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Abstract

The Kalman conjecture is known to be true for third-order continuous-time systems. We show that it is false in general for
second-order discrete-time systems by construction of counterexamples with stable periodic solutions. We discuss a class of
second-order discrete-time systems for which it is true provided the nonlinearity is odd, but false in general. This has strong
implications for the analysis of saturated systems.

1 Introduction
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Fig. 1. Lur’e problem

Absolute stability of Lur’e 1 systems (see Fig. 1) has at-
tracted much attention in the literature; Aizerman and
Gantmacher (1964) give a classical perspective of the
Lur’e problem, and Altshuller (2013) and Carrasco et al.
(2015a) give recent overviews. Given a class of nonlin-
earities Φ, the Lur’e problem consists of finding condi-
tions on the LTI system G which ensure that the nega-
tive feedback system betweenG and φ is globally asymp-
totically stable for all φ ∈ Φ. The class Φ is typically
described by sector conditions, but several other classes
are given by Megretski and Rantzer (1997). Results have
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been mostly focused on continuous-time systems, with
less attention to the discrete-time counterpart.

The Kalman conjecture (Kalman, 1957) has played
an important role in the development of absolute sta-
bility theory and is stated in several textbooks (e.g.
Vidyasagar, 1993; Brogliato et al., 2006; Haddad and
Chellaboina, 2008). Continuous-time counterexamples
were first proposed by Fitts (1966) and have been the
subject of interesting discussion in the literature (see
Barabanov, 1988; Leonov et al., 2010; Bragin et al.,
2011; Leonov and Kuznetsov, 2011, 2013, and references
therein). They are useful for evaluating the performance
of stability tests including searches for Zames-Falb mul-
tipliers (Safonov and Wyetzner, 1987; Chen and Wen,
1996; Carrasco et al., 2012; Chang et al., 2012; Carrasco
et al., 2014).

Both modern digital control implementation and robust
stability results for optimizing controllers (Heath and
Wills, 2007) require a complete study in the discrete-
time domain. Recently, new stability conditions for
discrete-time Lur’e systems have been proposed in the
literature (Ahmad et al., 2013b; Gonzaga et al., 2012;
Ahmad et al., 2015, 2013a; Wang et al., 2014; Park et
al., 2015), while earlier results include those of Tsyp-
kin (1962); Kapila and Haddad (1996); Park and Kim
(1998); Haddad and Bernstein (1994).The need for good
benchmarks is exemplified by the numerical values used
to illustrate the results of Gonzaga et al. (2012) and
Park et al. (2015); the numerical values given by Gon-
zaga et al. (2012) are no better than the circle criterion,
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while the numerical values given by Park et al. (2015)
are claimed better than the Nyquist value. This moti-
vates the study of the discrete-time Kalman conjecture,
henceforth DTKC.

In this technical communiqué we present counterexam-
ples with saturation functions that demonstrate that
the Kalman conjecture is false in general for second-
order discrete-time systems. To the best of our knowl-
edge, these are the first explicit counterexamples to the
discrete-time Kalman conjecture, even though the ex-
istence of high order counterexamples has been widely
assumed. In particular it should be possible to gen-
erate fourth-order counterexamples by sampling their
continuous-time counterparts. Periodic solutions to
Lur’e systems where the LTI system is second-order
discrete-time but open-loop unstable have been dis-
cussed elsewhere in the literature (e.g. Hu and Lin, 2001;
Yang et al., 2013); since the LTI system is open-loop
unstable these cannot be considered counterexamples
to the Kalman conjecture.

We present two counterexamples in Section 2 where the
saturation function is non-odd. We discuss some im-
plications of these counterexamples for systems under
constant disturbance or set point demand in Section 3,
where we also present a further counterexample where
the saturation function is odd (previously reported by
Carrasco et al., 2015b).

2 Counterexamples

A matrix is said to be Schur if all its eigenvalues have
absolute value strictly lower than 1. The notation G ∼
[A,B,C,D] means that the set of matrices [A,B,C,D]
is a state-space representation of the LTI system G. .
Definition 1 (Nyquist value) The Nyquist value for
a stable transfer function G(z) is

kN = sup
k
{k > 0 : (1 + τkG(z))−1 is stable ∀τ ∈ [0, 1]}.

The discrete Lur’e system is represented in Fig. 1. The
nonlinearity φ is memoryless, so there exists anN : R→
R such that φ(v)(i) = N(v(i)). The state-space repre-
sentation of the closed-loop system is given by

x(i+ 1) = Ax(i)−BN(Cx(i)). (1)

The origin of the system x(i+ 1) = f(x(i)) is said to be
global asymptotically stable, henceforth GAS, if f(0) =
0 and for any ε > 0 and x(0) there exists n such that
|x(i)| < ε for all i > n. With some abuse of notation,
the system x(i + 1) = f(x(i)) is said to be GAS if its
origin is GAS. We will use the notation x(n) = fn(x(0)).
The system x(i+ 1) = f(x(i)) is said to have a periodic
solution if there exist x such that fn(x) = x for some

n > 0. The least integer n is called the period of the
solution. It is standard to show that the origin is not
GAS by finding a periodic solution with period larger
than 1 (see Hu and Lin, 2001; Yang et al., 2013) .

Let us define the static nonlinearity NL as

NL(x) =


−L if x < −L,

x if − L ≤ x ≤ 1,

1 if x > 1,

(2)

The nonlinearity NL is odd if and only if L = 1. We use
N1(x) and sat(x) interchangeably.

In this paper we consider a slightly modified version of
the DTKC, where the nonlinearity is not required to be
smooth:
Conjecture 1 (DTKC) Let φ be a memoryless slope-
restricted nonlinearity such that there exists a continu-
ously differentiable N : R → R and S > 0 such that
φ(y)(i) = N(y(i)) and

0 ≤ N(x1)−N(x2)

x1 − x2
≤ S, (3)

for all x1, x2 ∈ R. Then, the negative feedback intercon-
nection of the discrete-time LTI system G ∼ [A,B,C, 0]
and φ (as in Fig 1) is GAS if A − BCk is Schur for all
k ∈ [0, S].
Remark 1 Carrasco et al. (2015b) show how to con-
struct a counterexample with smooth nonlinearity given
a counterexample to Conjecture 1.
Definition 2 Let G be the class of open-loop systems
with transfer function

G(z) =
−a22z + a11a22 − a12a21

z(z − a11)
. (4)

Theorem 1 The class of systems G does not satisfy the
Kalman conjecture.

Proof: It suffices to construct a counterexample. Con-
sider, as an example, the case

x(i+ 1) =

[
0.5x1(i) + 1.6x2(i)

NL(−1.2x1(i)− 2x2(i))

]
(5)

with corresponding transfer function G(z) = 2z+0.92
z2−0.5z , so

that the Nyquist value of G is kN = 25/23.

Consider the system x(i + 1) = f1(x(i)) given by (5)
with L = 2. Note that NL satisfies (3) with S = 1 < kN
for all L. Let us define

H1 =

{[
−880
367

1

]
,

[
736
1835

322
367

]
,

[
2944
1835

−2

]}
.
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It is straightforward to show that for any x ∈ H1, then
f31 (x) = x. Hence it is not GAS since there exists a
periodic solution with period 3. �

Following LaSalle (1976) and considering the system
x(i + 1) = f(x(i)), a closed set H is said to be an at-
tractor if there exists a neighbourhood U of H such that
fn(x) → H for all x ∈ U . The expression fn(x) →
H means that the distance between fn(x) and H ap-
proaches 0 as n → ∞. H is said to be stable if given a
neighbourhood V of H there exists a neighbourhood W
of H such that fn(x) ∈ V for all x ∈W and n > 0. H is
asymptotically stable if it is an attractor and stable (see
LaSalle, 1976, for further details).
Theorem 2 Consider the system x(i + 1) = f1(x(i))
given by (5) with L = 2. Then, the set H1 is asymptoti-
cally stable.

Proof: Consider the neighbourhood of H1 given by

U =

{[
− 880

367 + ε1

1 + ε2

]
,

[
736
1835 + ε3
322
367 + ε4

]
,

[
2944
1835 + ε5

−2 + ε6

]
,

such that

6ε1 + 10ε2 > −225/367,

3ε1 + 5ε2 < 2640/367,

45ε1 + 52ε2 < 2166/367,

167ε1 + 240ε2 < 7500/367,

167ε1 + 240ε2 > −28880/1101,

3ε3 + 5ε4 > −1083/1835,

5ε3 + 16ε4 > −750/367,

5ε3 + 16ε4 < 2888/1101,

3ε5 + 5ε6 < 9861/3670,

5ε5 + 16ε6 < 1444/1101,

5ε5 + 16ε6 > −375/367,


and analyse the solutions fn1 (x) for all x ∈ U . Firstly, if
x = (− 880

367 + ε1, 1 + ε2) ∈ U , it follows that

f11 (x) =

[
736
1835

322
367

]
+

[
1
2

8
5

− 6
5 −2

][
ε1

ε2

]
,

f21 (x) =

[
2944
1835

−2

]
+

[
− 167

100 −
12
5

0 0

][
ε1

ε2

]
,

f31 (x) =

[
− 880

367

1

]
+

[
− 167

200 −
6
5

0 0

][
ε1

ε2

]
,

f3+3n
1 (x) =

[
− 880

367

1

]
+

(
167

200

)n
[
− 167

200 −
6
5

0 0

][
ε1

ε2

]
,

for n = 1, 2, ... Secondly, if x = ( 736
1835 +ε3,

322
367 +ε4) ∈ U ,

it follows that

f11 (x) =

[
2944
1835

−2

]
+

[
1
2

8
5

0 0

][
ε3

ε4

]
,

f21 (x) =

[
− 880

367

1

]
+

[
− 1

4 −
4
5

0 0

][
ε3

ε4

]
,

f2+3n
1 (x) =

[
− 880

367

1

]
+

(
167

200

)n
[
− 1

4 −
4
5

0 0

][
ε3

ε4

]
,

for n = 1, 2, . . . Finally, if x = ( 2944
1835 + ε5,−2 + ε6) ∈ U ,

it follows that

f11 (x) =

[
− 880

367

1

]
+

[
1
2

8
5

0 0

][
ε5

ε6

]
,

f1+3n
1 (x) =

[
− 880

367

1

]
+

(
167

200

)n
[

1
2

8
5

0 0

][
ε5

ε6

]
,

for n = 1, 2, . . . This development shows that fn1 (x) →
H1 for all x ∈ U , i.e. H1 is an attractor. Moreover, using
this machinery it is then straightforward to choose a
neighbourhood V and find W such that if x ∈ W , then
fn(x) ∈ V for all n; hence H1 is stable. Therefore H1 is
asymptotically stable. �
Remark 2 It is possible to construct further interesting
counterexamples from the class G. Consider for example
the system x(i+ 1) = f2(x(i)) given by (5) with L =∞
(i.e. a one-sided saturation). Let us define

H2 =

{[
80
367

1

]
,

[
3136
1835

− 830
367

]
,

[
− 5072

1835

1

]}
.

Similar to the previous counterexample, it is straightfor-
ward to show that for any x ∈ H2, then f32 (x) = x. Hence
it is not GAS since there exists a nontrivial periodic so-
lution with period 3. It is straightforward to show the so-
lution set is stable in a similar manner to Theorem 2.

3 Discussion on the oddness condition

The class G is inspired by the analysis of Hu and Lin
(2001). As part of their wider analysis of discrete-time
planar systems under odd saturation, they consider the
two-state system

x(i+ 1) =

[
a11x1(i) + a12x2(i)

sat(a21x1(i) + a22x2(i))

]
, (6)

where x(i) = (x1(i), x2(i)). The system (6) can be writ-
ten as the Lur’e system (1) withG(z) ∈ G (Definition 2).
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While Theorem 1 shows that counterexamples to the
Kalman conjecture can be found within the class of
systems G, Heath and Carrasco (2015) show that the
class of systems G satisfies the Kalman conjecture pro-
vided the nonlinearity is odd. This is demonstrated us-
ing a Lyapunov function for |a11| = 1 and discrete-time
Zames-Falb multipliers (Willems and Brockett, 1968) for
|a11| < 1. In some cases the requisite multiplier is only
valid for odd nonlinearities.

In the literature discussing saturation systems and anti-
windup synthesis it is standard to distinguish symmet-
ric (odd) and asymmetric saturation (e.g. Zaccarian and
Teel, 2011), but in the analysis it is common to assume
the nonlinearity is odd (e.g. Hu and Lin, 2001; Tar-
bouriech et al., 2011). In the two counterexamples of
Section 2 stability is guaranteed when the nonlinearity is
odd but breaks down otherwise. This has implications for
stability with constant disturbances or set-point track-
ing. Although we have presented our results for unforced
systems, it is straightforward to extend them to input-
ouput L2 stability with exogenous inputs. Such analy-
sis requires renormalizing about steady-state values; if
these are non-zero then there is no reason to assume the
renormalized nonlinearity is odd even when it is an odd
saturation function in the nominal case. Note that Hu et
al. (2002) address a related but different problem in their
consideration of systems with persistent disturbances;
their analysis gives no information about the structure
(or presence) of limit cycles under constant disturbances.

Similarly, although the distinction between Zames-Falb
multipliers for odd and non-odd nonlinearities is well-
known (in both the classical and recent literature), ex-
amples and implications are not widely discussed. The
counterexamples of Section 2 provide benchmark exam-
ples where the distinction is significant. In this case, the
maximum slope for odd slope-restricted nonlinearities
(kodd) must be strictly bigger than the maximum slope
for non-odd slope-restricted nonlinearities (knon-odd), i.e.

knon-odd < kodd = kN .

To the best of authors’ knowledge, such a counterexam-
ple has not yet been found in continuous-time, though
some Zames-Falb multipliers searches can be setup for ei-
ther case (Safonov and Wyetzner, 1987; Chen and Wen,
1996). Examples given by Chen and Wen (1996) pro-
vide almost the same value for each case. The exis-
tence of such a counterexample would provide a suitable
benchmark to analyse the relative conservatism of such
searches in each case.

We pose an open question: suppose a (general) Lur’e
system is stable with odd nonlinearity. How robust is it
to perturbances in φ which destroy the symmetry? In
the case of saturation this question may be quantified.
Suppose φ is given by the static nonlinarity NL given
in (2). What is the maximum LM for which stability is

guaranteed for all L ∈ [1, LM ]? For our examples it is
easy to check that periodic solutions exist when L =
436/275, but no periodic solution with period 3 exists
when L < 436/275.

Notwithstanding the previous discussion, second-order
counterexamples exist even when the nonlinearity is
odd. The following was first presented by Carrasco et
al. (2015b) 2 , where the related Aizerman and Markus-
Yamabe conjectures are also discussed.

Let G(z) = z
z2−2az+a2 where 0 < a < 1, or equivalently

x(i+ 1) =

[
0 1

−a2 2a

]
x(i) +

[
0

1

]
u(i), (7)

y(i) =
[
0 1
]
x(i). (8)

where x(i) ∈ R2. It is straightforward to check that
A−BCk is Schur if k < kN = (a+1)2. From (7) and (8)
x(i) = (y(i − 1), y(i)); thus let us define the feedback
interconnection as follows

Σ :

{
y(i) = 2ay(i− 1)− a2y(i− 2) + u(i− 1),

u(i) = −Ssat(y(i)).
(9)

for some S > 0 and initial conditions y0(−1) and y0(−2).
The next result shows that there exists a periodic so-
lution if S > kp, and it leads to a counterexample of
DTKC since kp < kN for some 0 < a < 1:
Theorem 3 (Carrasco et al. (2015b)) The system Σ
has a non-trivial periodic solution y(i) = −y(i − 2) if

(
√

2− 1) < a < 1 and S > kp = (a2+1)2

a2+2a−1 .

Corollary 1 (Carrasco et al. (2015b)) The sys-
tem Σ is a counterexample of the DTKC if kp < kN , i.e.
2a3 + a2 − 1 > 0. Analytically,

a >
(53 + 6

√
78)1/3 + (53− 6

√
78)1/3 − 1

6
' 0.657298.

Remark 3 As an example, let us consider a = 0.9, then
kN = 3.61 and kp = 32761

16100 . Then using S = 2.1, the
system has a periodic output {y1, y2,−y1,−y2} where

y1 = 2.1
19900

32761
> 1 and y2 = 2.1

16100

32761
> 1.

In the phase plane, the periodic solution is described by

H3 =

{[
y1

y2

]
,

[
y2

−y1

]
,

[
−y1
−y2

]
,

[
−y2
y1

]}
.

2 Counterexamples are available in Maplecloud, ac-
cessible from the second author’s personal page:
http://goo.gl/NX6OXS
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For any x ∈ H3, then f43 (x) = x, where f3 can be obtained
by taking u(i) = −Ssat(y(i)) in (7). Hence it is not GAS
since there exists a periodic solution with period 4. Once
again it is straightforward to show the periodic solution
set is stable. This system is used as a benchmark example
for stability tests by Ahmad et al. (2015, 2013a).

4 Conclusion

We have shown that, although DTKC is true for first-
order systems, it is false in general for second-order
systems. The construction of counterexamples using
second-order systems is given. As a result, stability
properties of discrete-time Lur’e systems with second-
order and higher plants cannot be derived from the
feedback interconnection between the linear system G
and a linear gain k as in the continuous-time domain.
All three counterexamples are hidden oscillations in the
sense of Leonov and Kuznetsov (2013), and the periodic
orbits are stable. Theorem 2 shows formally the stability
of the periodic orbit for the first counterexample.

The counterexamples are remarkable in that the be-
haviour is straightforward to compute and verify, con-
trasting with the continuous-time case. The counterex-
amples of Section 2 show that it is not sufficient to con-
sider odd nonlinearities to determine absolute stability,
even with low order systems. We have discussed impli-
cations for the analysis of systems under constant dis-
turbance or set-point demand.
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