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Abstract

This paper considers the robust stability of a discrete-time Lurye system consisting of the feedback interconnection between
a linear system and a bounded and monotone nonlinearity. It has been conjectured that the existence of a suitable linear
time-invariant (LTI) O’Shea–Zames–Falb multiplier is not only sufficient but also necessary. Roughly speaking, a successful
proof of the conjecture would require: (a) a conic parameterization of a set of multipliers that describes exactly the set of
nonlinearities, (b) a lossless S-procedure to show that the non-existence of a multiplier implies that the Lurye system is not
uniformly robustly stable over the set of nonlinearities, and (c) the existence of a multiplier in the set of multipliers used in
(a) implies the existence of an LTI multiplier. We investigate these three steps, showing the current bottlenecks for proving
this conjecture. In addition, we provide an extension of the class of multipliers which may be used to disprove the conjecture.
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1 Introduction

A class of noncausal linear time-invariant (LTI) multi-
pliers preserving the positivity of monotone nonlineari-
ties was proposed by O’Shea (1967) for continuous-time
and by O’Shea & Younis (1967) for discrete-time. In
continuous-time, Zames & Falb (1968) produced a rigor-
ous treatment of noncausal LTI multipliers to show that
the existence of a suitable multiplier is a sufficient con-
dition for the stability of the Lurye system with mono-
tone and bounded nonlinearities. In discrete-time, sim-
ilar development was produced by Willems & Brockett
(1968), but they extended the original class by including
linear time-varying (LTV) multipliers. Nowadays, both
continuous-time and discrete-time LTI classes of multi-
pliers are referred to as O’Shea–Zames–Falb (OZF), or
just Zames–Falb multipliers.

⋆ This work is supported in part by the EPSRC grant
EP/S032894/1.

Email addresses: lanlan.su@sheffield.ac.uk (Lanlan
Su), pseiler@umich.edu (Peter Seiler),
joaquin.carrasco@manchester.ac.uk (Joaquin Carrasco),
szkhongwork@gmail.com (Sei Zhen Khong).

Although the continuous-time class of OZF multipliers
has attracted more attention (see Carrasco et al. (2016)
for a recent overview), its discrete-time counterpart has
attracted significant attention in the past years. Con-
vex searches leading to numerical criteria have been pro-
posed by Fetzer & Scherer (2017), Carrasco et al. (2020),
Turner & Drummond (2021), and it is worth highlight-
ing its role in convergence analysis of optimisation al-
gorithms, e.g. Lessard et al. (2016), Freeman (2018),
Zhang, Seiler & Carrasco (2022), Michalowsky et al.
(2021), Lee & Seiler (2020), Khong et al. (2022). The ef-
ficiency of the searches for discrete-time OZFmultipliers
has generated questions on the conservatism of the suffi-
cient condition with OZF multipliers, e.g. investigations
into phase limitations by Megretski (1995), Wang et al.
(2017), and limits derived from duality theory by Jöns-
son & Laiou (1996), Zhang, Carrasco & Heath (2022).
In Carrasco et al. (2016), it was conjectured that the
existence of a suitable OZF multiplier is, in fact, both
necessary and sufficient for robust stability (see Section
3 for a formal statement). The conjecture, also known as
Carrasco conjecture, has already underpinned the dis-
covery of the first second-order counterexample to the
discrete-time Kalman conjecture (Heath et al. (2015))
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and also motivated a systematic construction of desta-
bilizing nonlinearities by Seiler & Carrasco (2020). Rel-
evant studies of sufficient and necessary robust stability
conditions involving other classes of multipliers can be
located in Khong & van der Schaft (2018), Khong &
Kao (2020, 2021).

The resolution to the Carrasco conjecture would be in-
teresting regardless of the answer. If the conjecture were
true, it would solve a problem which has been consid-
ered for more than 60 years, e.g. Kalman (1957). On the
other hand, if the conjecture were false, it would mean
that our best known criterion for slope-restricted non-
linearities by Carrasco et al. (2020) is conservative and
further research is required to reduce this conservative-
ness. It is worth highlighting that classically it has been
suggested that the conservativeness of the multiplier ap-
proach is due to the lack of a class of multipliers that
tightly characterises the class of nonlinearities (see Fig-
ure 8 in Jönsson (2001a)). Here, we show that the LTV
class of multipliers in Willems & Brockett (1968) is an
exact characterization. Hence, if the Carrasco conjec-
ture were false, it would demonstrate a different source
of conservativeness.

This paper analyses the Carrasco conjecture. Firstly, we
show that a class of LTVmultipliers closely related to the
one proposed in Willems & Brockett (1968) can tightly
characterise the class of monotone nonlinearities, and it
can be parameterized in terms of conic combinations.
Secondly, we show a necessity condition for an extension
of the class of nonlinearities. Thirdly, we show that the
existence of a suitable LTV multiplier for an LTI sys-
tem implies the existence of a suitable LTI multiplier,
which belongs to the class of OZF multipliers. Our anal-
ysis identifies that the requirement of a countably infi-
nite class of multipliers may imply an inherent conser-
vatism, as the current version of the lossless S-procedure
is limited to a finite number of constraints. The use of a
finite, although arbitrarily large, number of constraints
in the S-procedure becomes the main bottleneck to re-
solving the Carrasco conjecture. As a result, the conjec-
ture remains unsolved. As a means to disprove the Car-
rasco conjecture, we introduce a set of nonlinear multi-
pliers and show that it also tightly characterises mono-
tone nonlinearities. The Carrasco conjecture would thus
be potentially disproved if one could find an LTI system
that cannot be characterised by any OZF multiplier but
can be characterised by a nonlinear multiplier we pro-
posed.

The structure of the paper is as follows. Section 2 de-
scribes the notation and provides the preliminaries of the
paper. Section 3 provides a formal problem statement.
Section 4 provides the main technical results of the pa-
per. Initially, we identify a class of nonlinearities that in-
cludes all monotone nonlinearities, over which the robust
stability of the Lurye system is ensured by the existence
of a suitable finite-impulse-response LTI multiplier. The

same condition is shown to be necessary for the uniform
boundedness of the Lurye system when the set of non-
linearities is replaced by a relevant relation set. As an in-
termediate step, we use a wider class of LTV multipliers,
and show the Lurye system with a periodic LTV plant
is robustly stable against the set of monotone nonlin-
earities if there exists a suitable LTV multiplier. Then,
for LTI plants, we show that the existence of a suitable
LTV multiplier is necessary and sufficient for the exis-
tence of a suitable LTI multiplier. Moreover, the links
between the identified set of nonlinearities and the set of
monotone nonlinearities are established through the sets
of LTV multipliers that characterise them, whereby the
discrete-time version of the classical Zames–Falb theo-
rem is recovered. Finally, Section 5 extends the class of
multipliers by using nonlinear multipliers which may be
useful to disprove the discrete-time Carrasco conjecture.

2 Notation and Preliminaries

Let R, C, Z, Z+
0 , Z

−
0 , and Z+ denote the sets of real

numbers, complex numbers, integers, non-negative in-
tegers, non-positive integers, and positive integers, re-
spectively. We use Re {λ} and |λ| to denote the real part
and the magnitude of a complex number λ, respectively.
The set of all conic combinations of elements in B is
{
∑n

i=1 αiBi : αi ≥ 0, Bi ∈ B}. Given a set G, we denote
its closure as clG.

Define ℓ2 as the set of (two-sided) discrete-time signals
u : Z → Rn where

∑
k∈Z u

⊤
k uk < ∞. This forms an

inner product space with ⟨u,w⟩ :=
∑

k∈Z u
⊤
k wk and

corresponding norm ∥u∥ := [⟨u, u⟩]1/2. We will also
use one-sided signals ℓ0+2 := {f ∈ ℓ2 : fi = 0,∀i < 0}.
Two important operations, defined for any τ ∈ Z, are
the truncation Pτ : ℓ2 → ℓ2 and (rightward) shift
Sτ : ℓ2 → ℓ2. The truncation operator is defined by
(Pτu)k := uk for k ≤ τ and (Pτu)k := 0 for k > τ .
The shift operation is defined by (Sτu)k := uk−τ .
Further define the two-sided truncation operator
P−τ,τ as (P−τ,τu)k := uk for k = −τ, . . . , τ and
(P−τ,τu)k := 0 otherwise. The one-sided extended space

is ℓ0+2e :=
{
f : Z → Rn : Pτf ∈ ℓ0+2 ,∀τ ∈ Z+

0

}
. Consider

finite sequences of real numbers {v1, v2, . . . , vn} and
{w1, w2, . . . , wn}. The sequences are similarly ordered
if vi < vj implies that wi ≤ wj . The sequences are
unbiased if viwi ≥ 0 for 1 ≤ i ≤ n. The definition of
similarly ordered, unbiased ℓ2 sequences are analogous
to those for finite sequences. A finite-dimensional ma-
trix M ∈ Rn×n is said to be doubly hyperdominant if
mij ≤ 0 for i ̸= j and

∑n
i=1mij ≥ 0 and

∑n
j=1mij ≥ 0

for all i, j ∈ {1, . . . , n}. The definition of doubly hyper-
dominance for doubly-infinite matrices are analogous to
that for finite-dimensional matrices.

A system (also called operator) H is modeled as an
operator that maps an input sequence u to an output
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y := Hu. H is said to be linear if H(u+ v) = Hu+Hv
and H(cu) = cHu for any u, v ∈ ℓ2 and c ∈ R.

For a systemM : ℓ2 → ℓ2, the induced-ℓ2 norm is defined
as:

∥M∥ := sup
u∈ℓ2,u̸=0

∥Mu∥
∥u∥

.

M is said to be bounded if ∥M∥ < ∞. The set of all
bounded, linear operators mapping from ℓ2 to ℓ2 is de-
noted as L(ℓ2, ℓ2). The system M ∈ L(ℓ2, ℓ2) can be
represented by a doubly-infinite matrix of real num-
bers {mij}i,j∈Z such that y = Mu is defined by yi =∑

j∈Zmijuj for i ∈ Z. This infinite sum exists for all
u ∈ ℓ2 and the resulting sequence belongs to ℓ2. For a
system M ∈ L(ℓ2, ℓ2), its adjoint system M∗ is defined
as the system whose matrix representation is the trans-
pose of that of M . A system M ∈ L(ℓ2, ℓ2) is said to be
self-adjoint if M = M∗. M is said to be time-invariant
if MSτ = SτM , for all τ ∈ Z. M is time-invariant
if and only if its matrix representation is Toeplitz, i.e.
mi+l,j+l = mi,j for all i, j, l ∈ Z. Time-invariance of
M implies the matrix representation is uniquely defined
by mi := ml+i,l and the response y = Mu is given by
the convolution yk =

∑
l∈Zmk−lul. The diagonals of

the Toeplitz matrix {mi}i∈Z are the impulse response
coefficients for the LTI system M ∈ L(ℓ2, ℓ2). An im-
portant fact is that LTI systems in L(ℓ2, ℓ2) have an
equivalent transfer function representation. Specifically,

let L∞ denote the set of complex functions M̂ satis-

fying ess supω∈[0,2π) σ(M̂(ejω)) < ∞, where σ denotes

the largest singular value (Clarke 2013, P.7). If M ∈
L(ℓ2, ℓ2) is time-invariant, then it has a transfer function

M̂ ∈ L∞ such that y = Mu is equivalent to multiplica-

tion in the frequency domain: ŷ(ω) = M̂(ejω)û(ω) where
û(ω) :=

∑
n∈Z une

−jωn and ŷ(ω) :=
∑

n∈Z yne
−jωn. For

T ∈ Z+, M is said to be T -periodic if its matrix repre-
sentation satisfies mi+T,j+T = mi,j for all i, j ∈ Z.

A system G : ℓ0+2e → ℓ0+2e is said to be causal if PτGPτ =
PτG for all τ ∈ Z+

0 . A system G : ℓ0+2e → ℓ0+2e is said to
be T0-periodic if GSτT0

= SτT0
G for all τ ∈ Z+

0 and is
said to be time-invariant if it is periodic with T0 = 1. A
causal system G : ℓ0+2e → ℓ0+2e is said to be bounded if

∥G∥ := sup
τ∈Z+;0 ̸=Pτu∈ℓ0+2

∥PτGu∥
∥Pτu∥

= sup
0̸=u∈ℓ0+2

∥Gu∥
∥u∥

<∞.

The set of all bounded, linear operators from ℓ0+2e to ℓ0+2e
is denoted L(ℓ0+2e , ℓ

0+
2e ). Let H∞ denote the subspace of

L∞ that is analytic in the unit disk. If G ∈ L(ℓ0+2e , ℓ
0+
2e )

is both time-invariant and causal then it has a transfer
function Ĝ ∈ H∞. See Dahleh & Diaz-Bobillo (1994) for
more details on linear discrete-time operators.

A nonlinearity ϕ : ℓ0+2e → ℓ0+2e is memoryless if there
exists N : R → R such that (ϕ(v))i = N(vi) for all
i ∈ Z+

0 . The memoryless nonlinearity ϕ is bounded if
there exists a constant C > 0 such that |N(x)| ≤ C|x|
∀x ∈ R. Note that boundedness implies that N(0) = 0.
The memoryless nonlinearity ϕ is monotone if x1 ≥ x2
implies N(x1) ≥ N(x2). For the sake of simplicity, we
are not considering the case where the nonlinearity is
also required to be odd, but a parallel development may
be possible.

3 Problem Formulation

Let G ∈ L(ℓ0+2e , ℓ
0+
2e ) model a discrete-time system that

is single-input single-output, LTI, causal and bounded.
We consider the Lurye system of G in feedback with a
causal bounded nonlinearity ϕ : ℓ0+2e → ℓ0+2e as shown in
Figure 1. The Lurye system [G,ϕ] is defined as:

v = Gw + e

w = ϕv.
(1)

- e0
-

w
G

?e� e� v
ϕ

6

Figure 1. Lurye system

Note that the external signal at the input of G has been
set to zero. This is done without loss of generality as the
effect of a non-zero external signal at the input of G can
be lumped with e due to the assumption thatG is linear,
causal and bounded.

Well-posedness and stability of the Lurye system are
defined next.

Definition 1 [G,ϕ] is well-posed if for any e ∈ ℓ0+2e there

exist v, w ∈ ℓ0+2e that satisfy (1) and depend causally on e.

Definition 2 [G,ϕ] is stable if it is well-posed and there
exists γ > 0 such that

sup
τ∈Z+, 0̸=Pτe∈ℓ0+2

∥Pτw∥
∥Pτe∥

≤ γ.

Let S0 be a set of nonlinearities that map 0 to 0.
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Definition 3 [G,ϕ] is uniformly robustly stable over S0

if [G,ϕ] is well-posed for all ϕ ∈ S0 and there exists γ > 0
such that

sup
ϕ∈S0

sup
τ∈Z+, 0̸=Pτe∈ℓ0+2

∥Pτw∥
∥Pτe∥

≤ γ.

Two classes of nonlinearities will be considered in this
work. In particular, the set of all nonlinearities that are
memoryless, bounded, monotone is denoted S, i.e.,

S := {ϕ : ℓ2 → ℓ2 : ϕ is memoryless,

bounded, and monotone}.

A related set that consists of the input-output pairs gen-
erated by S is defined as 1

G1 := {(v, w) ∈ ℓ2 : w = ϕv, ϕ ∈ S}

In Section 4.2 we will introduce a second related set of
nonlinearities denoted ST,B .

There is a large literature on robust stability of Lurye
systems and details can be found in Desoer &Vidyasagar
(2009), Willems (1970). The plant G ∈ L(ℓ0+2e , ℓ

0+
2e ) is

time-invariant and causal. Thus it has an equivalent

transfer function representation Ĝ(ejω) ∈ H∞. For
continuous-time systems, it is shown by Khong & Su
(2021) that uniform robust stability over the set of
monotone nonlinearities is guaranteed by the existence
of an LTI O’Shea–Zames–Falb multiplier satisfying a
certain frequency domain inequality. In what follows,
two sets of multipliers for the discrete-time counterpart
are introduced.

Definition 4 A class of LTV multipliers MLTV ⊂
L(ℓ2, ℓ2) is given by the set of linear operators satisfying
the following conditions:

(1) The associated matrix M = [m]ij is a doubly hy-
perdominant matrix with zero excess, i.e., mij ≤
0,∀i ̸= j and

∑
i∈Zmij = 0,∀j ∈ Z,

∑
j∈Zmij =

0,∀i ∈ Z.
(2) For all ϵ > 0 there exists n = n(ϵ) such that in each

row or each column the sum of n entries with largest
absolute values is at most ϵ.

1 Although ϕ is defined to map ℓ0+2e to ℓ0+2e for the Lurye sys-
tem in (1), G1 ⊂ ℓ2 is well-defined since ϕ ∈ S is memoryless
and bounded.

Remark 5 It is known that the finite-dimensional dou-
bly hyperdominant matrices with zero excess are precisely
the convex combinations of permutation matrices sub-
tracted from I of the same dimension (Willems 1970, Th.
3.7). The same continues to hold for infinite-dimensional
matrices satisfying the second condition in Definition 4,
by which the infinite convex combinations converge in op-
erator norm; see the proof of Lemma 6 in the next section
and Isbell (1955). Note also that the set MLTV defined
above is a subset of the class of LTV multipliers intro-
duced by Willems & Brockett (1968), which is defined as
the set of linear operators satisfying the first condition in
Definition 4 without the zero-excess constraint.

The class of LTI multipliers MLTI ⊂ L(ℓ2, ℓ2) is defined
as

MLTI := {M ∈ MLTV :M is LTI}. (2)

The class of LTI multipliers MLTI is a subset of the
class of OZF multipliers in O’Shea & Younis (1967). In
particular, the class of OZF multipliers is the same as
the set of all LTI elements in the class of LTVmultipliers
introduced by Willems & Brockett (1968). It must be
highlighted that to the best of the authors’ knowledge
all stability criteria in the literature are obtained using
LTI multipliers.

Conjecture 1 [Carrasco Conjecture (Carrasco et al.
(2016))] Let G ∈ L(ℓ0+2e , ℓ

0+
2e ) be LTI, causal and

bounded. Assume the Lurye system [G,ϕ] is well-posed
for all ϕ ∈ S. The feedback interconnection [G,ϕ] is uni-
formly robustly stable over S if and only if there exists
M ∈ MLTI such that

Re
{
M̂(ejω)Ĝ(ejω)

}
< 0,∀ω ∈ [0, 2π]. (3)

The sufficiency of Conjecture 1 is a straightforward ap-
plication of the multiplier results in Willems & Brockett
(1968) and using the discrete-time counterpart of either
the classical passivity results, e.g. see Section 9.3 in Des-
oer & Vidyasagar (2009), or the IQC theorem in Megret-
ski & Rantzer (1997). The main results of this paper
analyse the necessity direction in Conjecture 1.

4 Main Results

The main results are given in four different subsections.
Firstly, we show an exact characterisation of monotone
nonlinearities involving conic parameterization. Sec-
ondly, we define a larger set of nonlinearities which will
be used in the necessity results. We show a limiting
argument that relates this set with the set of monotone
nonlinearities. Thirdly, we provide a necessary condition
based on the lossless S-procedure that involves a finite
number of constraints. The same condition is shown to
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be sufficient for robust stability against the larger set of
nonlinearities. Finally, we show the equivalence between
LTV and LTI multipliers.

4.1 Characterization of Monotone Nonlinearities

In this subsection, we show that the set of input-output
pairs of all nonlinearities in S can be tightly charac-
terised by the set of time-varying multipliersMLTV, i.e.,
the closure of G1 is equal to the set G2 defined as

G2 := {(v, w) ∈ ℓ2 : ⟨Mv,w⟩ ≥ 0, ∀M ∈ MLTV}.

By introducing a conic parameterization for MLTV, we
also show that G1 can be equivalently characterised by
a strict subset of multipliers in MLTV.

Let P denote the set of operators in L(ℓ2, ℓ2) whose ma-
trix representation is a doubly-infinite permutation ma-
trix. Define

C := {C ∈ L(ℓ2, ℓ2) : C = I − P, P ∈ P}. (4)

Observe that each element in C has a matrix represen-
tation which is doubly hyperdominant with zero excess,
i.e., the sum of each row and each column is zero.

The next lemma provides a useful representation for the
set MLTV.

Lemma 6 The set of all conic combinations of elements
in C is equal to MLTV.

The proof of Lemma 6 is provided in the appendix.

Define the set of sequence pairs that can be characterised
by all the multipliers in C as follows:

G3 := {(v, w) ∈ ℓ2 : ⟨Mv,w⟩ ≥ 0, ∀M ∈ C}.

The following theorem presents the main result in this
subsection.

Theorem 7 It holds that clG1 = G2 = G3.

The proof of Theorem 7 is provided in the appendix.
Noting that the elements in S are memoryless bounded
and monotone, Theorem 7 remains true with v, w ∈ ℓ0+2
since ℓ0+2 ⊂ ℓ2. That is, the following sets are equal

cl {(v, w) ∈ ℓ0+2 : w = ϕv, ϕ ∈ S}
{(v, w) ∈ ℓ0+2 : ⟨Mv,w⟩ ≥ 0, ∀M ∈ MLTV}
{(v, w) ∈ ℓ0+2 : ⟨Mv,w⟩ ≥ 0, ∀M ∈ C}.

Observe that in Theorem 7, any element in G1 satisfies
a nonlinear constraint, while that in G2 is quadratically
constrained by an uncountable number of linear multi-
pliers. The characterisation of G3, on the other hand, is
the cleanest in that its elements are quadratically con-
strained by a countable number of linear multipliers.
In essence, Theorem 7 demonstrates that sequences re-
lated by monotone nonlinearity may be characterised by
a countable number of quadratic constraints. The fact
that the closure of G1 is equal to G2 shows that the class
MLTV provides an exact characterisation of the class of
nonlinearities S. This is relevant for the Carrasco con-
jecture since it shows that there is no conservativeness
in the description of the nonlinearities by linear multi-
pliers. Moreover, the fact that the closure of G1 is equal
to G3 shows that we can rewrite the class MLTV as a
conic combination, which is required for the use of the
S-procedure.

4.2 A Larger Set of Nonlinearities

In this subsection, we introduce a larger set of nonlinear-
ities which contains all nonlinearities in S as a subset.
This set facilitates the proof of the necessity of the ex-
istence of a certain multiplier for robust stability. In the
context of the Carrasco conjecture, this development is
interesting since either it shows the current bottleneck to
show its validity or it shows the source of conservatism of
the theorem if the Carrasco conjecture were to be false.

We start with defining a set of permutations. To this end,
let π(·) : Z → Z denote a permutation. For T,B ∈ Z+,
define PT,B as the set of π(·) that satisfies π(k + T ) =
π(k) + T, ∀k ∈ Z and π(i) ̸= j, for all i, j ∈ Z such
that |i − j| > B. In other words, PT,B is the set of all
operators P whose matrix representations are permuta-
tion matrices that are T -periodic and B-banded. Based
upon the defined set of permutations, we define GT,B as
the set of (v, w) satisfying that the inner product ⟨v, w⟩
is not less than the inner products of every permuted v
and w, i.e.,

GT,B := {(v, w) ∈ ℓ2 :
∑
k∈Z

vkwk ≥
∑
k∈Z

vπ(k)wk,

∀π ∈ PT,B}.

In what follows, we define a subset ofMLTV that consists
of periodic and banded elements. Given T,B ∈ Z+, let

MT,B
LTV be defined as

MT,B
LTV := {M ∈ MLTV :M is T -periodic,

mij = 0, ∀|i− j| > B}.

Recall from Lemma 6 thatMLTV is equal to the set of all
conic combinations of elements in C where C is defined
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(a) a representation of M and
the translation (b) M

Figure 2.

in (4). To derive an analogous result for the case with

MT,B
LTV, define

CT,B := {C ∈ C : C is T -periodic,

cij = 0, ∀|i− j| > B}.

Lemma 8 Given T,B in Z+ with T ≥ 2B + 1, the set

MT,B
LTV is equal to the set of all conic combinations of

elements in CT,B.

PROOF. (⊃) This follows from Lemma 6 and the fact
that the sum of T -periodic B-banded matrices is still
T -periodic and B-banded.

(⊂) For ease of exposition, we prove in the following
using an concrete example with T = 4 and B = 1. Note
that the same line of reasoning can be applied to prove
for the general cases with any T,B ∈ Z+ satisfying T ≥
2B + 1.

AnyM ∈ M4,1
LTV can be described by the banded matrix

in Figure 2 (a). Therein, the shaded entries are possibly
nonzero while the other entries are all zeros. SinceM is 4-
periodic, the associated matrix ofM can be represented
by any 4 consecutive rows, say row 1 to row 4. By def-
inition, all rows and columns of M sum to zero. Hence,
the sum of rows 1, 2, 3, 4 and columns 0, 1, 2, 3 are zeros.
Now we translate horizontally the entries m34,m44,m45

to the left by four steps, as indicated in Figure 2 (a).
Then apparently the row sum for rows 1, 2, 3, 4 remain
the same. Moreover, the fact that M is 4-periodic im-
plies that the translated entries inside the dashed border
in rows 3, 4 can be equivalently obtained by translating
the entries inside the dashed border in rows −1, 0 verti-
cally downward by four steps. Therefore, the 4× 4 ma-
trix M as shown in Figure 2 (b), which is obtained by
extracting rows 1, 2, 3, 4 and columns 0, 1, 2, 3 of Figure
2 (a) after translation, is doubly hyperdominant with
zero excess. Next, let P4 denote the set of 4 × 4 per-
mutation matrices. By the arguments of Lemma 6 tai-
lored to finite-dimensional matrices, we have that M

(a) a representation of M
and the translation (b) M

Figure 3.

can be expressed as a conic combination of elements in
C4 := {C ∈ R4×4 : C = I4 − P, P ∈ P4}. In other
words, there exist αi > 0, i = 1, . . . , n with n ≤ 4! such
thatM =

∑n
i=1 αiCi with Ci ∈ C4. Note that every off-

diagonal entry in C ∈ C4 takes values in {−1, 0}. Hence,
if the ij-th entry inM is zero, then the ij-th entry in all
C ∈ {C1, . . . , Cn} must be zero. Let Ci be any element
in {C1, . . . , Cn}, depicted in Figure 3 (a).

By reversing the process in Figure 2, we translate hori-
zontally the entries c31, c41, c42 in Ci to the right by four
steps, as shown in Figure 3 (a), whereby a banded ar-
ray is obtained. Next, by repeating the obtained banded
array as shown in Figure 3 (b), we get a banded and
periodic matrix Ci. Since M =

∑n
i=1 αiCi, it follows

from the operations described in Figures 2 and 3 that
M =

∑n
i=1 αiCi. It can also be observed that Ci is a per-

mutation matrix that is 1-banded and 4-periodic, i.e.,
Ci ∈ C4,1. Hence, each element inM4,1 can be expressed
as a conic combination of elements in C4,1. 2

As illustrated in the proof above, the condition T ≥
2B+1 is used to find the conic basis of the same period

as that of MT,B
LTV. When T < 2B + 1, define Tn as

Tn := min
n∈Z+

nT such that nT ≥ 2B + 1.

Following the same line of argument in the preceding

proof, it can be shown that each element inMT,B
LTV can be

expressed as a conic combination of elements in CTn,B .
For instance, let T = 2, B = 1, then by definition Tn =
2T = 4. By taking 4 consecutive rows in M ∈ M2,1

LTV,
we can perform the same operations depicted in Figures
2 and 3 to show that each element in M2,1 can be ex-
pressed as a conic combination of elements in C4,1. As
a result, for the case with T < 2B + 1, one can replace

T with Tn in MT,B
LTV and CT,B

LTV, and then the result in
Lemma 8 remains true.

The next theorem states that GT,B can be tightly char-

acterised by a positivity condition involving MT,B
LTV or

CT,B .
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Theorem 9 Given T,B in Z+ with T ≥ 2B + 1, the
set GT,B is equal to {(v, w) ∈ ℓ2 : ⟨Mv,w⟩ ≥ 0,∀M ∈
MT,B

LTV}. The set GT,B is also equal to {(v, w) ∈ ℓ2 :
⟨Mv,w⟩ ≥ 0,∀M ∈ CT,B}.

PROOF. By definition, GT,B can be expressed as

GT,B = {(v, w) ∈ ℓ2 : ⟨v, w⟩ ≥ ⟨Pv,w⟩,∀P ∈ PT,B},

where PT,B is the set of all operators P whose matrix
representations are permutation matrices satisfying that
pij = pi+T,j+T ,∀i, j ∈ Z and pij = 0,∀|i − j| > B. By
definition, we have that the set {I − P : P ∈ PT,B} is
equal to CT,B . Therefore, we have

GT,B = {(v, w) ∈ ℓ2 : ⟨Mv,w⟩ ≥ 0,∀M ∈ CT,B}.

Then, it follows from Lemma 8 that the set of all conic

combinations of elements in CT,B is equal to MT,B
LTV.

This, in turn, implies that

GT,B = {(v, w) ∈ ℓ2 : ⟨Mv,w⟩ ≥ 0,∀M ∈ MT,B
LTV}.

2

Since every C ∈ CT,B has a finite bandwidth B and a
finite period T , the number of elements in CT,B , denoted
as 1 +NT,B , is finite. Denote

CT,B = {0} ∪ {C1, C2, . . . , CNT,B
}. (5)

For any T,B ∈ Z+, let ST,B denote the set of all causal
bounded nonlinearities ϕ : ℓ2 → ℓ2 such that

ST,B := {ϕ : ℓ2 → ℓ2 : ϕ is causal, bounded and

⟨Mv, ϕv⟩ ≥ 0,∀v ∈ ℓ2, M ∈ MT,B
LTV}.

The links between the sets S and ST,B are explained
in the following lemma with its proof provided in the
appendix.

Lemma 10 For any T,B ∈ Z+, the set S is a subset of
ST,B. Moreover, it holds that

GkT,B1 ⊂ GT,B2 , ∀k ∈ Z+, B1 ≥ B2

and ⋂
n∈Z+

G2n,n = clG1.

Again, it should be noted that Theorem 9 and Lemma 10
remain true with v, w ∈ ℓ0+2 since ℓ0+2 ⊂ ℓ2.

Theorem 9 and Lemma 10 are significant since they show
that GT,B can be characterised by a finite number of
quadratic constraints and that as T,B → ∞ in a cer-
tain manner, we recover the uncertainty set G1. In effect,
GT,B is a larger uncertainty set than G1 against which
we show the necessity of the existence of an appropriate
LTI multiplier in the subsequent subsections. Whereas
it is not known if the same is necessary for robustness
against G1, the relation between GT,B and G1 provides a
justification for our endeavours and main results in this
section.

4.3 Robust Stability with LTV Multipliers

In this subsection, we show that the existence of an
appropriate LTV multiplier is necessary and sufficient
for establishing the uniform robust stability of [G,ϕ].
We start with the sufficiency direction for the case with
ϕ ∈ ST,B . The next result shows that the existence of an

appropriate LTV multiplier in MT,B
LTV ⊂ MLTV guar-

antees robustness against the uncertainty set ST,B ⊃ S.
Note that an element inMT,B

LTV has more structure than
those in MLTV , and its existence gives rise to robust-
ness against a larger uncertainty set ST,B than S. In
view of Lemma 10, the next result thus complements the
known result that the existence of an LTV multiplier in-
troduced by Willems & Brockett (1968) is sufficient for
robustness against S.

Theorem 11 Let G ∈ L(ℓ0+2e , ℓ
0+
2e ) be LTI, causal and

bounded. Let T,B be in Z+, and assume the Lurye sys-
tem [G,ϕ] is well-posed for all ϕ ∈ ST,B. The feedback
interconnection [G,ϕ] is uniformly robustly stable over
ST,B if

∃M ∈ MT,B
LTV, ϵ > 0

s.t. ⟨MGw,w⟩ ≤ −ϵ∥w∥2,∀w ∈ ℓ0+2 . (6)

PROOF. The proof follows from existing results on
integral quadratic constraints (IQCs) by Rantzer &
Megretski (1997). Specifically, note from the defini-
tion of ST,B that if ϕ ∈ ST,B , then λϕ ∈ ST,B for all
λ ∈ [0, 1]. Then, by the definition of ST,B , we have

〈[
v

λϕv

]
,

[
0 M∗

M 0

][
v

λϕv

]〉
= 2⟨Mv, λϕv⟩ ≥ 0

for all ϕ ∈ ST,B , λ ∈ [0, 1], v ∈ ℓ0+2 , and all M ∈
MT,B

LTV. By hypothesis there existM ∈ MT,B
LTV and ϵ > 0

such that ⟨MGw,w⟩ ≤ −ϵ∥w∥2,∀w ∈ ℓ0+2 . Since G is
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bounded, it implies that there exist M ∈ MT,B
LTV and

ϵ > 0 such that〈[
Gw

w

]
,

[
0 M∗

M 0

][
Gw

w

]〉
≤ −ϵ

∥∥∥∥∥
[
Gw

w

]∥∥∥∥∥
2

.

Thus, it follows from the IQC theorem by (Khong 2021,
Cor. IV.3) that for every ϕ ∈ ST,B the feedback system
[G,ϕ] is stable. Uniform robust stability follows from the
proof in (Khong & Su 2021, Th. 6). 2

Next, we consider the nonlinearity set S, which is a sub-
set of ST,B according to Lemma 10. As with ST,B , we
show in the following proposition that the uniform ro-
bust stability of [G,ϕ] over S can be ensured by the ex-
istence of a suitable LTV multiplier.

Proposition 12 LetG ∈ L(ℓ0+2e , ℓ
0+
2e ) be LTI, causal and

bounded. Assume the Lurye system [G,ϕ] is well-posed
for all ϕ ∈ S. The feedback interconnection [G,ϕ] is uni-
formly robustly stable over S if

∃M ∈ MLTV, ϵ > 0

s.t. ⟨MGw,w⟩ ≤ −ϵ∥w∥2,∀w ∈ ℓ0+2 . (7)

PROOF. The claim follows from Theorem 7 and the
same line of reasoning as in the proof of Theorem 11. 2

The sufficiency result in Proposition 12 is derived by
using a modern IQC formulation as shown in the proof
of Theorem 11 in contrast with the similar results
in (Willems & Brockett 1968, Th. 7) which is based on
classical multiplier theory. The IQC formulation will
be generalised in Section 5 to consider an alternative
sufficient condition involving nonlinear multipliers.

Before we can develop necessary conditions, we re-
quire a version of the lossless S-procedure dealing with
LTV quadratic constraint. A time-invariant lossless S-
procedure was presented by Jönsson (2001b). Here we
provide a lossless S-procedure that involves time-varying
quadratic forms based on the S-procedure lossless theo-
rem by Jönsson (2001b).

Define the quadratic forms σk : ℓ0+2 → R as

σk(f) = ⟨f,Πkf⟩, k = 0, 1, . . . , N,

where Πk : ℓ2 → ℓ2, k = 0, 1, . . . , N .

Assumption 13 Let T, T0 ∈ Z+. Assume that

• Π0 is bounded, linear, self-adjoint, and T0-periodic;

• Πk, k = 1, . . . , N are bounded, linear, self-adjoint,
and T -periodic.

Lemma 14 Suppose the quadratic forms σk,
k=0,1,. . . ,N satisfy Assumption 13 and that there exists
f∗ ∈ ℓ0+2 such that σk(f

∗) > 0 for k = 1, . . . , N . Then
the following are equivalent:

(i) σ0(f) ≤ 0 for all f ∈ ℓ0+2 that satisfy σk(f) ≥
0,∀k = 1, 2, . . . , N ;

(ii) There exists αk ≥ 0, k = 1, . . . , N such that

σ0(f) +

N∑
k=1

αkσk(f) ≤ 0, ∀f ∈ ℓ0+2 .

The proof of Lemma 14 is provided in the appendix.

Before presenting the main theorem, another supporting
lemma is stated next.

Lemma 15 Given a pair of sequences {v1, v2, . . . , vn},
{w1, w2, . . . , wn}, suppose v1 > v2 > · · · > vn > 0 and
w1 > w2 > · · · > wn > 0. Then

∑n
i,j=1mijviwj >

0 for all nonzero M = [m]ij ∈ Rn×n that are doubly
hyperdominant.

The proof of Lemma 15 is provided in the appendix.

Theorem 16 Let G ∈ L(ℓ0+2e , ℓ
0+
2e ) be LTI, causal and

bounded, and let T,B in Z+ be given with T ≥ 2B + 1.
Suppose that v, w, e ∈ ℓ0+2e satisfy v = Gw + e. There
exists γ > 0 such that

sup
(v,w)∈GT,B∩ℓ0+2

∥w∥
∥e∥

≤ γ (8)

only if there exist M ∈ MT,B
LTV and ϵ > 0 such that

⟨MGw,w⟩ ≤ −ϵ∥w∥2,∀w ∈ ℓ0+2 .

PROOF. Suppose there exists γ > 0 such that (8)
holds. Then, we have

σ0(v, w) := ∥w∥2 − γ2∥v −Gw∥2 ≤ 0

for all (v, w) ∈ ℓ0+2 that are in GT,B . Define

σk(v, w) := ⟨Ckv, w⟩, k = 1, 2 . . . , NT,B ,

where (v, w) ∈ ℓ0+2 , Ck ∈ CT,B is defined in (5) andNT,B

is the number of nonzero elements in CT,B . By invoking
Theorem 9, we then have

σ0(v, w) ≤ 0, for all (v, w) ∈ ℓ0+2 such that

σk(v, w) ≥ 0, k = 1, . . . , NT,B . (9)
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Next, define v∗, w∗ such that v∗k = w∗
k := 1

k+1 , for k =
0, 1, . . . , T − 1 and v∗k = w∗

k = 0 otherwise. It is clear

that (v∗, w∗) ∈ ℓ0+2 , and we show in the following that
⟨Cv∗, w∗⟩ > 0 for all nonzero C ∈ CT,B .

Let C be any nonzero element in CT,B . Then, we have
that

⟨Cv∗, w∗⟩ =

〈
1
...

1
T

 , C̃

1
...

1
T


〉
,

where C̃ ∈ RT×T is the corresponding principal subma-
trix of C. C̃ is nonzero as C is nonzero and T -periodic.
Since every principle submatrix of a doubly hyperdomi-
nant matrix must be doubly hyperdominant. According
to Lemma 15, one has that

〈
1
...

1
T

 , C̃

1
...

1
T


〉
> 0.

Thus, ⟨Cv∗, w∗⟩ > 0 for all nonzero C ∈ CT,B .

Noting that the operator defining the quadratic form
σ0 is time-invariant and the operators defining σk, k =
1, . . . , NT,B are T -periodic, Assumption 13 can be easily
verified. By invoking Lemma 14, (9) holds if and only if
there exist αk ≥ 0, k = 1, . . . , NT,B such that

σ0(v, w) +

NT,B∑
k=1

αkσk(v, w) ≤ 0, ∀(v, w) ∈ ℓ0+2 . (10)

Now consider the subspace {(v, w) ∈ ℓ0+2 : v = Gw},
equation (10) implies that

NT,B∑
k=1

⟨αkCkGw,w⟩ ≤ −∥w∥2.

The proof is completed by noting that
∑NT,B

k=1 αkCk ∈
MT,B

LTV. 2

Remark 17 It should be remarked that Theorems 11 and
16 hold also for the case with linear and periodic G ∈
L(ℓ0+2e , ℓ

0+
2e ). Specifically, for any T0 ∈ Z+, the preceding

proofs can be employed directly to show the same results in
Theorems 11 and 16 but with T0-periodic G. This can be
observed by that the proof of Theorem 11 does not require
G to be time-invariant, and the underlying lossless S-
procedure for proving Theorem 16 allows for periodically
time-varying quadratic form σ0 as described in Lemma
14.

Remark 18 Recall from Lemma 10 that
⋂

n∈Z+ G2n,n =
clG1. Therefore, if Theorem 16 could be extended to the
case with (T,B) = limn→∞(2n, n), then it could be im-
plied that [G,ϕ] is uniformly robustly stable over S only if
there existM ∈ MLTV and ϵ > 0 such that ⟨MGw,w⟩ ≤
−ϵ∥w∥2 for all w ∈ ℓ0+2 . However, Theorem 16 can not be
extended to the case with (T,B) = limn→∞(2n, n) since
the lossless S-procedure stated in Lemma 14 is no longer
applicable. In particular, the number of quadratic forms
NT,B needed to establish Theorem 16 will approach in-
finity as either T or B increases to infinity. By Lemma
10, an infinite number of quadratic forms are required to
tightly characterise the set S, which hinders the use of
the lossless S-procedure. On the other hand, if there were
an lossless S-procedure that allows for infinite number of
quadratic forms, then the condition in Proposition 12 is
also necessary whereby the discrete-time Carrasco con-
jecture can be proved based on the results in Section 4.4.

4.4 Robust Stability with LTI Multipliers

By constraining the sets of LTV multipliers previously
introduced to be LTI, we define the following sets of LTI
multipliers:

MLTI := {M ∈ MLTV :M is LTI}
MB

LTI := {M ∈ MT,B
LTV :M is LTI}.

In this subsection, we show that LTV multipliers are
“equivalent” 2 to LTImultipliers for the purpose of prov-
ing the stability of the Lurye system in (1). This means
that an hypothetical sufficient and necessary stability
result for the class MLTV would not be affected if we re-
strict the condition to LTI multipliers, i.e. MLTI. As a
straightforward application, the equivalence also holds

betweenMT,B
LTV andMB

LTI. Then, it follows that the nec-
essary and sufficient conditions in Section 4.3 are pre-
served by limiting the search of a suitable multiplier to
the subset ofMB

LTI. It is worth highlighting that any Fi-
nite Impulse Response (FIR) multiplier belongs to class
MB

LTI for some B ≥ 0.

The equivalence results between MLTV and MLTI is
stated as follows:

Theorem 19 Given any ϵ > 0, there existsM ∈ MLTV

such that ⟨MGw,w⟩ ≤ −ϵ∥w∥2 for all w ∈ ℓ0+2 if and

only if there exists M̃ ∈ MLTI such that ⟨M̃Gw,w⟩ ≤
−ϵ∥w∥2 for all w ∈ ℓ0+2 .

PROOF. (⇐) Sufficiency follows from the fact that
MLTI is a subset of MLTV.

2 The equivalence between class of multipliers have been
introduced by Carrasco et al. (2013).
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(⇒) To show necessity, assume that there exists M ∈
MLTV such that ⟨MGw,w⟩ ≤ −ϵ∥w∥2 for all w ∈ ℓ0+2 .

Note that if w ∈ ℓ0+2 then Sτw ∈ ℓ0+2 for all τ ∈ Z+
0 .

Hence ⟨MGSτw, Sτw⟩ ≤ −ϵ∥w∥2 for all w ∈ ℓ0+2 and
τ ∈ Z+

0 . It follows from the shift-invariance of G that for
all τ ∈ Z+

0 and w ∈ ℓ0+2 ,

⟨S−τMSτGw,w⟩ = ⟨MSτGw,Sτw⟩
= ⟨MGSτw, Sτw⟩ ≤ −ϵ∥w∥2.

Thus, for all τ ∈ Z+
0 , the multiplier S−τMSτ has

three useful properties: (i) S−τMSτ ∈ MLTV, (ii)
⟨S−τMSτGw,w⟩ ≤ −ϵ∥w∥2 for all w ∈ ℓ0+2 , and (iii)
∥S−τMSτ∥ ≤ ∥M∥.

Next define MN := 1
N

∑N−1
τ=0 S−τMSτ , and note that

for all N ∈ Z+,MN is doubly hyperdominant with zero
excess. Boundedness of S−τMSτ for all τ ∈ Z+

0 implies
the sequence MN is bounded. It follows from Theorems
A.3.39 and A.3.52 in Curtain & Zwart (2012) that there
exists a subsequence of MN , denoted as MNk

, that is

weakly convergent. In other words, there is M̃ ∈ MLTV

such that limk→∞⟨MNk
v, w⟩ = ⟨M̃v, w⟩, ∀v, w ∈ ℓ2.

Define YN := S−1MNS1 − MN . Then, it can be ob-
served that YN = 1

N (S−NMSN−M). Since the sequence
S−NMS−N is uniformly bounded in the operator norm
we have that YN converges strongly to zero. Hence, we
have

lim
N→∞

⟨YNv, w⟩ = 0, ∀v, w ∈ ℓ2.

Considering the subsequence YNk
of YN , we further have

lim
k→∞

(
⟨S−1MNk

S1v, w⟩ − ⟨MNk
v, w⟩

)
= 0, ∀v, w ∈ ℓ2

which leads to

lim
k→∞

⟨S−1MNk
S1v, w⟩ = lim

k→∞
⟨MNk

v, w⟩, ∀v, w ∈ ℓ2.

The right-hand side of the above equation is ⟨M̃v, w⟩
while the left-hand side can bewritten as ⟨M̃S1v, S1w⟩ =
⟨S−1M̃S1v, w⟩. Thus, we have

⟨S−1M̃S1v, w⟩ = ⟨M̃v, w⟩, ∀v, w ∈ ℓ2,

which implies S−1M̃S1 = M̃ (Young 1988, Th. 1.5(iv)),

and therefore M̃ ∈ MLTI.

Recall that ⟨S−τMSτGw,w⟩ ≤ −ϵ∥w∥2 for all τ ∈ Z+
0

and w ∈ ℓ0+2 . Therefore ⟨MNGw,w⟩ ≤ −ϵ∥w∥2 for all
N ∈ Z+

0 and w ∈ ℓ0+2 . Since MNk
weakly converges to

M̃ , it can now be concluded that ⟨M̃Gw,w⟩ ≤ −ϵ∥w∥2
for all w ∈ ℓ0+2 , which completes the proof. 2

A similar result to Theorem 19 has been recently estab-
lished by Kharitenko & Scherer (2022) via a more com-
plicated approach.

Remark 20 By using the equivalence results by Car-
rasco et al. (2013) between MLTI and the class of FIR
OZF multipliers, we can conclude that the classMLTV is
equivalent to the class of FIROZFmultipliers for the pur-
pose of proving the stability of the Lurye system. Hence,
a complete search over the class of FIR OZF multipliers
would be enough to test the suitability of anyM ∈ MLTV.

Combining Proposition 12 and Theorem 19 leads to the
discrete-time version of the classical Zames–Falb theo-
rem in Zames & Falb (1968) on the sufficiency of Con-
jecture 1.

Following the above result, the equivalence also follows

between MT,B
LTV and MB

LTI

Proposition 21 Given any ϵ > 0 and T,B ∈ Z+, there

exists M ∈ MT,B
LTV such that ⟨MGw,w⟩ ≤ −ϵ∥w∥2 for

all w ∈ ℓ0+2 if and only if there exists M̃ ∈ MB
LTI such

that ⟨M̃Gw,w⟩ ≤ −ϵ∥w∥2 for all w ∈ ℓ0+2 .

PROOF. The result follows Theorem 19 but in this
case we can provide a closed form to the equivalent LTI

multiplier, i.e. for any M ∈ MT,B
LTV the equivalent LTI

multiplier is M̃ := 1
T

∑T−1
τ=0 S−τMSτ , and hence M̃ ∈

MB
LTI. 2

The above equivalence allows us to establish the equiv-
alent result to Theorems 11 and 16 but reducing the
statement to LTI multipliers.

Theorem 22 Let G ∈ L(ℓ0+2e , ℓ
0+
2e ) be LTI, causal and

bounded, and let T,B in Z+ be given with T ≥ 2B + 1.

(i) Assume the Lurye system [G,ϕ] is well-posed for all
ϕ ∈ ST,B. Then, the feedback interconnection [G,ϕ]
is uniformly robustly stable over ST,B if

∃M ∈ MB
LTI s.t.

Re
{
M̂(ejω)Ĝ(ejω)

}
< 0,∀ω ∈ [0, 2π]. (11)

(ii) Suppose that v, w, e ∈ ℓ0+2e satisfy v = Gw+e. Then,
(8) holds only if (11) is satisfied.

PROOF. : We first show part (i). Combining The-
orem 11 and Proposition 21, and assuming well-
posedness, we have that the feedback interconnec-
tion [G,ϕ] is uniformly robustly stable over ST,B

if there exist M ∈ MB
LTI and ϵ > 0 such that
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⟨(MG + ϵI)w,w⟩ ≤ 0 for all w ∈ ℓ0+2 . The condi-
tion is equivalent to the existence of M ∈ MB

LTI and
ϵ > 0 such that

〈
((MG+ ϵI) + (MG+ ϵI)∗)w,w

〉
≤ 0

for all w ∈ ℓ0+2 . By the arguments in (Megret-
ski & Treil 1993, Th. 3.1), this is then equivalent
to

〈
((MG+ ϵI) + (MG+ ϵI)∗)w,w

〉
≤ 0 for all

w ∈ ℓ2. Note that since M ∈ MB
LTI is bounded

and LTI, it admits a transfer function representation

M̂(ejω) ∈ L∞. Hence, the condition is equivalent to
the existence of M ∈ MB

LTI and ϵ > 0 such that

Re
{
M̂(ejω)Ĝ(ejω) + ϵI

}
≤ 0 for all ω ∈ [0, 2π]. This is

equivalent to the existence of an M ∈ MB
LTI such that

(11) holds.

Part (ii) can be proved analogously by combining The-
orem 16 and Proposition 21. 2

5 Robust Stability with Nonlinear Multipliers

In this subsection, we show that the uniform robust sta-
bility of [G,ϕ] over S can be also ensured by the existence
of an appropriate nonlinear multiplier. The Lurye sys-
tem is helpful since it allows us to analyse the stability
of a nonlinear system by using linear tools. Hence, from
a practical point of view, a nonlinear multiplier would
remove the advantages of the Lurye structure. However,
the following development may be helpful in showing a
possible source of conservatism in the current stability
results which use only linear multipliers, and hence it
may be used to disprove the Carrasco conjecture.

Recall from Theorem 7 that the closure of G1 is equal to
G2, i.e., the input-output pairs of nonlinearities in S can
be tightly characterised by the set of multipliers MLTV.
Based on this, the sufficiency of the condition proposed
in Proposition 12 is established by applying the IQC the-
orem. As far as sufficiency is concerned, one may pro-
pose a possibly less conservative condition for ensuring
the robust stability of the Lurye system by looking for
a richer set of multipliers than MLTV that also tightly
characterises the set S. This is shown in what follows.

Let Ψ consist of all bounded memoryless, possibly time-
varying, nonlinear operators ψ : ℓ2 → ℓ2 that are Lips-
chitz continuous and satisfy the sector condition (ψv)k =
N(vk, k) with N(x, k)x ≥ 0 and N(0, k) = 0, for all
k ∈ Z,∀x ∈ R. Let S0 denote the set of all bounded
memoryless monotone nonlinearities that are Lipschitz
continuous.

Lemma 23 The closure of G1 is equal to the set
G5 := {(v, w) ∈ ℓ2 : ⟨Mϕ0v, w⟩ + ⟨ψv,w⟩ ≥ 0,∀M ∈
MLTV,∀ϕ0 ∈ S0,∀ψ ∈ Ψ}.

PROOF. (⊃) Given any (v, w) ∈ G5, by letting ϕ0 =

I, ψ = 0, it then follows that (v, w) ∈ G2. Thus, the
claim follows from Theorem 7.

(⊂) Given any (v, w) ∈ G1, then (v, w) are similarly
ordered and unbiased. Note that for all ϕ0 ∈ S0, the
sequence pairs (ϕ0v, w) are also similarly ordered and
unbiased. Therefore, we have that

⟨Mϕ0v, w⟩ ≥ 0, ∀M ∈ MLTV.

Moreover, since (v, w) is unbiased, we have that
ψ(vk, k)wk ≥ 0 for all ψ ∈ Ψ whereby

⟨ψv,w⟩ ≥ 0, ∀ψ ∈ Ψ.

Combining the two inequalities above gives that (v, w) ∈
G5, which completes the proof. 2

Theorem 24 Let G ∈ L(ℓ0+2e , ℓ
0+
2e ) be LTI, causal and

bounded. Assume the Lurye system [G,ϕ] is well-posed
for all ϕ ∈ S. The feedback interconnection [G,ϕ] is uni-
formly robustly stable over S if there exist M ∈ MLTV,
ψ ∈ Ψ, ϕ0 ∈ S0 and ϵ > 0 such that

⟨Mϕ0Gw,w⟩+ ⟨ψGw,w⟩ ≤ −ϵ∥w∥2,∀w ∈ ℓ0+2 . (12)

PROOF. Let δ⃗(·, ·) denote the directed gap between
two systems as defined by Georgiou & Smith (1997).
A system Π : ℓ2 → ℓ2 is said to be incrementally L2-
bounded if

sup
x,y∈ℓ2:x ̸=y

∥Πx−Πy∥
∥x− y∥

<∞.

Let ϕ be any element in S. In what follows, we show by
applying Theorem IV.2 in Khong (2021) that [G,ϕ] is
stable if the condition in Theorem 24 is satisfied.

Firstly, it is clear that λ ∈ [0, 1] → λϕ is continuous in

the directed gap as δ⃗(λ0ϕ, λ1ϕ) ≤ |λ1 − λ0|∥ϕ∥ for all
λ0, λ1 ∈ [0, 1]. Secondly, note that [G, 0] is stable, and
that by assumption [G,λϕ] is well-posed for all λ ∈ [0, 1].
Next, from Lemma 23 we have that〈[

v

ϕv

]
,

[
0 0

Mϕ0 + ψ 0

][
v

ϕv

]〉
≥ 0

for all v ∈ ℓ0+2 , M ∈ MLTV and all ϕ0 ∈ S0, ψ ∈ Ψ. By
hypothesis there exist M ∈ MLTV, ϕ0 ∈ S0, ψ ∈ Ψ and
ϵ > 0 such that (12) holds. SinceG is bounded, it follows
that there exist M ∈ MLTV, ϕ0 ∈ S0, ψ ∈ Ψ and ϵ̂ > 0
such that〈[

Gw

w

]
,

[
0 0

Mϕ0 + ψ 0

][
Gw

w

]〉
≤ −ϵ̂

∥∥∥∥∥
[
Gw

w

]∥∥∥∥∥
2

.

11



Since M ∈ MLTV is linear and ϕ0 ∈ S0 is memory-
less and Lipschitz continuous, one can show Mϕ0 is in-
crementally ℓ2-bounded. Similarly, ψ ∈ Ψ being mem-
oryless and Lipschitz leads to that ψ is also incremen-
tally ℓ2-bounded. Hence, Mϕ0 + ψ(·, ·) is incrementally
ℓ2-bounded. Now, by invoking Theorem IV.2 in Khong
(2021) we obtain that [G,λϕ] is uniformly stable over
λ ∈ [0, 1]. Since ϕ can be any element in S, it follows
that [G,ϕ] is robustly stable for all ϕ ∈ S. Uniform ro-
bust stability follows from the proof by (Khong & Su
2021, Th. 6). 2

Remark 25 The sufficient condition in Proposition 12
is at least as conservative as the condition in Theorem 24.
This can be seen from that the condition in Proposition
12 can be recovered from the condition in Theorem 24
by fixing ϕ0 = I and ψ = 0. It is noteworthy that this
is the first time that a nonlinear multiplier is proposed
to establish feedback stability of the Lurye system with
monotone nonlinearities.

Lemma 23 shows that the set S can be equivalently char-
acterised also by the set of multipliers that involves both
LTV multiplier in MLTV and nonlinear multipliers in Ψ
and S0. It is shown in the preceding subsection that the
existence ofM ∈ MLTV is “equivalent” to the existence
of MLTI, but this is unlikely to hold for the nonlinear
multipliers. In fact, the results in this work provide a
possible direction to disprove the discrete-time Carrasco
conjecture. That is to find a counterexampleG such that
there is no M ∈ MLTI satisfying (11) but there exist
M ∈ MLTV, ϕ0 ∈ S0, ψ ∈ Ψ and ϵ > 0 satisfying (12).

6 Conclusion

Motivated by the discrete-time Carrasco conjecture, this
work studied both the necessity and sufficiency of a
suitable LTI multiplier for uniform robust stability of
discrete-time Lurye systems. First, it is shown that the
set of monotone nonlinearities is tightly characterised
by a set of LTV multipliers. Significantly, we show that
a conic parameterization of LTV multipliers is possible.
By restricting the set of LTV multipliers to be banded
and periodic, we introduced a larger set of nonlineari-
ties. Second, it is shown that the existence of a suitable
banded and periodic LTV multiplier is sufficient for es-
tablishing the uniform robust stability of the Lurye sys-
tem with time-varying periodic plant over the larger set
of nonlinearities. The same condition is also shown to be
necessary when the nonlinearity set is replaced by the
relation set that is characterised by the same set of LTV
multipliers. Third, when the plant is LTI, the existence
of such a suitable LTV multiplier is shown to be equiv-
alent to the existence of a suitable LTI multipliers.

The sufficiency direction in the second step above can be
extended straightforwardly to the case that considers the

set of monotone nonlinearities. This enables the recov-
ery of the discrete-time Zames–Falb theorem. However,
it remains unknown that if the necessity direction can be
extended similarly. This leaves us an interesting future
direction. If this can be done, then one can prove the
converse of the discrete-time Zames–Falb theorem, and
thus prove the discrete-time Carrasco conjecture. An-
other possible direction is to disprove the discrete-time
Carrasco conjecture by searching for a counterexample
such that a suitable nonlinear multiplier exists while no
suitable LTI multipliers exist.

In continuous-time, the Carrasco conjecture remains
open, and each of the three required steps poses inter-
esting research challenges.
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A Proof of Lemma 6

Lemma 6 The set of all conic combinations of elements
in C is equal to MLTV.

PROOF. First, we introduce two statements (C1) and
(C2) that are used in the proof below.

(C1) for every δ > 0 there exists n = n(δ) such that in
each row or column the sum of the n largest entries
is at least 1− δ.

(C2) for every ϵ > 0 there exists n = n(ϵ) such that in
each row or column the sum of the n entries with
largest absolute values is at most ϵ.
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Recall that a matrix M is said to be doubly stochas-
tic if all entries are non-negative and all rows and
columns sum to 1. Next, define A := {A ∈ L(ℓ2, ℓ2) :
A is doubly-infinite,doubly stochastic and satisfies (C1)}.
In what follows we show that

MLTV = {d(I −A) ∈ L(ℓ2, ℓ2) : d > 0, A ∈ A}. (A.1)

To show (⊂), let D be any doubly-infinite doubly hy-
perdominant matrix with zero excess, and define d :=
maxi,j |dij |. Then D can be expressed as D = d(I −
A) where A := 1

d (dI − D) is a doubly-infinite doubly
stochastic matrix. If D satisfies (C2) then A satisfies
(C1). To show (⊃), let d be any positive real number and
A be any element inA. It is clear that d(I−A) is doubly
hyperdominant with zero excess and satisfies (C2).

Note that A is equal to the convex closure of P (Isbell
(1955)). According to the relationship between A and
MLTV given in (A.1), we have thatMLTV is equal to the
set of all conic combinations of elements in {I−P : P ∈
P}. By recalling the definition of C in (4), it thus follows
that MLTV is equal to the set of all conic combinations
of elements in C. 2

B Proof of Theorem 7

To show the closure of G1 is equal to G2 in Theorem
7, we start by introducing an intermediate set G0 and
presenting two supporting lemmas. Define

G0 := {(v, w) ∈ ℓ2 : (v, w) is similarly ordered}.

It is worth mentioning that two sequences in ℓ2 are
similarly ordered if and only if they are similarly or-
dered and unbiased (Willems 1970, P.63). Therefore, G0

can be equivalently expressed as G0 = {(v, w) ∈ ℓ2 :
(v, w) is similarly ordered unbiased}.

The next lemma relates the input-output pairs of non-
linearities in S and similarly ordered sequences.

Lemma 26 The closure of G1 is equal to G0.

PROOF. (⊂) This follows from the fact that any
(v, w) ∈ ℓ2 satisfying w = ϕv for a ϕ ∈ S is necessarily
similarly ordered and unbiased.

(⊃) Let (v, w) ∈ ℓ2 be similarly ordered, then (v, w)
is unbiased. Given any ϵ > 0, there exists a finite
τ > 0 such that (v, w) := (P−τ,τv, P−τ,τw) satisfy
∥v − v∥ ≤ ϵ/2, and ∥w − w∥ ≤ ϵ/2. The truncated
sequences have a finite number of unique pairs coming
from (vk, wk)

τ
k=−τ and (vk, wk) = (0, 0) otherwise. The

truncated sequences are similarly ordered and unbiased
so the data can be linearly interpolated by a monotone

function. However, the function could be multi-valued
and/or unbounded if the data contains points with
vi = vj but wi ̸= wj . This issue is resolved by another
perturbation to the data. Specifically, define ŵ := w
and define v̂ by perturbing v by a sufficiently small
δ > 0 as follows. If vi = 0 but wi ̸= 0 for any i ∈ Z then
define v̂i := δwi. This preserves the point (0, 0) and per-
turbs other pairs to lie along a line of slope δ. Similarly,
suppose the sequence v has a non-zero value repeated
N times: vi1 = · · · = viN ̸= 0 with wi1 ≤ · · · ≤ wiN
for some indices I := {i1, . . . , iN}. In this case, define
v̂k = vi1 + δ(wk − wi1) for k ∈ I. Again, this per-
turbs the repeated pairs to lie along a line of slope δ.
The perturbed sequences (v̂, ŵ) can be linearly interpo-
lated by a single-valued, monotone, bounded function
N : R → R such that N(0) = 0 and N(v̂i) = ŵi for all
i ∈ Z. Moreover, we have ∥w − ŵ∥ = 0 by definition
and, if δ > 0 is sufficiently small, then ∥v − v̂∥ ≤ ϵ/2.

In summary, for any ϵ > 0 and similarly ordered, unbi-
ased (v, w) ∈ ℓ2, there exist a pair (v̂, ŵ) ∈ ℓ2 such that:
(i) ∥v − v̂∥ ≤ ϵ, (ii) ∥w − ŵ∥ ≤ ϵ, and (iii) ŵ = ϕ(v̂) for
some ϕ ∈ S. The inclusion holds since ϵ can be arbitrar-
ily small. 2

The next lemma states that similarly ordered sequences
are tightly characterised by a positivity condition involv-
ing MLTV, i.e., G0 = G2.

Lemma 27 The set G0 is equal to the set G2.

PROOF. (⊂) This follows from Theorem 3.11 in
Willems (1970) asMLTV is a subset of the set consisting
of all M ∈ L(ℓ2, ℓ2) whose associated matrix is doubly
hyperdominant.

(⊃) Assume ⟨Mv,w⟩ ≥ 0 for every M ∈ MLTV. First
consider the multiplier M with the associated matrix
defined by:[

mkk mkl

mlk mll

]
=

[
1 −1

−1 1

]
and mij = 0, otherwise.

By construction M ∈ MLTV. Moreover, ⟨Mv,w⟩ ≥ 0
can be rewritten as (vk−vl)(wk−wl) ≥ 0. Thus, if vk <
vl then wk ≤ wl and the sequences v, w are similarly
ordered. 2

Theorem 7 It holds that clG1 = G2 = G3.

PROOF. That the closure of G1 is equal to G2 can be
obtained by combining Lemmas 26 and 27. To prove
that the closure of G1 is equal to G3, it suffices to show
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G2 = G3. If (v, w) is in G2, then ⟨Mv,w⟩ ≥ 0 for allM ∈
MLTV. Since C ⊂ MLTV, this implies that (v, w) is in G3.
Thus, G2 ⊂ G3. If (v, w) is not in G2, then ⟨Mv,w⟩ < 0
for someM ∈ MLTV. We can express suchM as a conic
combination of elements Mi ∈ C according to Lemma
6. Then, it follows that ⟨Miv, w⟩ < 0 for at least one
Mi ∈ C. Hence, (v, w) is not in G3. By contraposition
G3 ⊂ G2. 2

C Proof of Lemma 10

Lemma 10 For any T,B ∈ Z+, the set S is a subset of
ST,B. Moreover, it holds that

GkT,B1 ⊂ GT,B2 , ∀k ∈ Z+, B1 ≥ B2 (C.1)

and ⋂
n∈Z+

G2n,n = clG1. (C.2)

PROOF. First, we show that S ⊂ ST,B for any T,B ∈
Z+. Let ϕ be in S. Since ϕ is memoryless bounded and
monotone, any (v, w) ∈ ℓ2 satisfying w = ϕv is necessar-
ily similarly ordered and unbiased. Thus, for all v ∈ ℓ2,
(v, ϕv) satisfies that

⟨Mv, ϕv⟩ ≥ 0,∀M ∈ MLTV.

As MT,B
LTV ⊂ MLTV by definition, ϕ is in ST,B .

Next, the result in (C.1) follows directly from the fact

that MkT,B1

LTV ⊃ MT,B2

LTV when k ∈ Z+, B1 ≥ B2.

Define the sequence G2n,n, n = 1, 2, . . .. According to
(C.1), the sequence is monotone non-increasing, and
thus its limit exists and given by

⋂
n∈Z+ G2n,n. Then,

we show in the following that
⋂

n∈Z+ G2n,n = G2. To

see
⋂

n∈Z+ G2n,n ⊃ G2, suppose (v, w) is in G2. Then
(v, w) satisfies ⟨Mv,w⟩ ≥ 0 for all M ∈ MLTV. It

follows that ⟨Mv,w⟩ ≥ 0 holds for all M ∈ MT,B
LTV

and hence (v, w) ∈ GT,B for all T,B ∈ Z+. Hence
(v, w) ∈

⋂
n∈Z+ G2n,n. To see

⋂
n∈Z+ G2n,n ⊂ G2,

suppose by contraposition that (v, w) /∈ G2. Then
it follows that there exist M ∈ MLTV and ϵ > 0
such that ⟨Mv,w⟩ < −ϵ. One can always find an
M1 ∈ MT,B for some large enough T,B ∈ Z+ such that
⟨(M1 −M)v, w⟩ < ϵ/2. Then

⟨M1v, w⟩ = ⟨(M1 −M)v, w⟩+ ⟨Mv,w⟩ ≤ −ϵ/2,

which implies that (v, w) /∈
⋂

n∈Z+ G2n,n. Thus,⋂
n∈Z+ G2n,n = G2 is proved. Equation (C.2) follows

immediately from Theorem 7. 2

D Proof of Lemma 14

Lemma 14 Suppose the quadratic forms σk,
k=0,1,. . . ,N satisfy Assumption 13 and that there exists
f∗ ∈ ℓ0+2 such that σk(f

∗) > 0 for k = 1, . . . , N . Then
the following are equivalent:

(i) σ0(f) ≤ 0 for all f ∈ ℓ0+2 that satisfy σk(f) ≥
0,∀k = 1, 2, . . . , N ;

(ii) There exists αk ≥ 0, k = 1, . . . , N such that

σ0(f) +

N∑
k=1

αkσk(f) ≤ 0, ∀f ∈ ℓ0+2 .

PROOF. That (ii) implies (i) is straightforward. To see
that (i) implies (ii), define

K =
{
(σ0(f), σ1(f), . . . , σN (f)) : f ∈ ℓ0+2

}
N = {(n0, n1, . . . , nN ) : nk > 0 ∀k ∈ {0, 1, . . . , N}} .

We show below that K, the closure of K, is convex. Let
f1, f2 ∈ ℓ0+2 ,

k1 = (σ0(f1), σ1(f1), . . . , σN (f1)) ∈ K
k2 = (σ0(f2), σ1(f2), . . . , σN (f2)) ∈ K.

Recall that the shift operator Sτ is defined by (Sτf)k =
fk−τ for τ ∈ Z+

0 . For all λ ∈ [0, 1],

σk(
√
λf1 +

√
1− λSτf2)

= λσk(f1) + (1− λ)σk(Sτf2) + 2
√
λ(1− λ)⟨Πkf1, Sτf2⟩.

Observe that ⟨Πkf1, Sτf2⟩ → 0, k = 0, 1, . . . N , as τ →
∞. Moreover, since Πk, k = 1, . . . N is T -periodic and
Π0 is T0-periodic, it follows that for all ϵ > 0 there exists
sufficiently large β ∈ Z+ such that with τ := βTT0,∣∣∣⟨Πkf1, Sτf2⟩

∣∣∣ < ϵ, ∀k = 0, 1, . . . , N and

σk(Sτf2)− σk(f2) = 0, ∀k = 0, 1, . . . , N.

Together, we have that(
σ0(

√
λf1 +

√
1− λSτf2), . . . , σN (

√
λf1 +

√
1− λSτf2)

)
→ λk1 + (1− λ)k2

as β → ∞. That is, K is convex.

Since N is open and (i) implies that K
⋂
N = ∅, it fol-

lows from the hyperplane separation theorem that there
exists a hyperplane that separates K and N . That is,
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there exists a nonzero N + 1-tuple (c0, c1, . . . , cN ) such
that

c0n0 + c1n1 + · · ·+ cNnN > 0 ∀(n0, n1, . . . , nN ) ∈ N
(D.1)

and

c0κ0 + c1κ1 + · · ·+ cNκN ≤ 0 ∀(κ0, κ1, . . . , κN ) ∈ K.
(D.2)

Note that (D.1) being true for all (n0, n1, . . . , nN ) ∈ N
implies that ck ≥ 0, k = 1, . . . , N .

Finally, let κk = σk(f
∗) for k = 0, 1, . . . , N . Note that

κk > 0 for k = 1, . . . , N by hypothesis. It follows from
(D.2) that c0 > 0. Dividing (D.2) by c0 and letting αk =
ck/c0, k = 1, . . . , N then yields (ii), as required. 2

E Proof of Lemma 15

Lemma 15 Given a pair of sequences {v1, v2, . . . , vn},
{w1, w2, . . . , wn}, and suppose v1 > v2 > · · · > vn > 0
and w1 > w2 > · · · > wn > 0. Then

∑n
i,j=1mijviwj >

0 for all nonzero M = [m]ij ∈ Rn×n that are doubly
hyperdominant.

PROOF. Since v1 > v2 > · · · > vn and w1 > w2 >
· · · > wn, it follows from the rearrangement inequality
in (Hardy et al. 1952, Section 10.2) that

n∑
i=1

viwi >

n∑
i=1

viwπ(i)

for all permutation π except for π(i) = i, i = 1, . . . , n.
That means

∑n
i,j=1[I−P ]ijviwj > 0 for all P ∈ {Pn\I}

where Pn denotes all n × n permutation matrices.
According to the sufficiency proof of Theorem 3.7
in Willems (1970), given any doubly hyperdominant
matrix M with zero excess, it can be written as

M =
∑n!

i=1 βi(I − Pi), where Pi ∈ Pn and βi ≥ 0, k =
1, . . . , n!. Let P1 = I. Note that M being nonzero
implies that there exists at least one i ∈ {2, . . . , n!}
such that βi > 0. Hence,

∑n
i,j=1mijviwj > 0 for all

M = [m]ij that are nonzero and doubly hyperdominant
with zero excess.

Now for any given doubly hyperdominant matrix
M ∈ Rn×n, define mi,n+1 := −

∑n
j=1mij , mn+1,j :=

−
∑n

i=1mij for i, j ≤ n, and mn+1,n+1 :=
∑n

i,j=1mij .

Since the augmented matrix M+ := [m]ij , i, j =
1, 2, . . . , n + 1 is a doubly hyperdominant with zero
excess, by considering the sequence {v1, v2, . . . , vn, 0}

{w1, w2, . . . , wn, 0}, it then follows that
∑n+1

i,j=1mijviwj =∑n
i,j=1mijviwj > 0. 2
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