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Abstract—This paper considers the Lurye system of a discrete-
time, linear time-invariant plant in negative feedback with a
nonlinearity. Both monotone and slope-restricted nonlinearities
are considered. The main result is a procedure to construct
destabilizing nonlinearities for the Lurye system. If the plant
satisfies a certain phase condition then a monotone nonlinearity
can be constructed so that the Lurye system has a non-trivial
periodic cycle. Several examples are provided to demonstrate
the construction. This represents a contribution for absolute
stability analysis since the constructed nonlinearity provides a less
conservative upper bound than existing bounds in the literature.

Index Terms—Stability of nonlinear systems, Absolute stability.

I. INTRODUCTION

THE discrete-time absolute stability problem considers the
Lurye system of a discrete-time, linear time-invariant

(LTI) plant in negative feedback with a nonlinearity. Let kAS
denote the supremum of the set of values of k for which the
Lurye system is stable for all nonlinearities whose slope is
restricted to [0,k]. It remains an open question to provide
necessary and sufficient conditions to compute this maximal
stability interval kAS. The LTI Zames–Falb multipliers [1]–
[6] provide a sufficient condition for stability. Specifically, the
search over discrete-time Zames-Falb multipliers in [7] pro-
vides a lower bound kZF ≤ kAS. It has been conjectured in [8],
[9] that this condition is actually necessary and sufficient, i.e.
kZF = kAS. In other words, the conjecture is that if a Zames-
Falb multiplier does not exist for some k then there exists a
destabilizing nonlinearity whose slope remains within [0,k].

The main contribution of this paper is a method to sys-
tematically construct destabilizing nonlinearities for the Lurye
system. Such nonlinearities provide upper bounds k̄ ≥ kAS
and hence are complementary to the Zames-Falb conditions.
The construction is based on a frequency-domain condition
developed in [9] from the dual problem of the Zames-Falb
condition. The construction is first described for Lurye sys-
tems with monotone nonlinearities (Section V-A). If the plant
satisfies a phase condition at one frequency then there is
a monotone nonlinearity such that the Lurye system has a
non-trivial periodic solution. The destabilizing nonlinearity is
explicitly constructed from the periodic solution. Next, the
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results are extended to Lurye systems with slope-restricted
nonlinearities via a loop transformation (Section V-B).

The only existing method to systematically construct a
destabilizing nonlinearity is, to our knowledge, given by the
Nyquist criterion, e.g. [10]. This provides the smallest linear
gain, referred to as the Nyquist gain kN , that destabilizes
the Lurye system (Section VI). The Nyquist gain provides
another upper bound kN ≥ kAS but it is known that this upper
bound is conservative. Specifically, the discrete-time Kalman
conjecture is that kN = kAS. This conjecture was shown to be
false in [11], [12] and hence kN > kAS in general. Our paper
constructs destabilizing nonlinearities with slope restricted to
[0, k̄]. If k̄ < kN then the destabilizing nonlinearity represents
a counterexample to the Kalman conjecture.

It is worth noting that the construction of counterexamples
of the continuous-time Kalman Conjecture has been investi-
gated since the sixties. It still attracts interest due to the ill-
posed numerical issues [13]–[16]. For the Aizerman conjec-
ture, a systematic analysis of the existence of periodic cycles
for second-order systems has been explored in [17], [18]. In
the context of optimization, construction of nonlinearities for
worst-case convergence rate has been used in [19].

II. NOTATION

The set of integers and positive, natural numbers are denoted
as Z and N+, respectively. RH∞ denotes the space of real,
rational functions with all poles inside the open unit disk. This
space corresponds to transfer functions for stable, LTI discrete-
time systems. A function φ : R→ R has slope restricted to
[0,k] for some finite k > 0 if:

0≤ φ(y2)−φ(y1)

y2− y1
≤ k ∀y2 6= y1 (1)

S0,k with k < ∞ denotes the set of all functions with slope
restricted to [0,k] The notation S0,k with k = ∞ corresponds to
the special case where φ is multivalued and monotone: y2 ≥ y1
implies φ(y2)≥ φ(y1). In this case, u∈ φ(y) will denote that u
is one of the values taken by φ at y. In addition, Sodd

0,k denotes
the set of all odd functions with slope restricted to [0,k], i.e.
φ(x) =−φ(−x) for all x ∈ R.

Finally, let {h0,h1, . . . ,hT−1} denote a finite sequence of real
numbers. We will often stack such sequences into a column
vector HT := [h0, h1, . . . , hT−1]

> ∈ RT . The circulant matrix
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for a given finite sequence HT is defined as:

C(HT ) :=



h0 hT−1 hT−2 · · · h2 h1
h1 h0 hT−1 · · · h3 h2
h2 h1 h0 · · · h4 h3
...

...
...

. . .
...

...
hT−2 hT−3 hT−4 · · · h0 hT−1
hT−1 hT−2 hT−3 · · · h1 h0


. (2)

III. PROBLEM STATEMENT

Let G be a discrete-time LTI system with a single-input
and single-output (SISO). We consider the Lurye system of
G in negative feedback with a nonlinearity φ : R → R as
shown in Figure 1. The Lurye system is y = Gu in the forward
path, where u and y are the input and output sequences. The
feedback path is ul = −φ(yl) at each instant of time l. We
consider φ ∈ S0,k with k > 0 and φ(0) = 0. Lurye systems
with both k < ∞ and k = ∞ are considered. These cases are
related by a loop transformation as discussed later in the paper.
Details on this formulation can be found in [20].

- c0 -u
G

y

?c� 0�φ

6

Fig. 1: Autonomous Lurye system

Let the plant G, slope constant k > 0, and time horizon T ∈
N+ be given. We provide sufficient conditions for the existence
of a nonlinearity φ ∈ S0,k with φ(0) = 0 such that the Lurye
system has a non-trivial T -periodic solution. If the conditions
are feasible then the proof constructs periodic signals UT ∈RT

and YT ∈ RT . A nonlinearity φ ∈ S0,k can also be constructed
to interpolate (YT ,−UT ) and (0,0).

IV. PRELIMINARY RESULTS

This section presents three preliminary results that are used
in the derivation of the main results. The first lemma is a
technical inequality for complex numbers. Its proof is given
in the Appendix.

Lemma 1: Let T ∈N+ be given. Then δ ∈ [−π,π] satisfies
|δ | ≤ π/T if and only if

Re{e jδ e j( π
T n+ π

2 )}Re{e j( π
T n+ π

2 )} ≥ 0, for n ∈ Z. (3)

The next result provides a necessary and sufficient condition
to interpolate finite sequences by a multi-valued function in
S0,∞. This result appears in Section 8 of [21] and more general
finite interpolation results appear in [22] and [23].

Lemma 2 ([21]): Let finite sequences {yi}T−1
i=0 and {ui}T−1

i=0
be given. There exists φ ∈ S0,∞ such that −ui ∈ φ(yi) for i =
0, . . . ,T −1 if and only if:

(yi− yl)(ui−ul)≤ 0 ∀i, l ∈ {0, . . . ,T −1} (4)

A formal proof is given in [21]. If the finite sequences
satisfy Equation 4 then there is, in general, more than one
φ ∈ S0,∞ that interpolates the data. Here we will provide an

explicit formula for an interpolating function. First, re-order
the points so that y0 ≤ y1 ≤ ·· · ≤ yT−1 and −u0 ≤ −u1 ≤
·· · ≤−uT−1. This re-ordering is possible since the data satisfy
Equation 4. Next, note that there can be repeats in the input
data: yi = yi+1 = · · · = yi+r for some r > 0. In this case the
function is multi-valued: φ(yi) ∈ [−ui,−ui+r]. Finally, the re-
ordered data are interpolated by the following multi-valued
function:

φ(y)⊆



−u0 if y < y0
[−ui,−ui+r] if y = yi = · · ·= yi+r

for some r ≥ 0
( fi−1)ui− fiui+1 if yi < y < yi+1

where fi := y−yi
yi+1−yi

−uT−1 if y > yT−1

(5)

This corresponds to linear interpolation or multi-valued output
for any input y ∈ [y0,yT−1] and nearest neighbor extrapolation
otherwise. This specific nonlinearity has the following useful
property:

Lemma 3: Suppose the finite sequences {yi}T−1
i=0 and

{ui}T−1
i=0 are odd, i.e. (yi,ui) is in the sequence if and only

if (−yi,−ui) is in the sequence. Then the nonlinearity φ in
Equation 5 is odd and has 0 ∈ φ(0).

Proof: The proof is straightforward by construction of φ

in Equation 5.

V. MAIN RESULTS

A. Construction for S0,∞

Theorem 1 below provides conditions for the existence
of φ ∈ S0,∞ such that the Lurye system has a non-trivial
T -periodic solution. The proof relies on the response of
the LTI system G ∈ RH∞ due to periodic inputs. Let g :=
{g0,g1,g2, . . .} denote the impulse response of G. The con-
volution summation for a (not necessarily periodic) input
sequence {ui}∞

i=−∞
is:

yk =
k

∑
i=−∞

gk−iui (6)

Next, consider the case where the input is T -periodic so that
ui+T = ui for all i. The terms in convolution summation can
be re-grouped. This yields the following T -periodic output

yk =
T

∑
i=0

hk−iui where hi :=
∞

∑
l=0

gi+lT . (7)

To simplify the notation, define the column vector HT :=[
h0 h1 . . . hT−1

]> ∈ RT . Similarly, stack the T -periodic
sequences {ui}T−1

i=0 and {yi}T−1
i=0 into vectors UT and YT ,

respectively. The T -periodic inputs and outputs are related
by YT = C(HT )UT where C(HT ) is the circulant matrix in
Equation 2. We are now ready to state the main results.

Theorem 1: Let G ∈RH∞ and integers 0 < α < β be given.
Assume α and β are co-prime, i.e. their greatest common
divisor is 1. Define the frequency ω := απ

β
with corresponding

period T = 2β if α is odd and T = β if α is even. There
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exists φ ∈ S0,∞ such that the Lurye system has a non-trivial
T -periodic solution if

π− π

T
≤ ∠G(e jω)≤ π +

π

T
. (8)

Proof: Define the T -periodic input UT := Re{VT} where
VT :=

[
1 e jω . . . e jω(T−1)

]> ∈ CT . Note that VT is an
eigenvector of C(HT ) with eigenvalue G(e jω) [24], [25].
Hence C(HT )VT = G(e jω)VT and the T -periodic output is
YT = Re{C(HT )VT}= Re{G(e jω)VT}.

Next, we show that the input/output sequences can be
interpolated by a nonlinearity φ ∈ S0,∞. If Equation 8 holds
then G(e jω) =−re jδ for some r > 0 and |δ | ≤ π/T . Use the
expressions for UT , YT , and G(e jω) to show the following:

(yi− yl)(ui−ul) = Re{−re jδ (e jωi− e jωl)}Re{e jωi− e jωl}.

The following identity holds for any integers i and l:

e jωi− e jωl = 2sin
(

ω

2
(i− l)

)
e j(ω

2 (i+l)+ π
2 ).

This identity yields:

(yi− yl)(ui−ul) =−c Re{e jδ e j(ω
2 (i+l)+ π

2 )}Re{e j(ω
2 (i+l)+ π

2 )}

where c := 4r sin2 (ω

2 (i− l)
)
≥ 0. Finally, ω

2 = απ

T if α is odd
or ω

2 = απ

2T if α is even. In either case, ω

2 (i+ l) = π

T k for some
integer k. It follows from Lemma 1 that (yi− yl)(ui−ul)≤ 0
for any i, l ∈ {0, . . . ,T−1}. By Lemma 2, there exists φ ∈ S0,∞
such that −ui ∈ φ(yi) for i = 0, . . . ,T −1.

The only remaining issue is to show that the multi-valued
function satisfies 0 ∈ φ(0). There are two cases:

A) α is odd: The frequency is ω = 2πα

T where T = 2β

is even. The points in VT ∈ CT : (i) are equidistantly spaced
around the unit circle, (ii) are symmetric about both the real
and imaginary axis, (iii) and there is a rotational symmetry of
π . The points in C(HT )VT = G(e jω)VT are scaled and rotated
by the magnitude and phase of G(e jω). If G satisfies the phase
constraint in (8) then these points are: (i) equidistantly spaced
around a circle, (ii) they are rotated an angle δ with respect
to VT , (iii) and there is a rotational symmetry of π . As a
result the interpolating data is odd: if (yi,−ui) is a point in
the input/output data then (−yi,ui) is as well. By Lemma 3,
the interpolating nonlinearity is not only monotone but is also
odd and satisfies 0 ∈ φ(0).

B) α is even: The frequency is ω = απ

T where T = β is odd.
The points in VT ∈ CT are again equidistantly spaced around
the unit circle and symmetric about the real axis. However,
the rotational symmetry of π no longer holds and hence the
sequence of points is not odd. As a result, the interpolated
function is not odd. This is an expected property from the
analysis in [9] for the case where α is even. More importantly,
the interpolated function fails to satisfy 0∈ φ(0). It is possible
to shift the nonlinearity to recover 0 ∈ φ(0). First, modify the
definition of the input sequence to be ÛT =Re{VT}+ξ 1 where
1 ∈ RT is a vector of ones and ξ is to be chosen. Note that
C(HT )1 = G(1)1 where G(1) = ∑

∞
k=0 gk is the DC gain of the

system. Thus the modified output sequence is:

ŶT = Re{C(HT )ÛT}= Re{G(e jω)VT}+ξ G(1)1 (9)

This modification adds the constants ξ and ξ G(1) to the
input and output sequences, respectively. The choice of ξ

shifts the original curve generated by (YT ,−UT ) along the line
connecting (0,0) and (G(1),−1). Find the intersection of the
original curve with the line connecting (0,0) and (G(1),−1).
This yields the value of ξ so that the modified function satisfies
0 ∈ φ(0). This function is, in general, non-odd and generates
a T -periodic solution to the Lurye system.
If we restrict our attention to odd nonlinearities, i.e. φ ∈ Sodd

0,∞,
the phase condition must be modified as follows:

Theorem 2: Let G ∈RH∞ and integers 0 < α < β be given.
Assume α and β are co-prime. Define the frequency ω := απ

β

with corresponding period T = 2β if α is odd and T = β if
α is even. There exists φ ∈ Sodd

0,∞ such that the Lurye system
has a non-trivial T -periodic solution if

π− π

2β
≤ ∠G(e jω)≤ π +

π

2β
. (10)

Proof: The statement with α odd follows from the proof
of Theorem 1. If α is even then use the method in the proof
of Theorem 1 to construct sequences {ui}β−1

i=0 and {yi}β−1
i=0 .

Next, append the data to include both (yi,−ui) and (−yi,ui)
for i = 0, . . . ,β −1. The phase condition in (10) can be used
to show that the appended data satisfies Equation 4. Hence
the data can be interpolated by a monotone nonlinearity φ

(Lemma 2). Moreover, the appended data is odd and hence
φ ∈ Sodd

0,∞ (Lemma 3). The appended data is only used in the
function interpolation and the Lurye system will have a β -
periodic solution with only {(yi,−ui)}β−1

i=0 .

Remark 1: For single frequency results, the selection of the
input is not conservative as shown in [9]. It remains open
if less conservative constructions using multifrequency results
are possible, either with periodic or chaotic behaviour.

Remark 2: The robustness of the T-periodic cycle due
to initial condition variations is open for future research.
These could represent hidden oscillations [16], but the orbit is
unstable at the limiting case.

Remark 3: It is worth highlighting that the amplitude of the
periodic behaviour can be tuned by selecting UT = εRe{VT}
for any ε > 0, resulting in a different selection of φ ∈ S0,∞. As
a result, the Lurye system cannot be absolutely locally stable.

B. Construction for S0,k with k < ∞

Consider a Lurye system of (G,φ) where φ is slope re-
stricted with k < ∞. The loop transformation in Figure 2 maps
to a Lurye system (G̃, φ̃) where φ̃ is monotone.

Lemma 4: The Lurye system with G ∈ RH∞ and φ ∈ S0,k
(φ ∈ Sodd

0,k ) has a periodic solution if and only if the Lurye
system with G̃ := G + 1/k and φ̃ ∈ S0,∞ (φ̃ ∈ Sodd

0,∞) has a
periodic solution.

Proof: The proof follows from standard loop transforma-
tion arguments, see Chapter III, Section 6, in [20].

Proposition 1: Let G ∈ RH∞ and integers 0 < α < β be
given. Assume α and β are co-prime. Define the frequency
ω := απ

β
with corresponding period T = 2β if α is odd and
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Fig. 2: Loop transformation for a Lurye systems

T = β if α is even. There is φ ∈ S0,k with k < ∞ such that the
Lurye system has a non-trivial T -periodic solution if

R(ω)+
1
k
< 0 and

−|I(ω)|
R(ω)+1/k

≤ tan
(

π

T

)
, (11)

where R(ω) = Re
{

G(e jω)
}

and I(ω) = Im
{

G(e jω)
}

.
Proof: If (11) holds then G̃ := G+1/k satisfies the phase

conditon in (8). By Theorem 1, there is a φ̃ ∈ S0,∞ such that
the Lurye system of (G̃, φ̃) has a non-trivial solution. This
implies, by Lemma 4, that there is a φ ∈ S0,k such that the
Lurye system of (G,φ) has a non-trivial solution.
The destabilizing nonlinearity with the smallest slope bound
k̄ is obtained when the second constraint in (11) holds with
equality. Solving this equality for k̄ yields:

k̄ =
− tan

(
π

T

)
R(ω) tan

(
π

T

)
+ |I(ω)|

(12)

If G itself satisfies the phase condition in (8) then k̄ ≥ 0.
If k̄ < 0 then no destabilizing nonlinearity exists. Finally, let
{ỹi,−ui}T−1

i=0 be the data interpolated by φ̃ . The nonlinearity
φ is obtained, after loop transforming back, by interpolating
{ỹi− ui/k,−ui}T−1

i=0 . The nonlinearity φ is no longer multi-
valued after the loop transformation.

Proposition 2: Let G ∈ RH∞ and integers 0 < α < β be
given. Assume α and β are co-prime. Define the frequency
ω := απ

β
with corresponding period T = 2β if α is odd and

T = β if α is even. There is φ ∈ Sodd
0,k with k < ∞ such that

the Lurye system has a non-trivial T -periodic solution if

R(ω)+
1
k
< 0 and

−|I(ω)|
R(ω)+1/k

≤ tan
(

π

2β

)
(13)

where R(ω) = Re
{

G(e jω)
}

and I(ω) = Im
{

G(e jω)
}

.

The proof is similar to that given for Proposition 1 and
is omitted. Moreover, we can solve for the smallest k̄odd for
which there is a destabilizing φ ∈ Sodd

0,k .

VI. DISCUSSION ON THE KALMAN CONJECTURE

The constructed nonlinearity is valid for each (α ,β ) where
the phase condition is satisfied at the frequency ω = απ

β
. This

provides an upper bound k̄ on the stability boundary kAS for the
absolute stability problem. Classically, the Nyquist criterion is
used to construct unstable behaviour, e.g. [10].

Definition 1 (Nyquist gain): The Nyquist gain of G ∈RH∞,
denoted kN , is the supremum of the set of gains k such that

the feedback interconnection between G and K is stable for
all K ∈ [0,k].

The constructed nonlinearity only provides new information
if k̄ < kN . To clarify further, recall the Discrete-Time Kalman
Conjecture (DTKC) is that kN = kAS as stated next.

Conjecture 1 (DTKC [11], [26]): The Lurye system with G
and any φ ∈ S0,k is stable if and only k < kN .

Remark 4: The interpolated nonlinearity (Equation 5) is
non-differentiable at some points. It can be smoothed (see
Equation 16 in [11]) except at the limiting cases.

Remark 5: For discussions on results when open interval
are used in Equation 1, see [15].
Our nonlinear construction does not provide any valuable in-
formation beyond the Nyquist value for plants where kZF ' kN .
However, as DTKC is false in general [12], the Nyquist gain
is a conservative upper bound. Our construction is relevant
for the plants used in absolute stability literature such as the
examples in [7]. For instance, the gap between kZF and kN is
between 30 % and 70 % of kN(see Tables I and II in [9])) and
our construction leads to counterexamples of the DTKC, i.e.
k̄ < kN .

VII. NUMERICAL EXAMPLES

A. Example with α odd and k = ∞

To illustrate the main results, first consider artificially con-
structed plants. Let α = 1 and β = 5 so that ω = π/5. The
periodic solutions have period T = 10. Consider a plant G1
with G1(e jω) =−e j π

25 . This plant satisfies the phase condition
in Equation 8 of Theorem 1. The input and output of G1 are
UT = Re{VT} and YT = Re{G1(e jω)VT} where:

VT :=
[
1 e j π

5 e j 2π

5 e j 3π

5 · · · e j 7π

5 e j 8π

5 e j 9π

5

]>
:=
[
1 e j π

5 e j 2π

5 e j 3π

5 · · · e− j 3π

5 e− j 2π

5 e− j π

5

]>
.

Figure 3 plots the vectors VT (red) and G1(e jω)VT (blue) in
the complex plane. The projection of these points onto the
real axis corresponds with the input-output data UT and YT .
In this example α is odd. Note that the points in VT (i) are
equidistantly spaced around the unit circle, (ii) are symmetric
about both the real and imaginary axis, (iii) and there is
a rotational symmetry of π . These are the key properties
claimed in Theorem 1. The points in G1(e jω)VT are shifted
slightly counterclockwise. Figure 4 shows the interpolated
function (blue) obtained from (YT ,−UT ) using Equation 5.
This function is odd and passes through φ(0) = 0.

Next consider a plant G2 with G2(e jω) = −e j π
10 and the

same (α,β ,ω) as given above. This plant satisfies the phase
condition in Equation 8 but with equality, i.e. the phase
condition is tight. The input and output of G2 are UT =Re{VT}
and YT = Re{G2(e jω)VT} where VT is the same as above.
Figure 3 plots the vectors VT (red) and G2(e jω)VT (green)
in the complex plane. The projection of these points onto the
real axis corresponds with the input-output data UT and YT .
Note that the green data has points of the form (a± jb) for
some (a,b). Projecting these points to the real axis results in
repeats in the entries of YT . As a result, the interpolation φ is
multivalued with a stair-step shape as shown in Figure 4.
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Fig. 3: VT , G1(e jω)VT , and G2(e jω)VT in the complex plane.
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Fig. 4: Interpolated nonlinearities: G1 (blue) and G2 (green).
B. Example with α even and k = ∞

Let α = 2, β = 3, hence ω = 2π/3. The periodic solu-
tions have period T = 3. Consider two different plants: e.g.
G1(e jω) =−e j π

6 and G2(e jω) =−e j π
3 . The input and outputs

are UT = Re{VT} and YT = Re{Gi(e jω)VT} (i = 1,2) where:

VT :=
[
1 e j 2π

3 e− j 2π
3

]>
,

G1(e jω)VT =
[
e− j 5π

6 e− j π

6 e j π
2

]>
,

G2(e jω)VT =
[
e− j 2π

3 1 e− j 2π
3

]>
.

In this example we illustrate the interpolated nonlinearities.
If we consider the set S0,∞, we see that G1 is not a limiting
case since it has finite slope, whereas G2 is a limiting case
as it is multi-valued, see Figure 5. Moreover, the interpolated
nonlinearity is non-odd and it requires a shifting as explained
in the proof to obtain φ(0) = 0. This shifting procedure is
demonstrainted in the following section.

On the other hand, if we reduce our attention to Sodd
0,∞, by

ensuring oddness, G1 becomes a limiting case as it is multi-
valued, see Figure 6. In addition, the required odd nonlinearity
for G2 is not monotone. However, it does not contradict
Theorem 2, as condition 10 is not satisfied for G2.

C. Examples with k < ∞

Consider the following system:

G(z) =
z

z2−1.8z+0.81
. (14)
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Fig. 5: Interpolated nonlinearities required for the Lurye
system to have a periodic behaviour for G1 and G2. As the
pair of points are nonodd, the interpolated nonlinearities are
nonodd and do not cross the origin.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Fig. 6: Interpolated nonlinearities required for the Lurye
system to have a periodic behaviour for G1. In this case,
G1 is multi-valued and we cannot ensure the existence of a
nonlinearity within Sodd

0,∞ resulting in a periodic behaviour.

This plant has been used in [11], [12] as a second-order
counterexample of the discrete-time Kalman Conjecture. The
feedback interconnection of G and a (linear) gain k is stable if
0≤ k < 3.61. A 4-periodic cycle was constructed for a slope-
restricted nonlinearity with maximum slope k = 2.1.

As mentioned in the introduction, Zames-Falb multipliers
can be used to compute a lower bound on kAS. Using the
convex search in [7] yields multipliers that guarantee the
stability for all φ ∈ S0,k1 with k1 = 1.3028317 and for all
φ ∈ Sodd

0,k2
with k2 = 1.3511322. We use the results in this pa-

per to construct destabilizing nonlinearities. This construction
provides an upper bound k̄ ≥ kAS. For this plant the upper
bounds are close to the Zames-Falb lower bounds and hence
the conservatism in either bound is small.

First consider non-odd nonlinearities. Apply Proposition 1
using a large combination of values (α , β ). By using a
phase Bode plot, see Figure 11 in [9], we find that the
minimum value of k̄ is obtained for α = 2 and β = 7. For
these values, Proposition 1 ensures periodic behaviour for
all k ≥ k̄ ' 1.3028373. The required nonlinearity is depicted
in Figure 7. To obtain this nonlinearity, we have to use
Equation (9). For this particular plant, the DC gain of the
loop transformed plant is G̃(1) = 100+ 1/k̄ ' 100.7676 and
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Fig. 7: Interpolated nonlinearity φ ∈ S0,1.3028373 in blue, inter-
polated nonlinearity φ odd ∈ Sodd

0,1.3575410 in gree.

the shifting constant is ξ = 1.5985×10−3.
Next consider the class of odd nonlinearities. Apply Propo-

sition 2 for a large combination of values (α,β ). The mini-
mum value of k̄odd is obtained for α = 1 and β = 3 so that
ω = π

3 and T = 6. For these values, Proposition 1 ensures
periodic behaviour for all k≥ k̄odd ' 1.3575410. The required
nonlinearity is depicted in Figure 7. The time domain evolution
of the orbit is obtained by iterating yl = 1.8yl−1−0.81yl−2−
kφ(yl−1) for l ≥ 2. The initial conditions y0 and y1 are any
two consecutive elements of YT −UT/k.

VIII. CONCLUSIONS

This paper shows the connection between frequency-domain
duality conditions for Zames-Falb multipliers developed in [9]
and periodic behaviour of the Lurye system for slope-restricted
nonlinearity. We develop an analytical construction for desta-
bilizing nonlinearities. For all examples in [7], the construction
yields systematic counterexamples of the discrete-time Kalman
conjecture, and therefore less conservative upper bounds for
absolute stability.
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APPENDIX

The result is trivially true for T = 1, hence the rest of
the proof considers T ≥ 2. To simplify notation, define zn :=
e j( π

T n+ π
2 ) ∈C. The sequence zn has period 2T with z0 = j and

zn = −zn+T , hence the case n = 0 is trivially true for all δ .
Moreover Equation 3 is equivalent to:

Re{e jδ zn}Re{zn} ≥ 0 for n = 1,2, . . . ,T −1 (15)

The phase of {zn}T−1
n=1 ranges from π/2+π/T up to 3π/2−

π/T . Hence all values of {zn}T−1
n=1 have strictly negative real

part. It follows that Equation 15 is equivalent to: Re{e jδ zn} ≤
0 for n = 1,2, . . . ,T − 1, or alternatively jδ + π

T n + π

2 ∈
[−π/2,π/2], for all for n = 1,2, . . . ,T −1. This can be written
as the following inequality on the phase:

π

2
≤ π

T
n+

π

2
+δ ≤ 3π

2
for n = 1,2, . . . ,T −1 (16)

Thus Equation 3 holds if and only if (restricting δ ∈ [−π,π]):

−π

T
n≤ δ ≤ π− π

T
n for n = 1,2, . . . ,T −1 (17)

This condition is equivalent to |δ | ≤ π/T .
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