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Abstract

This note provides the connection between the paper “Absolute stability analysis for negative-imaginary systems” and classical results in
absolute stability. Strictly negative-imaginary systems satisfy the Aizerman conjecture.
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1 Introduction

The main result (Theorem 9) in (Dey et al., 2016) is a
sufficient stability condition for strictly proper and strongly
strict negative-imaginary (SSNI) systems in positive feed-
back with a diagonal, memoryless, slope-restricted non-
linearity. In classical language the result for single-input
single-output (SISO) systems may be stated succinctly as
“SSNI systems satisfy the Kalman conjecture with positive
feedback”; Theorem 9 in (Dey et al., 2016) also provides
the natural generalization of this statement to multivariable
systems. Dey et al. (2016) prove their result via a Lur’e-
Postnikov type Lyapunov function, Popov multipliers and
loop transformation. In fact it can be shown via simple ap-
plication of the Popov criterion. It follows immediately that
the memoryless, diagonal nonlinearity need only be sector-
bounded, not slope-restricted (under usual assumptions of
well-posedness). In addition the condition is both necessary
and sufficient for the absolute stability of strictly proper
strictly negative-imaginary (SNI) systems. A similar result
also follows immediately for negative feedback, where ab-
solute stability can be shown for any diagonal, memoryless,
sector-bounded nonlinearity. In short, SISO SNI systems
satisfy the Aizerman conjecture; the natural generalization
of this statement to multivariable systems also holds.
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2 Technical development

The result is a straightforward application of standard re-
sults. In particular, similar arguments are well-known in the
literature, for example showing that second order plants hold
the Aizerman conjecture (Vidyasagar, 1993). Nevertheless
we provide technical details for completeness.

2.1 Preliminary definitions and results

Lur’e system: We are concerned with the absolute stability
of a Lur’e system consisting of a linear time-invariant m×m
SNI system G in feedback (positive or negative) with a di-
agonal, memoryless, sector-bounded nonlinearity Φ. Hence

y = Gu, (1)

u(t) =

{
Φ(y(t)) (positive feedback),

−Φ(y(t)) (negative feedback).
(2)

NI and SNI systems: Classes of negative-imaginary systems
are defined in (Lanzon and Petersen, 2008; Petersen and
Lanzon, 2010); for a recent overview see (Ferrante et al.,
2016). A linear time-invariant system is NI if all the poles
of its transfer function matrix G(s) lie in the open left-half
plane and

j [G( jω)−G∗( jω)]≥ 0 for all ω ∈ (0,∞). (3)

The system G(s) is SNI if in addition it satisfies

j [G( jω)−G∗( jω)]> 0 for all ω ∈ (0,∞). (4)
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As in (Lanzon and Petersen, 2008; Dey et al., 2016), we
have restricted our attention to stable systems with rational
transfer function matrices with no poles on the imaginary
axis. See (Xiong et al., 2010; Ferrante and Ntogramatzidis,
2013) for further extensions to transfer function matrices that
are analytic only in the open right half plane and irrational
transfer function matrices, respectively.

As is standard in absolute stability (e.g. (Brogliato et al.,
2007), and as in (Dey et al., 2016)) we will only be concerned
with systems that are strictly proper; that is to say G(∞) = 0.
We assume this condition tacitly from now on. It follows
immediately (Lemma 2 in (Lanzon and Petersen, 2008)) that

G(0) = G(0)> > 0. (5)

Corresponding stability results for biproper systems can be
derived by loop transformation, but further care must be
taken over well-posedness conditions.

Stability: We will say a system is stable if the origin is
globally asymptotically stable.

Static Linear Feedback: A general result for the stability
of the feedback interconnection between a SNI system and
NI system is given in (Lanzon and Petersen, 2008); for the
reader’s ease of reference, we include here a simple proof
when the NI system is a static gain.

Theorem 1 (special case of Theorem 5 in (Lanzon and
Petersen, 2008)): The positive feedback interconnection be-
tween a strictly proper SNI system G and K = KT is stable
if and only if

G(0)−1−K > 0. (6)

Proof: Let G(s) = C(sI−A)−1B be a minimal realization.
Then A is Hurwitz and there exists a real matrix Y > 0 such
that AY +YA∗ ≤ 0 and B =−AYC∗. Further, CYC∗ = G(0).
Define Ψ = AY and T = Y−1 −C∗KC. Then the positive
feedback interconnection between G(s) and K is stable if
and only if A+BKC = ΨT is Hurwitz. Following the same
argument as in (Lanzon and Petersen, 2008), this is in turn
equivalent to the condition T > 0. Since K and C∗YC are both
symmetric, the eigenvalues of KC∗YC = KG(0) are real. If
λ̄ [X ] denotes the maximum eigenvalue of X we can say

T > 0⇔ λ̄ [KC∗YC]< 1,

⇔ G(0)−1−K > 0.

�

The following statements follow from Theorem 1:

Corollary 1: The positive feedback interconnection between
a strictly proper SNI system G and K = KT > 0 is stable if
and only if

G(0)< K−1. (7)

Corollary 2: The negative feedback interconnection between
a strictly proper SNI system G and K = KT is stable if and
only if

G(0)−1 +K > 0. (8)

Corollary 3:The negative feedback interconnection between
a strictly proper SNI system G and K = KT > 0 is stable.

Memoryless sector-bounded nonlinearity: The nonlinear-
ity is characterised by the map Φ : Rm → Rm such that
u(t) =Φ(y(t)), Φ(y(t))i = φi(yi(t)) for some φi :R→R and

Φ(y(t))>[M−1
Φ(y(t))− y(t)]≤ 0, (9)

with diagonal M > 0. We say Φ is sector-bounded on [0,M].

We assume well-posedness of the closed-loop system (1),
(2). This can be guaranteed under mild conditions, for ex-
ample that Φ is Lipschitz continuous (Khalil, 2002).

Absolute stability: We say the closed-loop system (1), (2)
is absolutely stable for a specific plant G if stability is guar-
anteed for a class of nonlinearity: in our case all memoryless
Φ sector-bounded on [0,M] satisfying conditions for well-
posedness.

Here we state the modern form of the Aizerman conjec-
ture (e.g. Brogliato et al., 2007).

Aizerman’s conjecture: If the negative feedback intercon-
nection between a strictly proper linear SISO system G and
any φ(y) = ky is asymptotically stable for all k ∈ [a,b], then
the negative feedback interconnection between G and any
memoryless nonlinearity φ(·) in the sector [a,b] is also sta-
ble.

Aizerman’s conjecture in this form is true for first- and
second-order continuous-time systems (Brogliato et al.,
2007; Vidyasagar, 1993). Counterexamples are known
for third-order continuous-time systems (Fitts, 1966) and
second-order discrete-time systems (Carrasco et al., 2015;
Heath et al., 2015). Second-order counterexamples are also
known (Narendra and Taylor, 1973) for early statements
of the conjecture with open rather than closed intervals. A
useful account of the historical development can be found
in (Bragin et al., 2011).

The Popov criterion for SISO and multivariable systems
is well-known (Popov, 1961; Yakubovich, 1967); however
textbooks often only cover particular cases. If the nonlinear-
ity is diagonal, we can state the following result:

Popov criterion: The negative feedback interconnection be-
tween a strictly proper plant G and a nonlinearity Φ sector-
bounded on [0,M] is absolutely stable if there exists a Popov

2



multiplier Z(s) = I+ sΓ, where Γ is a diagonal matrix, such
that

H(s) = M−1 +Z(s)G(s), (10)
is strictly positive real.

Although textbooks such as (Brogliato et al., 2007;
Khalil, 2002) restrict Γ > 0 this condition is not required;
see (Yakubovich et al., 2004). The result is straightforward
in the IQC formulation of Megretski and Rantzer (1997)
but in its embryonic form was already known in the six-
ties (Yakubovich, 1967). Some more recent papers cover
multivariable cases of the Popov criterion, e.g. (Park, 1997;
Heath and Li, 2009). Our absolute stability proof in the se-
quel follows the argument of Vidyasagar (1993) for second
order SISO systems. In fact we only require Γ = γI for some
γ ∈ R. If the nonlinearity is, in addition, slope-restricted
then the existence of a Popov multiplier allows stronger
input-output stability results (Carrasco et al., 2013).

It is stated by Dey et al. (2016) that the “use of positive
feedback in absolute stability framework makes this present
work fundamentally distinct from most of the extensive lit-
erature available on absolute stability for slope-restricted
nonlinearities.” However, absolute stability results can be
expressed for either negative or positive feedback intercon-
nections without loss of generality. Specifically, the negative
feedback interconnection between G and φ is equivalent to
the positive feedback interconnection between −G and φ .
In particular, the Popov criterion can be applied to systems
with positive feedback by substituting −G for G.

2.2 Main results

In this section, we derive stronger results than Theorem 9
in (Dey et al., 2016) by using the Popov criterion and Corol-
lary 1.

Theorem 2: The positive feedback interconnection between
a strictly proper stable SNI system G and a memoryless
nonlinearity in the sector [0,M] is absolutely stable if and
only if G(0)< M−1.

Proof: Sufficiency follows via construction of a Popov mul-
tiplier for −G with the form

Z(s) = I(1+ γs) with γ < 0. (11)

so that H in (10) can be written

H(s) = M−1−G(s)− γsG(s). (12)

Immediately we have the relation

H(0) = M−1−G(0), (13)

and hence the condition on G(0). From (4) we can say

H( jω)+H( jω)∗ ≥ 2M−1−G( jω)−G( jω)∗ for all ω.
(14)

Hence, and by the continuity of eigenvalues, there is some
ω1 > 0 independent of γ such that

H( jω)+H( jω)∗ > 0 for all ω ∈ [0,ω1]. (15)

Similarly, since G(∞) = 0, from (14) and by continuity of
the eigenvalues we have

H(∞)+H(∞)∗ > 0, (16)

and there is some ω2 > 0 independent of γ such that

H( jω)+H( jω)∗ > 0 for all ω ∈ [ω2,∞). (17)

Finally, given the compact interval [ω1,ω2], there exist some
ε > 0 and δ > 0 such that

2M−1−G( jω)−G∗( jω)>−εI, (18)

and
( jωG( jω)+( jωG( jω))∗)> δ I. (19)

for all ω ∈ [ω1,ω2]. It suffices to choose γ <−ε/δ to ensure
H(s) is strictly positive real.

Necessity follows from Corollary 1. �

Theorem 3: The negative feedback interconnection between
a strictly proper stable SNI system G and a memoryless
nonlinearity in the sector [0,M] is absolutely stable.

Proof: Similar to Theorem 2, but we construct a Popov
multiplier for +G with γ > 0. The steady state condition
becomes

G(0)+M−1 > 0, (20)
which, by (5), is true for all strictly proper SNI systems. �

It follows as an immediate corollary that the Aizerman con-
jecture is true for SISO SNI systems. Similarly a natural
generalization of the Aizerman conjecture is true for multi-
variable SNI systems.

3 Conclusion

Classical methods can deal with multivariable systems,
positive/negative feedback and positive/negative multipliers
(Desoer and Vidyasagar, 1975; Yakubovich et al., 2004;
Megretski and Rantzer, 1997). They can be used to show
that SISO SNI systems satisfy the Aizerman conjecture, and
that a similar statement is true for multivariable systems.
The result is considerably stronger than the main result of
Dey et al. (2016) in that: the conditions for absolute stability
are both necessary and sufficient; the memoryless nonlin-
earity need not be slope-restricted, only sector-bounded and
satisfying conditions for well-posedness; the system need
only be SNI, not necessarily SSNI; the result is valid for
both positive and negative feedback.
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