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Abstract— This paper considers the asymptotic convergence
rate of Lurye systems consisting of a discrete-time, LTI system
in feedback with a nonlinearity. This work is motivated by
convergence rate analysis of first-order optimization algorithms.
Lurye analysis has been used in the literature to provide
an upper bound on the worst-case convergence rate. If the
nonlinearity is smooth then the asymptotic convergence rate is
governed by the linearization near the equilibrium point. In
this paper, we present a novel construction of nonlinearities
that obtain slower convergence rates than the worst-case over
smooth functions. In particular, our constructed nonlinearities
are odd and have a fractal construction.

I. INTRODUCTION
A Lurye system can be described as a negative feedback

interconnection of a stable LTI plant G and a static slope-
restricted nonlinearity φ whose slope is bounded in the range
[0,K], denoted as φ ∈ S[0,K], i.e.

0≤ φ(y2)−φ(y1)

y2− y1
≤ K, (1)

for all y1,y2 ∈ R and φ(0) = 0. In this paper we focus
our attention on odd nonlinearities, i.e. φ(y) = −φ(−y).
Furthermore, as the paper deals with convergence analysis,
the autonomous Lurye system as in Figure 1 is considered.
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Fig. 1. Autonomous Lurye system

The Kalman conjecture [1] is a cornerstone to understand
the development in absolute stability of Lurye systems. It
states that the Lurye system is stable with all φ ∈ S[0,K] if
and only if all linearized systems with φ replaced by a gain
from 0 to K are stable. The Kalman conjecture in discrete-
time is true for first order systems, but false for second order
systems [2], [3].

In recent years, first order optimisation algorithms for
strongly convex functions have been rewritten as Lurye
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systems, and the convergence rate of optimisation algorithms
can be expressed as the exponential decay rate of the
corresponding Lurye system [4]. Other relevant work on
optimization analysis includes [5], [6], [7].

Let KAS be the minimum gain for which the system is not
absolutely stable. To date, the less conservative estimation of
KAS by the use of discrete-time Zames–Falb multipliers [8],
[9]. The current result for searches on Zames–Falb multipli-
ers [10] have been shown to be a very precise lower bound
for absolute stability as it has been shown in [11].

If we restrict our analysis to nonlinearities φ ∈ S[0,K] with
K < KAS, all trajectories will converge to the origin, i.e. the
nonlinear system is Globally Asymptotically Stable (GAS).
One may think of the Kalman conjecture for convergence
analysis as the following statement: the worst-case conver-
gence rate of the class of asymptotically stable Lurye systems
with G and φ ∈ S[0,K] is equal to the worst convergence
rate of all its possible linearisations, i.e. replacing φ for any
linear gain within [0,K]. If we restrict our attention to smooth
nonlinearities, then the Kalman conjecture for convergence is
valid as the nonlinear system will converge to the linearised
system.

Nonetheless, it is not possible to linearise the system
for non-smooth nonlinearities around the origin satisfying
Equation 1. The Kalman conjecture for convergence analysis
has been proved false when the nonlinearity φ is asymmetric
to the origin [12]. To the best of authors’ knowledge, the
counterexample when the nonlinearity is odd does not exist
in literature. Some previous examples in the literature about
the convergence analysis [4], [13] show Lurye systems with
periodic solutions, which is not asymptotically stable, so
they cannot be considered as counterexamples to the Kalman
conjecture for convergence.

In this manuscript, we provide the first numerical coun-
terexample to the Kalman conjecture for convergence analy-
sis when the nonlinearity is odd. This counterexample moti-
vates the technique (eg. [4], [12], [14], [15], [16]) to bound
the worst-case convergence rate of first order optimisation
with convex functions. In addition, it is interesting to un-
derstand the conservativeness of the analysis by constructing
nonlinearities leading to the worse convergence rates than
the linear case.

II. KALMAN CONJECTURE FOR CONVERGENCE ANALYSIS

Consider the discrete-time nonlinear dynamical system S
defined by

xk+1 = f (x(k)), (2)



where xk ∈Rn and f :Rn→Rn. S is globally exponentially
stable if there exist ρ ∈ (0,1) and c > 1 such that

‖xk‖ ≤ cρ
k‖x0‖ ∀k ≥ 0, ∀x0 ∈ Rn. (3)

If the system S is globally exponential stable, we define its
converge rate as

ρS = inf
ρ
{ρ ∈ (0,1) : ∃c > 1 such that

‖xk‖ ≤ cρ
k‖x0‖ ∀k ≥ 0, ∀x0 ∈ Rn}. (4)

Let [A,B,C,0] be a minimal realisation of the LTI SISO
strictly-proper system G, then the state-space description of
the feedback system in Fig. 1 is given by

xk = Axk−Bφ(Cxk). (5)

Henceforth, the convergence rate of absolute stable Lurye
system between a plant G and a nonlinearity φ , in short
{G,φ}, is given by the denoted as ρ{G,φ}, and the worst-case
convergence rate of the class of Lurye systems is defined as

ρ
∗
{G,K} = sup

φ∈S[0,K]

{ρ{G,φ}}, (6)

A lower bound of ρ∗{G,K} is given by the linear case as

ρ
∗
{G,K} = max

τ∈[0,1]

{
|λ̄ (A− τKBC)|

}
. (7)

where λ̄ (X) denotes the eigenvalue of the matrix X with the
largest absolute value.

Finally, we translate the Kalman conjecture for the con-
vergence analysis as follows.

Conjecture 1: For any G ∈RH∞, let φ ∈ S[0,K] such that
the feedback interconnection between G and any φ is stable,
then

ρ
∗
{G,K} = ρ

∗
{G,K}. (8)

This paper focuses on odd-nonlinearities. As in the non-
odd case [12], the nonlinearity is required to be non-
differentiable at the origin. However, the odd condition
requires a more sophisticated nonlinearity than a simple
change of slope at the origin.

We say the the Lurye system in Figure 1 has a ρ-periodic
orbit with period T if y(k) = ρT y(k − T ). In this case,
the output of LTI system decays to zero with exponential
converge rate ρ .

III. NUMERICAL COUNTEREXAMPLES

In this section, we present some numerical counterex-
amples to Conjecture 1. Namely, we show that ρ∗{G,K} >
ρ∗{G,K} is possible, so it is not tight to bound the worst-case
convergence rate of a Lurye system by its linearisation.

Let us consider the plant G

G(z) =
0.1z

z2−1.8z+0.81
, (9)

with a state-space representation given by

A =

[
0 1

−0.81 1.8

]
, B =

[
0
1

]
, C =

[
0 0.1

]
. D = 0.

We denote the initial condition x(0) =
[
x1(0) x2(0)

]>.
In the rest of the section, we explore different nonlinear-

ities that produce worse convergence rates than the worst
linear convergence rate. All nonlinearities belongs to the
sector [0,13], hence ρ∗{G,K} = 0.9.

The class of nonlinearities to achieve worse convergence
rates is parametrised as follows. If y > 0, then

φκ,η(y) =

{
c1κN if κN ≤ y < ηκN ,

13y+ c2κN if ηκN ≤ y < κN+1;
(10)

where N is the maximum integer that is smaller than logκ(y),
κ > 1 and 1 < η < κ . If y < 0, then φκ,η(y) = −φκ,η(−y).
Moreover, φκ,η(0) = 0. To achieve continuity in the changes
of slope, the parameters c1 and c2 must be selected such that

c1 = 13η + c2; (11)
κc1 = 13κ + c2, (12)

i.e.

c1 = 13
κ−η

κ−1
; (13)

c2 = 13
(

κ−η

κ−1
−κ

)
. (14)

This fractal construction of the nonlinearity is key to achieve
an asymptotic behavior slower than the linear case.

By construction, the nonlinearity is continuous in the
interval (0,∞) and is differentiable almost everywhere, hence

0≤
φκ,η(y2)−φκ,η(y1)

y2− y1
≤ 13,

for all y1,y2 > 0. This nonlinearity can be seen the gradient
of a convex function [17], so it can be used in the context of
optimization algorithms [4] as the counterexample in [12].

The simulations will generate a sequence of pairs
{(yk,φκ,ν(yk))}

Nsteps
k=1 . As these sequences converge to zero, it

is helpful to plot the sequences {(ykκ−N ,φκ,ν(ykκ−N))}Nsteps
k=1 ,

where N is defined as in Equation 10. By definition ykκ−N ∈
[1,κ). Henceforth, the map defined by the sequence of pairs
{(ykκ−N ,φκ,ν(ykκ−N))}Nsteps

k=1 is referred to as the projected
nonlinearity.

A. Example 1

As first example, we fix κ = 10 and we produce a linear
search over the parameter η , obtaining worse convergence
rates than the worst linear convergence rate for η = 9/5. The
fractal behaviour of the nonlinearity is depicted in Figures 2.

The convergence rate of the Lurye system with G and φ10, 9
5

is shown in Fig. 3. The real convergence rate is about 0.924
hence it is above the worse linear convergence rate for the
system, i.e. 0.9. As a result, the system exhibits trajectories
which are slower than the linearised trajectory.

If we increase the number of steps, it is interesting to
see how the dynamics escapes to a faster dynamics for a
significant number of steps, recovering the slower dynamics
later, see Figure 4.



0 1 2 3 4 5 6 7 8 9 10

y

0

20

40

60

80

100

120

(y
)

Fig. 2. φ10, 9
5
(y) when 0 < y≤ 10
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Fig. 3. Similation of the Lurye system between G and φ10, 9
5

with x(0) =

[−0.6775,−0.2896]>.

Although the nonlinearity φ10, 9
5

has shown the re-
quired structure to excite slower dynamics, its conver-
gence rate is not constant. To show this, we project
the nonlinearity into the interval [1,10], i.e. instead of
plotting the pairs {(yk,φ10, 9

5
(yk))}

Nsteps
k=1 , we plot the pairs

{(yk10−N ,φ10, 9
5
(yk10−N))}Nsteps

k=1 , where N has been defined
below Equation 10. Figures 5 and 6 clearly demonstrate that
the system is not able to keep a stable ρ-periodic behaviour,
the simulation uses a limited range of the project nonlinearity
initially but it is not preserved when the number of steps
increases to 4000.

We can demonstrate the lack of stable periodic orbits by
plotting an estimation of the asymptotic convergence rate.
We run experiments of 6000 steps and compute the average
decay for the last 2000 steps with 25×104 equidistant initial
conditions in the square [−1,1]× [−1,1]. There are small
regions in Fig. 7 with an homogenous colour, denoting the
existence of a quasi-stable ρ-periodic orbit with ρ ∼ 0.9153
and period T = 26, as stable ρ-periodic orbits require the
condition κ = ρ−T , however 0.9153−26 = 9.985 6= 10.

B. Example 2

The second example is obtained using a Monte-Carlo
search over the free parameters κ and η , a stable convergence
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Fig. 4. When the same simulation as in Figure 3 is run for 4000 steps,
the generated behaviour is not stable and the simulation switches between
difference local convergences rates.
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Fig. 5. For the first 400 steps, the simulation uses a reduced range of the
“projected” nonlinearity

rate of ρ = 0.9293 is achieved over 8000 steps when κ =
5.8139 and η = 1.7294.

As in the previous example, we can explore the stability of
the orbit by projecting the nonlinearity into the interval [1,κ],
i.e. instead of plotting the pairs {(yk,φ5.8139,1.7294(yk))}

Nsteps
k=1 ,

we will plot the pairs {yi×κ−N ,φ5.8139,1.7294(yi×κ−N)}Nsteps
k=1 ,

where N has been defined below Equation 10. After a
short transient, only 24 points of the nonlinearity are used
as shown in Figure 9. Besides numerical precision, the
solution has a ρ-periodic orbit, i.e. y(k) = ρ24y(k− 24).
As mentioned, there is a relationship between the achieved
convergence rate, the parameter κ and the period of the orbit,
i.e.

κ = ρ
−T = ρ

−24. (15)

It is worth highlighting that the slower convergence rate
is achieved for 104 random initial conditions in the square
[−1,1]× [−1,1]. The orbit is achieved in all simulations, and



1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

Fig. 6. For 4000 steps, the simulation uses the whole range of the
“projected” nonlinearity

Fig. 7. Estimation of the asymptotic converge rate last 1000 steps for
6000-step simulations of the Lurye system with G and φ10, 9

5
with 250,000

different initial conditions in the square [−1,1]× [−1,1].

if we take the last 24 samples, we obtain the average value of
ρ = 0.929281272622455, with a standard deviation of 9.59×
10−15 due to numerical precision, showing the stability of the
ρ periodic orbit.

The orbit can be generated by the following initial condi-
tion

x(0) =
[

24.02986945329326
32.52678579052714

]
.

With this initial condition, |y(k)−ρ24y(k−24)|< 10−14 for
all 24 ≤ k ≤ 8000. As this correspond with the machine
numerical precision, we conclude that the orbit is stable.
Once the convergent orbit has been found numerically,
the analytical expression of the initial condition can be
obtained with the same procedure as used in [12], as x(0)
is the eigenvector associated with the eigenvalue ρ−24 of
the transition matrix T24, where x(24) = T24x(0). Note that
T24 is constructed by the a prior knowledge provided by the
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Fig. 8. Simulation of the Lurye system with G and φ5.8139,1.7294
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Fig. 9. ”Projected” nonlinearity for the last 5000 step of the simulation in
Figure 8.

numerical orbit.

C. Example 3

The last example uses the same definition as in Equa-
tion 10, but with the parameters κ = 5.6233 and η = 1.7177.
All initial conditions tested during the simulations lead to one
of two different stable ρ-periodic behavior, one mode with
ρ1 = κ−1/24 ' 0.9306 and ρ2 = κ−1/21 ' 0.9210.

By using 250,000 equidistant initial conditions in the
square [−1,1]× [−1,1], the rate of convergence of the last
2000 steps for the obtained trajectory is shown in Figure 10.
We can observe the bi-modal structure of the problem.
Both modes of convergence are slower than the worst linear
convergence rate.

As expected by the construction of the nonlinearity, the
behaviour of the initial condition preserves the fractal pat-
tern. So if the initial conditions are taken in the square
[−κ−1,κ−1]× [−κ−1,κ−1], the same pattern is generated,
see Figure 11.



Fig. 10. Convergence rate of the last 200 periods for 8000-step simulations
of the Lurye system with G and φ5.6233,1.7177 with 250,000 different initial
conditions in the square [−1,1]× [−1,1].

Fig. 11. Convergence rate of the last 200 periods for 8000-step simulations
of the Lurye system with G and φ5.6233,1.7177 with 250,000 different initial
conditions in the square [−κ−1,κ−1]× [−κ−1,κ−1].

The faster convergence rate is obtained for 71.26% of
the initial conditions, where the slower converge rate is
obtained for 28.74% of the initial conditions, see Figure 12.
The simulations with the faster convergence rate achieve
a ρ-periodic behaviour with period 21 (see Figure 13 for
the shape of the period), whereas the simulations with
slower convergence rate achieve a ρ-periodic behaviour with
period 24 (see Figure 14 for the shape of the period). As
expected from Equation 15, a longer period of the orbit
implies a slower convergence rate for the same value of the
parameter κ .

IV. DISCUSSION

The analysis with Zames–Falb multiplier has been shown
to have little conservativeness for the case ρ = 1, where
an automatic construction of the nonlinearity to achieve a
periodic behaviour has been proposed in [11]. For the plant

Fig. 12. Distribution of the achieved convergence rate of the Lurye system
with G and φ5.6233,1.7177 over the last period of an 8000 step simulation
with the 250,000 different initial conditions in Figure 10.
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Fig. 13. ”Projected” nonlinearity for the last 5000 step of the simulation
in Figure 10 for the faster convergence rates (ρ = κ−1/21).

in our example, the analysis with Zames–Falb multipliers
ensure the stability for the interval K ∈ [0,1.3511322] and
it is possible to construct a counterexample of the Kalman
Conjecture for K = 1.3575410, where this gain is analytically
provided with the help of the phase Bode plot as shown
in [18].

For the case ρ < 1, the main challenge is the construction
of a nonlinearity that generates nonlinear asymptotic con-
vergence behavior. With this aim, we must use of type of
nonlinearities that preserves the nonlinear behaviour at any
neighbourhood of the origin. For the non-odd case, we can
use a simple construction for nonlinearities as shown in [12],
where the nonlinearity has two different constant slopes, one
for positive inputs and a different one for negative inputs. An
analytic construction of the convergence rate is achieved.

In this paper we show that this is also possible for
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Fig. 14. ”Projected” nonlinearity for the last 5000 step of the simulation
in Figure 10 for the faster convergence rates (ρ = κ−1/24).

odd nonlinearities, although a symbolic construction is very
challenging. A fractal construction of the nonlinearity is
required. Nonetheless, there is still a significant gap between
the convergence generated by these examples, ρ ∼ 0.930, and
the upper bound provided by the Zames-Falb analysis in [12],
ρ̄ = 0.9965.

In comparison with [11], the analytical construction be-
comes significantly more challenging as the monotonicity
condition is not limited to a single period. On the other
hand, we have shown that the initial conditions are not
critical to detect if a nonlinearity provides worse-rates than
the worst linear case, therefore numerical construction is less
challenging than the case ρ = 1.

Finally, it is worth highlighting that we have used more
complex nonlinearities. In the spirit of [11], we have searched
nonlinearities with more complex structure, e.g.

φ2(y) =


c1κN if κN ≤ y < η1κN ,

13y+ c2κN if η1κN ≤ y < η2κN ,

c3κN if η2κN ≤ y < η3κN ,

13y+ c4κN if η3κN ≤ y < κN+1;

(16)

where c1, c2, c3, and c4 are selected to ensure the continuity
of the nonlinearity. However, no improvement has been
found.

As future work, duality conditions for the modified class
of Zames-Falb multipliers developed by [19] could be found.
They may be useful to show the existence of a ρ-periodic
behavior as in [18], [11].

V. CONCLUSION

In this manuscript, a counterexample to the Kalman con-
jecture for convergence analysis is constructed with an odd
slope-restricted nonlinearity, i.e. we construct nonlinearities
where the Lurye system converges to the origin with worse-
convergence rates than This counterexample shows that the
lower bound provided by the linear case is not tight for the
corresponding Luyre systems. This result, together with the

counterexample with non-odd nonlinearity [12], motivates
the techniques to estimate an upper bound of the convergence
rate.

As discussed above, it remains open the question about
the conservativeness of the use of the subclass of Zames-
Falb multipliers for the bound of convergence rates.
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