponent.

dk,m, k = 0, 1, ..., K, in (1) represent the distance between
mobile m (in cell 0) and the kth base station (k = 0 for the
home base station). Thus, the term d−β

k,m, k = 0, 1, .., K, in (1)
represents the mean path gain between the kth base station and
mobile m. In order to find an expressions for dk,m, consider
the geometry of hexagonal cells depicted in Fig. 1, and let
(xm, ym) , be the coordinates (in the hexagonal coordinates
system) of mobile m in cell 0, and (uk, vk) , k = 1, 2, ..., K,
be the coordinates of the kth neighboring base station. Then,
it can be shown that d0,m =

√
3R

√
x2

0 + y2
0 + x0y0, with R

being the cell radius, whereas dk,m for k > 0 is given in (2)
[9].

The coefficient Γ appearing at the denominator of (1) is
the so called orthogonality factor (OF), which represents
the instantaneous fraction of received downlink power that
gets converted by multipath into intra-cell interference. It is a
random variable that depends on the paths’ gains, and given
by

Γ = 1 −
∑L

l=1 |hl,0|4(
L∑

l=1

|hl,0|2
)2 . (3)

Recent research results (e.g. [10]-[13]) have suggested that
Γ can be accurately approximated by an (approximate) of its

average1

Γ ≈ 1 −
∑L

l=1 α2
l(

L∑
l=1

αl

)2 . (4)

However, even when Γ in (3) is replaced by its average (4),
the problem of computing averages involving SINR is still
not trivial. In order to explain in more details the difficulty
associated with computing averages involving SINR, notice
that SINR in (1) involves a ratio of (K + 1)L random
variables. Moreover, the numerator and denominator are not
independent (because of the appearance of the random vari-

ables
L∑

l=1

|hl,0|2 at both the numerator and the denominator).

It is also important to emphasize, at this point, that the term
K∑

k=1

L∑
l=1

d−β
k,m|hl,k|2 which appears at the denominator of (1),

and represents the accumulated interference from the neigh-
boring cells, is in fact a sum of exponential random variables
with arbitrarily non-equal means, for which exact analytical
expressions of its probability density function (pdf) are not
known in closed-form (e.g. [15], [16]). This would complicate
very much the task of deriving explicit expressions for the pdf
of SINR. On the other hand, the direct convolution approach
may require at least K-fold convolutional integrals. Because
of this difficulty, it is quite common in some other research to

approximate the intercell interference term
K∑

k=1

L∑
l=1

d−β
k,m|hl,k|2

by its mean (e.g. Ioc in [13, Eq. 1]).
In next section, we present a non-direct approach which

facilitates exact computation of the average of the function
ln (1 + SINR) without needing an explicit expression the
SINR’s pdf.

III. THE SPECTRAL EFFICIENCY

The spectral efficiency is a measure of the average number
of information bits that can be transmitted arbitrarily reliably
per second per Hertz per cell. Let M be the number of mobiles
per cell. Then, the spectral efficiency per cell, is given by [6],
[14]

C =
1
G

M∑
m=1

Cm (5)

where Cm is given in (6) and E is the expectation operator.

SNRm =
Pmd−β

m,0
N0

is the average signal-to-noise (SNR) ex-
perienced by mobile m in the absence of interference, and
ρm = Pm

P is the fraction of power allocated to mobile m,
which depends on the employed power allocation strategy. In
the special case of uniform power allocations. ρm = 1

M , m =
1, 2, . . .M.

1It is worth noticing that (4) is not the true average of (3).
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dk,m =
√

3R

√
(uk − xm)2 + (vk − ym)2 + (uk − xm) (vk − ym), k = 1, 2, ..., K (2)

Cm = E

⎡
⎢⎢⎢⎣log2

⎛
⎜⎜⎜⎝1 +

ρm

L∑
l=1

|hl,0|2

1−ρm

G Γ
L∑

l=1

|hl,0|2 + 1
G

K∑
k=1

L∑
l=1

[
dm,k

dm,0

]−β

|hl,k|2 + ρm

SNRm

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ (6)

The average in (6) is with respect to set of exponential
random variables |hl,k|2, l = 1, 2, ..., L, k = 0, 1, ..., K.
Direct computations of the average in (6) requires an explicit
expression for the probability density functions of the random
variables SINR, defined in (1) which, as explained at the end
of the last section, is difficult to obtain in closed form when the
number of neighboring cells K > 1. In this paper, we present
an original non-direct method for efficient computation of the
average in (6). This is based on the following lemma.

Lemma 1: Let u be a random variable having a pdf
f (u; a, m) = um−1

Γ(m) a−me−u/a, and let v be an arbitrary non-
negative random variable that is “independent” of u. Then for
any constants c, d > 0, we have (7), where Mv (z) = E [e−zv]
is the moment generating function of the random variable v.

Proof: The proof is given in the Appendix.
Now, as far computing the average spectral efficiency (6) is

concerned, notice that the term at numerator
L∑

l=1

|hl,0|2 has

not always a gamma distribution (it would have a gamma
distribution only in the special case of uniform delay profiles,
where α1 = α2 = . . . = αL), and hence Lemma 1 can
not be applied straightforwardly. Therefore, in order to apply
Lemma 1 for arbitrary delay profiles, we show next that

it is always possible to express the pdf of
L∑

l=1

|hl,0|2 as a

weighted sum of gamma density functions. To prove this,

let x =
L∑

l=1

|hl,0|2. Then, since
{|hl,0|2, l = 1, 2, ..., L

}
are

independent exponential random variables, we have for its
MGF

Mx (z) = E
[
e−zx

]
=

L∏
l=1

1
1 + αiz

=
L∑

l=1

bl

(1 + αlz)ml
(8)

where we have resolved it into partial fractions. Here,
ml ∈ {0, 1, . . . , L} accounts for the repeated roots, and
{b1, b2, ..., bL} are some constants. It is worth mentioning
that computing these coefficients is tedious and requires to
solve a set of linear equations and computing high-order
partial derivatives. Fortunately, our final expression for the
average spectral efficiency does not requires computing these
coefficients.

Eq. (8) implies that the pdf of x =
L∑

l=1

|hl,0|2 can be

expressed as the weighted sum

f (x) =
L∑

l=1

bl f (x; αl, ml) (9)

where f (x; a, m) = xm−1

Γ(m) a−me−x/a is the gamma probability
density function with parameter m, and mean am.

Now, consider the conditional average shown in (10). which,
upon invoking (7), reduces into (11), where we have used (8).

We arrive at the explicit expression shown in (12) for the
average spectral efficiency, where we have used

Mv (z) = E
[
e−zv

]
= E

⎡
⎣e

−z 1
G

K∑
k=1

L∑
l=1

[
dk,m
d0,m

]−β |hl,k|2+ ρm
SNRm

⎤
⎦

=
K∏

k=1

L∏
l=1

1

1 + 1
G

[
dk,m

d0,m

]−β

αlz

e−z ρm
SNRm . (13)

In the special case of uniform delay profile, α1 = α2 =
. . . = αL = 1

L , and (12) reduces into the simpler expression
shown in (14).

As far the numerical evaluation of the integrals in (12) is
concerned, observe that ∀ z ≥ 0,

0 ≤ 1
1 +

(
ρm + Γ 1−ρm

G

)
αlz

≤ 1
1 + Γ 1−ρm

G αlz
≤ 1

(notice that all ρm, G, Γ, and αl are non-negative quantities).
Accordingly,

0 ≤
L∏

l=1

1
1 + Γ 1−ρm

G αlz
−

L∏
l=1

1
1 +

(
ρm + Γ 1−ρm

G

)
αlz

≤ 1.

(15)
Furthermore, using l’Hôpital’s rule, we obtain (16).
Eqs. (15) and (16) prove that the first term in (12) is

bounded over the whole range of integration

0 ≤
∏L

l=1
1

1+Γ 1−ρm
G αlz

−∏L
l=1

1

1+(ρm+Γ 1−ρm
G )αlz

z

≤
L∑

l=1

αl, ∀z ≥ 0. (17)

It can be verified that, the second term in (12) is also
bounded

0 ≤
K∏

k=1

L∏
l=1

1

1 + M
G

[
dk,m

d0,m

]−β

αlz

e−z ρm
SNRm ≤ 1, ∀z ≥ 0.

(18)
(17) and (18) confirm that the integrand in (12) is a

non-negative bounded function in the range of integration.
Furthermore, it can be seen that it is also continuous and
possess all derivatives ∀z ≥ 0. Therefore, standard numerical
integration packages can be used to compute (12) or (14)
without any difficulty.

To summarize, (12) is a new exact explicit expression for the
average in (6) represents the spectral efficiency experienced
by mobile m that experience a SINR given by (1), and
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E

[
ln
(

1 +
du

cu + v

)]
=
∫ ∞

0

1
z

[(
1

1 + acz

)m

−
(

1
1 + a (d + c) z

)m]
Mv (z)dz (7)

E

⎡
⎢⎢⎢⎣ln

⎛
⎜⎜⎜⎝1 +

d
L∑

l=1

|hl,0|2

c
L∑

l=1

|hl,0|2 + v

⎞
⎟⎟⎟⎠ |v

⎤
⎥⎥⎥⎦ =

∫ ∞

0

ln
(

1 +
dx

cx + v

){
L∑

l=1

bl f (x; αl, ml)

}
dx

=
L∑

l=1

bl

∫ ∞

0

ln
(

1 +
dx

cx + v

)
f (x; αl, ml) dx (10)

E

⎡
⎢⎢⎢⎣ln

⎛
⎜⎜⎜⎝1 +

d
L∑

l=1

|hl,0|2

c
L∑

l=1

|hl,0|2 + v

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ =

∫ ∞

0

1
z

L∑
l=1

bl

((
1

1 + αlcz

)ml

−
(

1
1 + αl (d + c) z

)ml
)
Mv (z)dz

=
∫ ∞

0

1
z

(
L∏

l=1

1
1 + αlcz

−
L∏

l=1

1
1 + αl (d + c) z

)
Mv (z)dz (11)

Cm = (log2 e)
∫ ∞

0

1
z

[
L∏

l=1

1
1 + Γ 1−ρm

G αlz
−

L∏
l=1

1
1 +

(
ρm + Γ 1−ρm

G

)
αlz

]

×
K∏

k=1

L∏
l=1

1

1 + 1
G

[
dk,m

d0,m

]−β

αl z

e−z ρm
SNRm dz (12)

accounts for both intra-cell interference resulting from the
loss of orthogonality and the intercell interference from K
neighboring cells. Therefore (5) with (12) can be used to
compute the spectral efficiency for downlink CDMA systems
having arbitrary power delay profiles {α1, α2, . . . , αL} and
power allocations {ρ1, ρ2, . . . , ρM} .

IV. THE EFFECT OF LOG-NORMAL SHADOW FADING

Shadow fading is an important factor affecting the perfor-
mance of wireless communication systems. In this Section,
we extend the results of the previous section to incorporate
shadow fading. Shadowing is commonly modeled by a log-
normal distribution [20, Equ. 2.53]

f (y) =
10

ln (10)
1√

2πσy
exp

[
− (10 log10 y − μ)2

2σ2

]
(19)

where μ (dB) and σ (dB) are the mean and standard deviation
of 10 log10 y, respectively. Let ξ0, ξ1, . . . , ξK be mutually
independent K + 1 lognormal random variables that models
shadow fading of the relevant transmission paths. Then (6)
becomes (20).

We can condition on the random variables {ξ0, ξ1, . . . , ξK}
and obtain from (12) the expression shown in (21) for the
conditional capacity

Therefore, the average spectral efficiency is obtained by
averaging (21) with respect to the K + 1 independent long-
normal random variables {ξ0, ξ1, . . . , ξK} . To this end, we in-

voke a common approximation technique which is commonly
used to evaluate averages of arbitrary function g (.) involving
log-normal random variables in terms of Gauss-Hermite series
[20]

E [g (ξ)]

=
∫ ∞

−∞
g (ξk)

10
ln (10)

1√
2πσξ

exp

[
− (10 log10 ξ − μ)2

2σ2

]
dξ

=
∫ ∞

−∞
g
(
10(

√
2σy+μ)/10

) 1√
π

exp
[−y2

]
dy

≈
N∑

n=1

wn√
π

g
(
10(

√
2σan+μ)/10

)
+ RN (22)

where wn and an are the weights and abscissas of the N th or-
der Hermite polynomial and are tabulated in [18, Tbl. 25.10].
RN is the remainder term that decreases as N increases.

We obtain from (22) and (21), the expression shown in
(23) for the average spectral efficiency in the presence of log-
normal shadow fading.

V. NUMERICAL EXAMPLES

In this section, we present some numerical examples to
demonstrate the application of the newly derived results on the
performance of downlink CDMA in multipath Rayleigh fading
environments. Let the home cell be surrounded by K = 18
neighboring cells comprising the first and second tiers in a
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Cm = (log2 e)
∫ ∞

0

1
z

⎡
⎣
(

1
1 + Γ 1−ρm

LG z

)L

−
(

1
1 + 1

L

(
ρm + Γ 1−ρm

G

)
z

)L
⎤
⎦

×
K∏

k=1

⎛
⎜⎝ 1

1 + 1
LG

[
dk,m

d0,m

]−β

z

⎞
⎟⎠

L

e−z ρm
SNRm dz (14)

lim
z→0

∏L
l=1

1
1+Γ 1−ρm

G αlz
−∏L

l=1
1

1+(ρm+Γ 1−ρm
G )αlz

z
=

d

dz

[
L∏

l=1

1
1 + Γ 1−ρm

G αlz
−

L∏
l=1

1
1 +

(
ρm + Γ 1−ρm

G

)
αlz

]
z=0

= −
L∑

l=1

M − 1
G

(
1 − 1

L

)
αl +

L∑
l=1

(
1 +

M − 1
G

(
1 − 1

L

))
αl =

L∑
l=1

αl (16)

Cm = E

⎡
⎢⎢⎢⎣log2

⎛
⎜⎜⎜⎝1 +

ξ0ρm

L∑
l=1

|hl,0|2

Γ 1−ρm

G ξ0

L∑
l=1

|hl,0|2 + 1
G

K∑
k=1

L∑
l=1

ξk

[
dk,m

d0,m

]−β

|hl,k|2 + ρm

SNRm

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ (20)

Cm (ξ0, ξ1, . . . , ξK) = (log2 e)
∫ ∞

0

1
z

[
L∏

l=1

1
1 + Γ 1−ρm

G αlzξ0

−
L∏

l=1

1
1 +

(
ρm + Γ 1−ρm

G

)
αlzξ0

]

×
K∏

k=1

L∏
l=1

1

1 + 1
G

[
dk,m

d0,m

]−β

αlzξk

e−z ρm
SNRm dz. (21)

regular hexagonal cell structure. The coordinates of the K
base stations are shown in Fig. 1 (in a hexagonal coordinates
system).

In our numerical examples, we consider a CDMA system
with G = 64, and focus on a multipath channel with path
loss-exponent β = 4, and having exponential delay profile,
where

αl,k = α1e
−δl, l = 1, 2, ..., L (24)

and δ is the decay rate. For the purpose of numerical examples,
we assume that the reference mobile are located at the vertex
of the home cell (this is the worst case interference scenario).
Furthermore, unless otherwise state, we assume a uniform
power allocations, such that ρ1 = ρ2 = . . . = ρM = 1/M,
with M = 10 being the number of mobiles per cell.

Firstly, we validate the new theoretical analysis and assess
the accuracy of approximating the orthogonality factor (3)
by its average (4). Monte Carlo simulation results are given
in Tables I and II for the uniform and exponential power
delay profiles, respectively. Two different simulation results
are shown in Tables I and II. The true random OF (which
is given in (3)) is used in the simulation-I results, whereas
the simulation-II and the theoretical results are based on
the average OF (as given (4)). The first observation that
can be made from Tables I and II is the excellent match
between the theoretical and the simulation-II results. This
validates the accuracy of the theoretical analysis that leads

TABLE I
SPECTRAL EFFICIENCY IN THE CASE OF A UNIFORM POWER DELAY

PROFILE

SIMULATION II SIMULATION II THEORY

SNR [dB] L Exact Γ, Eq. (3) Approx. Γ, Eq. (4) Eq. (12)

3 2 0.192195572 0.186827344 0.186761039
3 5 0.223014923 0.218202783 0.218439037
3 10 0.234250533 0.231237734 0.231159274
15 2 0.256539697 0.246243031 0.246526605
15 5 0.250596359 0.244283089 0.244502853
15 10 0.248155759 0.244474655 0.244559247

to (12). Moreover, comparing the simulation-I results with
the corresponding simulation-II results (or equivalently, the
new theoretical results) reveals that the spectral efficiency
results obtained by using the average OF can never exceed
the corresponding results obtained by using the true random
OF.

Therefore, we conclude that approximating the OF by its
average will result in a tight lower bound on the spectral
efficiency. This observation can be analytically proven by
observing that the function log2

(
1 + a

ax+b

)
is a convex func-

tion2 for all non-negative a, b, x. Therefore, Jenzen inequality
asserts that, when a and b are non-negative constants and x is

2Notice that d2

dx2 ln
(
1 + a

ax+b

)
> 0, ∀ non-negative a, x, b
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Cm = (log2 e)
∫ ∞

0

1
z

{
N∑

n=1

wn√
π

[
L∏

l=1

1

1 + Γ 1−ρm

G 10(
√

2σan+μ)/10αlz

−
L∏

l=1

1

1 +
(
ρm + Γ 1−ρm

G

)
10(

√
2σan+μ)/10αlz

]}

×
K∏

k=1

⎧⎪⎨
⎪⎩

N∑
n=1

wn√
π

L∏
l=1

1

1 + 1
G

[
dk,m

d0,m

]−β

10(
√

2σan+μ)/10αlz

⎫⎪⎬
⎪⎭ e−z ρm

SNRm dz. (23)

TABLE II
SPECTRAL EFFICIENCY IN THE CASE OF AN EXPONENTIAL POWER DELAY

PROFILE WITH DECAY RATE δ = 1.

SIMULATION I SIMULATION II THEORY
SNR [dB] L Exact Γ, Eq. (3) Approx. Γ, Eq. (4) Eq. (12)

3 2 0.171659106 0.168562899 0.168487128
3 5 0.17989781 0.176049343 0.17607526
3 10 0.179908998 0.176552925 0.176440111
15 2 0.254897272 0.247625158 0.247676575
15 5 0.252313543 0.245426161 0.245752504
15 10 0.252125771 0.245668185 0.245691463
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Fig. 2. Spectral efficiency [b/s/Hz] against the number of paths (L) when
SNR = 7 [dB] for several decay rates δ ∈ {0, 1/4/1} .

a non-negative random variable,

E

[
ln
(

1 +
a

ax + b

)]
≥ ln

(
1 +

a

aE [x] + b

)
. (25)

This implies that, as far as the spectral efficiency is con-
cerned, the approximation of the OF by its average will always
result in a tight lower bound on the spectral efficiency.

In Figs. 2-5, we focus on the effects of multipath fading on
the overall spectral efficiency of the downlink CDMA systems.
In Figs. 2 and 3, we plot the spectral efficiency against the
number of paths L for two different values of SNR; 7 dB
and 15 dB, respectively. We observe from Figs. 2 and 3 that
the spectral efficiency of the downlink CDMA system can
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Fig. 3. The spectral efficiency [b/s/Hz] against the number of paths (L)
when SNR = 15 [dB], and for several decay rates δ ∈ {0, 1, 2} .

be affected by varying the number of paths of the multipath
fading channel in a two contradicting ways that depend on the
SNR levels as follows. At low SNR, the spectral efficiency
is increased with increasing the number of paths, whereas
the opposite behavior is observed at high SNR levels. This
observation is further demonstrated in Figs. 4 and 5, where
the spectral efficiency is plotted against the SNR for the
exponential and uniform power delay profiles, respectively.

In order to explain these observations, consider the expres-
sion of SINR, (1), and notice that increasing the number of
paths can have two contradicting effects as follows; On one
hand, it will increase the diversity order (more paths will
contribute to the useful signal at the numerator of (1)). On the
other hand, a non-zero self interference (the first term in the
denominator of SINR in (1)) will appear when L > 1 (where
the amount of self interference will increase with increasing
L, as can be observed from (3) or (4)). Therefore, the net
effect will depend on which of these two factors outweigh
the other. Now, looking at the first and last terms in the
denominator of SINR in (1), one can see that the first term
(the self-interference) becomes insignificant at low SNR levels
(when compared to the last term, which is the reciprocal of
the SNR), and therefore the diversity order dominates the loss
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Fig. 4. The spectral efficiency [b/s/Hz] against SNR in [dB] for several
number of paths L ∈ {1, 2, 10} , and for decay rate δ = 1.
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Fig. 5. The spectral efficiency in [b/s/Hz] against SNR in [dB] for several
number of paths L ∈ {1, 2, 10} , and uniform power delay profile (δ = 0).

of orthogonality at low SNR levels. On the other hand at
high values of SNR, the last term becomes insignificant when
compared to the self-interference term, and therefore the self-
interference will be dominant at high SNR levels.

In Fig. 6, we consider the effect of different power allo-
cation strategies on the overall spectral efficiency. Here, the
number of users is M = 20, and we assume that the mth
mobile is located at

(
m
3M , m

3M

)
, m = 1, 2, . . . , M. In this

case the distance between the mth mobile and the home base
station is d0,m = m

M . Two power allocation strategies are
shown in Fig. 6; A is the perfect power control strategy, where
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Fig. 6. Spectral efficiency against the total SNR, SNR = P
N0

for two
different power allocation strategies. A is perfect power control strategy, and
B: is the uniform power allocation strategy. Exponential power delay profile
with decay factor δ = 1.
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Fig. 7. Spectral efficiency against the standard deviation [dB} of the log-
normal shadow fading. SNR = 10 dB, and δ = 1.

ρm =
dβ
0,m∑M

i=1 dβ
0,i

, m = 1, 2, . . . , M. On the other hand, B

is the uniform power allocation strategy, where ρm = 1
M ,

m = 1, 2, . . . , M. A significant improvement on the overall
spectral efficiency of downlink CDMA in the multipath fading
is observed when strategy A is used in stead of the uniform
allocation strategy B that can exceed 200%. For instance, at
SNR= 20 dB, and L = 10, Fig. 6 shows that the spectral
efficiency increases from 0.7 in strategy B into 2.0 in strategy
A.
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Fig. 7 shows the performance of CDMA in the presence
of log-normal shadow fading. Here, we plot the spectral
efficiency against the standard deviation of the log-normal
fading. We observe that multipath fading in the presence of
shadow fading will deteriorate the spectral efficiency even
more worst. For instance, as can be seen from Fig. 7, the
spectral efficiency decreases in the absence of shadowing form
0.233 when L = 1, into 0.221 when L = 10 (which is
equivalent to about 5% loss in the overall spectral efficiency.
On the other hand, the spectral efficiency in the presence of
shadow fading with standard deviation σ = 6 dB drops from
0.225 when L = 1 to 0.197 when L = 10 (which is equivalent
to a drop that exceeds 12% in the overall spectral efficiency).

VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented a new accurate theoretical
analysis for the spectral efficiency of downlink multi-cell
CDMA in the presence of multipath Rayleigh fading and log-
normal shadowing. Based on an accurate interference model,
we derive a new explicit expression for the spectral efficiency
that accounts for both the interference from adjacent cells
and the self-interference which would result form the loss
of orthogonality. The numerical results has shown that the
loss of orthogonality will deteriorate the spectral efficiency
significantly at high SNR levels. On the other hand, the
diversity gain of the multipath fading channel can be achieved
at low SNR levels.

APPENDIX A

Let us invoke, firstly, the following identity(
1 +

du

cu + v

)(
1 +

cu

v

)
= 1 +

(d + c)u

v
(26)

which holds for any non-negative c, u, v, and implies that

ln
(

1 +
du

cu + v

)
= ln

(
1 +

(d + c)u

v

)
− ln

(
1 +

cu

v

)
.

(27)
Now, consider the integral∫ ∞

0

ln
(
1 +

cu

v

)
f (u; a, m) du

=
∫ ∞

0

ln
(
1 +

cu

v

) um−1

Γ (m)
a−me−u/adu (28)

which is reduced (by the change of variables z = cu
v ) into∫ ∞

0

ln
(
1 +

cu

v

)
f (u; a, m)du

=
∫ ∞

0

ln (1 + z)
zm−1

Γ (m)

( v

ca

)m

e−z v
ca dz. (29)

Apply the rules of the integration by parts m times to the
integral in (29), to get∫ ∞

0

ln
(
1 +

cu

v

)
f (u; a, m)du

=
∫ ∞

0

{
1

Γ (m)
dm

dzm
zm−1 ln (1 + z)

}
e−z v

ca dz (30)

Recall [18, Eq. 15.1.3] that

ln (1 + z) = z 2F1 (1, 1; 2;−z) (31)

where 2F1 (., .; .; .) is the Gauss hypergeometric function, and
then apply [18, Eq. 15.2.3], to get [17]

1
Γ (m)

dm

dzm
zm−1 ln (1 + z)

=
1

Γ (m)
dm

dzm
zm

2F1 (1, 1; 2;−z)

= m 2F1 (1 + m, 1; 2;−z)

= m

∫ 1

0

(1 + tz)−(m+1)
dt

=
1
z
− 1

z (1 + z)m
(32)

Recall [18, Eq. 15.3.1] was used in the third line of (32).
Therefore, we have from (30) and (32)∫ ∞

0

ln
(
1 +

cu

v

)
f (u; a, m)du

=
∫ ∞

0

1
z

(
1 − 1

(1 + z)m

)
e−z v

ac dz (33)

which is ∫ ∞

0

ln
(
1 +

u

v

)
f (u; a, m)du

=
∫ ∞

0

1
z

(
1 − 1

(1 + acz)m

)
e−vzdz (34)

Eq. (7) results straightforwardly from (34) and (27).
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