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Stability Analysis of Bilateral Teleoperation with
Bounded and Monotone Environments via

Zames-Falb Multipliers
Harun Tugal1, Joaquin Carrasco1, Pablo Falcon2, Antonio Barreiro2

Abstract—This paper provides less conservative stability con-
ditions for bilateral teleoperation by exploiting the advantages
of the integral quadratic constraint (IQC) framework, where
the environment can be defined as a memoryless, bounded, and
monotonic nonlinear operator. Recent advances in multiplier
theory for appropriate classes of uncertainties/nonlinearities are
applied. Since the classes of multipliers have infinite dimension,
parametrization of these multipliers is used to obtain convex
searches over a finite number of parameters. The stability of
the system is analysed as a Lurye system containing time-
delay and monotone nonlinearity. As a result, less conservative
delay-dependent conditions can be developed. These results are
then applied to bilateral teleoperation. Finally, stability results
are tested with different experiments; in particular bilateral
teleoperation experiments over the internet between Manchester,
UK, and Vigo, Spain, have been carried out. The advantage
of the proposed approach is demonstrated by reaching higher
transparency index for 2-channel position-force teleoperation
while ensuring absolute stability.

I. INTRODUCTION

Teleoperation is the remote control of a robot through a
communication channel. Usually the operator relies solely on
visual information delivered by a camera. By contrast, in
bilateral teleoperation, both haptic and visual information is
transmitted so that the operator feels the interaction force
between the remote manipulator and the environment while
viewing the scene. This additional feedback is crucial in tasks
requiring delicate action such as telesurgery [1], which need
more steps than in, say, picking and placing, and in tasks where
the environment is hazardous such as space missions, undersea
exploration, and nuclear decommissioning [2], [3].

A bilateral teleoperation needs to fulfil two key criteria:
absolute stability which needs to hold for any possible human
and environment pairs, and transparency defining how well
the environmental interaction forces or its impedances are
being transmitted to the operator side. Unfortunately, there
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exists a trade off between these two measures and with
highly variable uncertainties the overall control design process
transforms into a challenging task [4]. Over the years there
have been many efforts to overcome these obstacles that
prevent physically realisable high-performance teleoperation
system, and passivity theory became the main tool that has
been used by many researchers [5]–[8].

Passivity is an energy related phenomenon; loosely speaking
a system is said to be passive if the energy being extracted
from its output ports is not higher than the energy being
injected into its input ports [9]. Passivity is independent of
the model parameters which makes it appropriate for the
teleoperation as design contains highly variable uncertainties.
Therefore, the stability analyses in bilateral teleoperation are
performed by transforming overall system in a network con-
sisting one port passive human-environment pair connected
to two ports network containing manipulators and controllers
dynamics, etc. Under the passivity assumption of the opera-
tors, if we can somehow guarantee that two port network is
also passive, then stability of the interconnection is ensured.
Under the assumption that human and environment behave
as Linear Time Invariant (LTI) passive operators, Llewellyn’s
conditions [10] become necessary and sufficient for stability
of the interconnection. The price to pay for these convenient
assumptions is conservatism of the design as it needs to
be robust against a wide range of uncertainty classes. As
a consequence, absolute stability of a 2-channel position-
force architecture with simple Proportional-Derivative (PD)
controller at the slave side cannot be guaranteed [11], [12].
To reduce conservatism, the definition of the class of en-
vironments can be restricted to bounded stiffness instead of
the full class of passive systems, thus reasonable performance
specifications were obtained [13], [14].

In addition, master and slave manipulators are generally
located at different places in bilateral teleoperation, so that
latency occurs throughout communication medium. There have
been a number of efforts to improve performance and recover
stability of the teleoperation while communication channel ac-
commodates a constant or time varying delay: wave variables
and scattering transformation paved the way for stable time
delayed teleoperation by passivation of the communication
channel [15]–[20]. Less conservative results are also obtained
with controller’s passivity property [21], [22]. Techniques that
analyse stability against an existence delay are divided in
two categories; delay-independent, where stability margin is
independent from the delay itself, and delay-dependent, where
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the system is stable against a pre-determined maximum time
delay. By taking into account the possible allowable time
delay less conservative results are obtained for the practical
applications.

Polat and Scherer [23] showed that stability analyses of
bilateral teleoperation can be carried out by using IQC frame-
work. Stability is transformed to convex search for suitable
passive multipliers that ensure Frequency Dependent Inequal-
ities (FDI) by using equivalent Linear Matrix Inequalities
(LMI) [24]. The use of IQC analysis allows us to use different
models for human and environment.

In this paper, whose initial findings were presented in [25],
absolute stability of the bilateral teleoperation is analysed with
IQC methodology, assuming that the environmental interaction
force is a monotonic bounded nonlinearity with respect to
slave’s speed. The controller is designed to maximise the
transparency of the system. In order to obtain an analytical
advantage from this assumption, we need to search over
the class of Zames-Falb multipliers [26], [27] which are the
widest available class of multipliers [28] for this class of
nonlinearity. Recent interest in this sort of nonlinear force
feedback has been also proposed in [29]. We have extended
the results in [25] by including time-delay operators and real
experiments have been carried out between two remote labs.
Moreover, a more convenient parametrization for the Zames-
Falb multipliers is used. As intermediate result, we show that
the use of IQC analysis for time-delay systems with saturated
actuation provide competitive results in comparison with other
techniques in the literature. The proposed methodology has
wide range of application area, see [30], yet we motivate our
attention in to the bilateral teleoperation.

II. PROBLEM STATEMENT AND CONTRIBUTION

The main concern in bilateral teleoperation is how to ensure
that absolute stability is assured while obtaining sufficient
performance specifications which are mainly transparency and
position tracking of the slave manipulator. The methodological
approach to define uncertain human and environment pair,
and delay in communication channel plays crucial role. In
order to use robust control techniques for stability analysis,
the bilateral teleoperation architecture proposed in Fig. 1
will be transformed into classical nominal plant-uncertainty
interconnection without loss of generality.
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Fig. 1. Network representation of the bilateral teleoperation, where human
and environment are defined as a one port and the rest is depicted as two port
network.

Network representation of the system can be any of the
immitance matrices; impedance, admittance or hybrid [31], in
our analyses admittance matrix Y is used:[

vh
−ve

]
=

[
y11 y12

y21 y22

] [
Fh
Fe

]

where Fh, Fe, vh, and ve are the forces and velocities of hu-
man and environment at interaction interfaces. The admittance
matrix Y (jω) substitutes nominal system G in the Lurye1

structure.
Strictly speaking, the stability analysis of the position-force

bilateral teleoperation, illustrated in Fig. 2a, will be analysed
with two different slave controllers which are frequently used
in the literature; proportional (P) or proportional-derivative
(PD) controller while trying to maximize performance criteria,
transparency and position tracking.
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Fig. 2. Delay free 2 channel Position-Force bilateral teleoperation system,
where Kf and µ are force and position scaling factors, respectively.

A physical object is said to be transparent if the light
passing through it is not being scattered. In bilateral tele-
operation, generally speaking, instead of light the environ-
ment’s impedance or force is transmitted. And transparency
is measured by defining how well the impedance or force is
being transmitted. For example in the position-force bilateral
teleoperation architecture level of the transparency is measured
with maximum achievable force and position scaling factors,
Kf and µ respectively. The product of these two constants
(Kfµ) will be referred to as transparency index, and it is
equal to 1 in ideal conditions2. But due to the previously
mentioned trade off, it is not possible to obtain an absolutely
stable and also ideally transparent teleoperator [4]. Our design
specification is to obtain maximum achievable transparency
indexes with stable position-force architectures controlled by
P and PD controllers. In the context of teleoperation, to the
best of authors’ knowledge there is no research that uses
such an assumption about environmental uncertainty with
Zames-Falb multiplier search as a stability criteria for bilateral
teleoperation which is re-characterized as Fig. 2b.

Time delay is inevitable phenomenon in teleoperation if two
manipulators are located in different places and depending on
the communication medium, delay in Fig. 3a can be constant
or time-variable. To analyse that circumstance, besides human
and environment latency in the communication medium is

1Also written as Lurie or Lur’e.
2When master and slave manipulators are in similar dimension
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treated as an uncertainty by pulling out delays from the
admittance matrix Y (Kfµ) and redefining nominal system
as Ȳ (Kfµ), see Fig. 3b. Further descriptions about these
system’s representations will be depicted in section VI. For
comparison analyses are based on both retarded and delay
free scenarios.
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�Ȳ (Kfµ)

Human
Env.

Delay1
Delay2

-

(b) Lurye structure with reconstructed nomi-
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Fig. 3. Time delayed 2 channel Position-Force bilateral teleoperation.

The contribution of this paper is to show that an alternative
description of the environment can be usefully exploited to
obtain less conservative stability conditions, increasing the
transparency index of the system; we use the class of mono-
tone and bounded nonlinearity to characterise the environment.
This new description is valid for viscosity-like forces, which
have been widely used in teleoperation [4]. Moreover, this
analysis can be used to design feedback forces as in [29].
By restricting the class of environments, we can reduce the
conservatism of the analysis. IQC framework becomes the
suitable tool to analyse several nonlinearities/uncertainties, in
particular, it has been proposed for teleoperation in [23]. The
advantages of the new description are demonstrated in the
examples where the transparency index is clearly improved,
and PD controllers, which cannot be guaranteed to be stable
for passive environments, are now guaranteed to be stable for
the new description.

The IQC notation and parametrization are given in Sections
III and IV. Although initial results can be obtained by using
the IQC-β toolbox [32], new descriptions of delay multipliers
have been given in the literature since the development of
this toolbox. Here, development of the computational tools is
shown to take advantage of the latest contributions. Moreover,
we show that the IQC framework can be used to improve
other stability results such as stability analysis of systems
with delays and slope-restricted nonlinearity, which are used
in delayed neural network literature [30], [33].

III. NOTATION AND PRELIMINARIES

Let Lm2 [0,∞) be the Hilbert space of all square integrable
functions f : [0,∞) → Rm. Given T ∈ R, a truncation of

the function f at T is given by fT (t) = f(t), ∀t ≤ T
and fT (t) = 0, ∀t > T . The function f belongs to the
extended space Lm2e[0,∞) if fT ∈ Lm2 [0,∞) for all T > 0.
The Fourier transform of f , henceforth f̂ , is given by f̂(jω) =∫∞

0
e−jωtf(t)dt. Let C(c, r) be a circle in the complex plain

with centre c and radius r.
Let (?) be a space holder for the right outer fac-

tor of a quadratic form such that (?)∗MΦ(jω)G(jω) =
G∗(jω)Φ∗(jω)MΦ(jω)G(jω). For LTI systems, G(jω)∗ =
G(−jω)>, where > means transpose. The standard nota-
tion RH∞ for stable real rational transfer function is used.
A minimal state space realization of the transfer function,
G(jω) = C(jωI − A)−1B + D, is given with the shorthand
G ∼ [A B

C D ]. Given n ≥ 2 and α > 0, let define a transfer
function vector as

nΛα(jω) =
[

1 1
jω+α ... 1

(jω+α)n−1

]>
, α > 0, (1)

which will be used to parametrize the multipliers.
A nonlinearity φ : L2e[0,∞) → L2e[0,∞) is said to be

memoryless if there exists N : R → R such (φv)(t) =
N(v(t)) for all t ∈ R. Henceforth we assume that N(0) = 0.
A memoryless nonlinearity φ is said to be bounded if there
exists a positive constant C such that |N(x)| < C|x| for all
x ∈ R. The nonlinearity φ is said to be monotone if for any
two real numbers x1 and x2 we have

0 ≤ N(x1)−N(x2)

x1 − x2
.
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Fig. 4. Classical feedback interconnection of nominal plant and perturbation.

A. IQC Framework

Absolute stability of a teleoperation system will be trans-
formed into the Lurye problem; positive interconnection of G,
a linear system, and ∆ which is any uncertain operator within
a class of nonlinear systems. The feedback interconnection in
Fig. 4 is defined by {

v = f +Gw,

w = g + ∆v;

where g, w,∆v ∈ Lm2e and Gw, v, f ∈ Ll2e. This interconnec-
tion is said to be well-posed if the map (v, w) 7→ (g, f) has a
causal inverse on Lm+l

2e [0,∞). Moreover it is said to be stable
if for any (g, f) ∈ Lm+l

2 , then (w, v) ∈ Lm+l
2 . The stability

of the system will be analysed using the IQC framework:
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Definition 1. Let Π : jR → C(l+m)×(l+m) be a Hermitian
bounded measurable function. Two signals u ∈ Lm2 [0,∞) and
y ∈ Ll2[0,∞) are said to satisfy the IQC defined by Π, if∫ ∞

−∞

[
û(jω)
ŷ(jω)

]∗
Π(jω)

[
û(jω)
ŷ(jω)

]
dω ≥ 0.

Moreover, a bounded system ∆ : Lm2e[0,∞) → Ll2[0,∞) is
said to satisfy the IQC defined by Π if u and ∆u satisfy the
IQC defined by Π for all u ∈ Lm2 .

Theorem 1 ( [34]). Let G ∈ RHl×m
∞ , and ∆ be a bounded

causal operator. If the following statements hold:
1) for every τ ∈ [0, 1], the interconnection of G and τ∆ is

well-posed,
2) for every τ ∈ [0, 1], τ∆ satisfies the IQC defined by Π,
3) there exist ε > 0 such that[

G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
≤ −εI, ∀ω ∈ R.

Then, the positive feedback interconnection of G and ∆ is
stable.

Remark 1. Generally, Π : jR → C(l+m)×(l+m) can be
any Hermitian bounded measurable function in the form as[

Π11 Π12

Π∗12 Π22

]
. In this paper we will restrict our attention to

multipliers with Π11 ≥ 0 and Π22 ≤ 0 so that second
condition in Theorem 1 will be satisfied if and only if ∆
satisfies the IQC defined by Π.

Assume that ∆ is a structured uncertainty; diagonal
combination of different perturbations such that ∆ =
diag(∆1, ...,∆n) and each subsystem satisfies IQC defined by

Πi(jω) =

[
Πi(11) Π∗i(12)

Πi(12) Πi(22)

]
where i = 1, ..., n, then overall system satisfies IQC defined
by [35]

Π =



Π1(11) 0 ··· 0 Π∗1(12) 0 ··· 0

0
. . . . . .

... 0
. . . . . .

...
...

. . . . . . 0
...

. . . . . . 0
0 ··· 0 Πn(11) 0 ··· 0 Π∗n(12)

Π1(12) 0 ··· 0 Π1(22) 0 ··· 0

0
. . . . . .

... 0
. . . . . .

...
...

. . . . . . 0
...

. . . . . . 0
0 ··· 0 Πn(12) 0 ··· 0 Πn(22)


.

The last condition in Theorem 1 is frequency dependent
infinite dimensional inequality and it will be transformed into
a frequency independent finite dimensional LMI by using the
Kalman-Yakubovich-Popov (KYP) Lemma:

Lemma 2 (KYP Lemma [36]). Given A ∈ Rn×n, B ∈
Rn×m, M = M> ∈ R(n+m)×(n+m), with det(jωI −A) 6= 0
for all ω, where [A,B] are controllable. The following two
statements are equivalent:

1) [
(jωI −A)−1B

I

]∗
M

[
(jωI −A)−1B

I

]
≤ 0,

2) There is a matrix P ∈ R such that P = P> and[
A>P + PA PB

B>P 0

]
+M ≤ 0.

B. List of IQCs

In this section, definitions of the different classes of multi-
pliers that we shall use in the paper are given.

An LTI system ∆ ∈ RH∞ is said to be passive if ∆(jω)+
∆(jω)∗ ≥ 0 for all ω ∈ R. The class of multipliers preserving
the positivity of this class is defined in [37]:

Definition 2. Let λ be a function, then λ belongs to the class
of passive multipliers P if λ(ω) = λ(ω)∗ and λ(ω) > 0.

Lemma 3 ( [37]). Given a bounded LTI passive system ∆
and λ ∈ P , then ∆ satisfies the IQC defined by

Π(ω) =

[
0 λ(ω)

λ(ω) 0

]
. (2)

Definition 3 (Zames-Falb Multiplier [26], [27]). Let Z be a
rational transfer function. Then Z belongs to the multiplier
class of Zames-Falb multipliers Z , if the following three
conditions are satisfied:

• Z(jω) = z0 −
∫ ∞
−∞

q(t)e−jωtdt, (3)

•

∫ ∞
−∞
|q(t)|dt < z0, (4)

• q(t) ≥ 0, ∀t ∈ R. (5)

Lemma 4 ( [27]). Given a memoryless, monotone and
bounded nonlinearity φ and any Z ∈ Z , then the nonlinearity
satisfies the IQC defined by

Π(jω) =

[
0 Z(jω)∗

Z(jω) 0

]
. (6)

A comparison between the rest of the classes for this type
of nonlinearity and the class Z is given in [38].

In the IQC framework, the uncertainty based on delay
operator is encapsulated with a negative unit, i.e. ∆d(jω) =
e−jωTd − 1, see Fig. 5. Hence one can think of the block ∆d

as a perturbation of the feedback without delay.

e−sTd

G �

- ee--?
-

+

Gd

∆d

Fig. 5. Encapsulation of the time delay operator in a way to ∆d = e−sTd−1.

Definition 4. Given a delay Tdmax, Π belongs to the class of
multipliers Πd1 if there exist D(ω) = D∗(ω) ≥ 0, Ω(ω) =
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Ω∗(ω) ≤ 0, and Wd(jω) ensures |Wd(jω)| ≥ |∆d(jω)|,
∀Td ∈ [0, Tdmax],∀ω ∈ R, such that

Π(jω) =

[
Wd(jω)∗D(ω)Wd(jω) Ω(ω)

Ω(ω) −D(ω) + Ω(ω)

]
.

(7)

Remark 2. Generally, multiplier classes for time delay are
defined with any Ω(ω), yet the negativity condition −D(ω) +
Ω(ω) was included to be ensure that right lower part of
the multiplier is negative definite. It is possible to relax this
condition on Ω with Ω(ω) ≤ D(ω) but it does not lead to
useful results in this paper.

Lemma 5. Let ∆d(jω) be a time delay operator with constant
unknown time delay Td ∈ [0, Tdmax], it satisfies the IQC
defined by Π ∈ Πd1.
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Fig. 6. Covering gain of the delay with a rational transfer function, Tdmax =
28 msec.

Amplitude covering property of the Wd can be seen in Fig.6,
with following rational transfer function [39]

Wd(jω) = 2
(jω)2T 2

dmax + 3.5jωTdmax + 10−6

(jω)2T 2
dmax + 4.5jωTdmax + 7.1

Based on the behaviours of the ∆d on the complex plane
another IQC can be defined with rational approximation of
the delay operator.

Definition 5. Given a delay Tdmax, Π belongs to the class of
multipliers Πd2 if there exist D(ω) = D∗(ω) ≥ 0, Ω(ω) =
Ω∗(ω) ≤ 0, and Υd(jω) with ∆d ∈ C(Υd, |Υd|), ∀Td ∈
[0, Tdmax],∀ω ∈ R, such that

Π(jω) =

[
0 Υd(jω)∗D(ω) + Ω(ω)

Υd(jω)D(ω) + Ω(ω) −D(ω) + Ω(ω)

]
.

(8)

Lemma 6 ( [40]). Let ∆d(jω) be a time delay operator with
constant unknown time delay Td ∈ [0, Tdmax], then it satisfies
the IQC defined by Π ∈ Πd2.

An example of Υd was defined in [34] as

Υd(jω) =
−2.19(jω)2 + 9.02( jω

Tdmax
) + 0.089

T 2
dmax

(jω)2 − 5.64( jω
Tdmax

)− 17
T 2
dmax

.

Both multipliers can be used while analysing the uncertainties
caused by constant time delays, but unfortunately there is no

direct recipe to define which one gives better performance
specifications.

Depending on the architecture of the system, delay may
become time variable operator as well.

Definition 6. Given a variable delay Td(t) ∈ [0, Tdmax] with
|Ṫd(t)| ≤ d < 1,∀t ≥ 0, Π belongs to the class of multipliers
Πv if there exist D(ω) = D∗(ω) ≥ 0, Ω(ω) = Ω∗(ω) ≤ 0,
and Wv(jω) is rational transfer function satisfying

|Wv(jω)| >

{
1 + 1√

1−d , if Tdmax|ω| > 1 + 1√
1−d ,

Tdmax|ω|, if Tdmax|ω| ≤ 1 + 1√
1−d ,

then

Π(jω) =

[
Wv(jω)DW ∗v (jω) + d

1−dΩ Ω

Ω −D + Ω

]
, (9)

where, d is variation of the delay, Ṫd.

Lemma 7 ( [41]). Let ∆d be a variable time delay operator
with delay Td(t) ∈ [0, Tdmax] and |Ṫd(t)| ≤ d < 1,∀t ≥ 0,
∆d satisfies IQC defined by Π ∈ Πv .

IV. PARAMETRIZATION AND COMBINATION OF THE
MULTIPLIERS

Following [23], given fixed positive integer n and real α
(see (1)), we will parametrize each multiplier using these
two fixed values and an adequate matrix containing a set of
parameters to carry out a convex search. We will describe all
parametrizations using the same notation, though n and α will
be different for each multiplier when they are combined.

A. Parametrizations

Firstly, we use the same parametrization for frequency
dependent passive multiplier λ(ω) as in [23]. Then a sub-
class of the set of multipliers P is given by λ(ω) =
nΛα(jω)∗Kh

nΛα(jω), where Kh = K>h , and λ(ω) ∈ R
under the condition λ(ω) ≥ 0. Henceforth we simplify the
notation for passive multipliers by using Λh(jω) = nΛα(jω)
for some n and α.

Secondly, we will parametrize the Zames-Falb multiplier
using Szegö’s polynomials. Following [42] and [43], Z ∈ Z
in Definition 3 can be approximated as

Z(jω) = z0 −
n−1∑
i=1

(
ai

(jω + α)i
− bi(−1)i−1

(jω − α)i

)
, (10)

if n is chosen sufficiently large. Initially we factorize class of
Zames-Falb multiplier as Z(jω) = nΛα(jω)∗Kz

nΛα(jω),
where Λα is a basis function with the same structure as in (1),
and Kz is a matrix contains free parameters of the Z function
(z0, ai and bi) at its first column and row

Kz =


z0 −a1 −a2 · · · −an−1

−b1 0 0 · · · 0
−b2 0 0 · · · 0

...
...

...
. . .

...
−bn−1 0 0 · · · 0

 .
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Condition (4) in Definition 3 requires the inverse two-sided
Laplace transform of the summation in (10)3. It is given by

q(t) =

{
e−αt(a1 + ta2 + · · ·+ tn−2an−1

(n−2)! ), if t ≥ 0;

eαt(b1 − tb2 + · · ·+ (−1)n−2 t
n−2bn−1

(n−2)! ), if t < 0;
(11)

and using that q(t) ≥ 0 for all t, it follows by direct integration
that ∫ ∞

−∞
q(t)dt = (a+ b)ᾱ < z0, (12)

where a and b are vectors contain all free parameters as

a =
[
a1 a2 · · · an−1

]
,

b =
[
b1 b2 · · · bn−1

]
,

and ᾱ is a vector designated as

ᾱ =
[

1/α 1/α2 · · · 1/αn−1
]>
.

The final constraint q(t) ≥ 0 in Definition 3 is implemented
as an LMI as follows. Firstly, two transfer functions are
generated:

H1(s) =

n−1∑
i=1

ai(−1)i−1s2(i−1)(i− 1)!−1

(−s+ 1)n−1(s+ 1)n−1
,

H2(s) =

n−1∑
i=1

bi(−1)i−1s2(i−1)(i− 1)!−1

(−s+ 1)n−1(s+ 1)n−1
;

(13)

then q(t) ≥ 0 for all t ∈ R is equivalent to the conditions
Hj(jω) ≥ 0 for j = 1, 2 and all ω ∈ R; finally these
two conditions are expressed as LMIs via KYP Lemma. For
minimal state space representations of these transfer functions
we refer reader to [32], [42], [43].

Remark 3. Note that the positivity of q(t) given in (11) is
equivalent to the positivity of the polynomials(

a1 + ta2 +
t2a3

2!
+ · · ·+ tn−2an−1

(n− 2)!

)
,

and (
b1 + tb2 +

t2b3
2!

+ · · ·+ tn−2bn−1

(n− 2)!

)
,

for all t ≥ 0; since e±αt > 0 for all t. Then positivity of q(t)
is independent on the value of α. By default, we check the
positivity of q(t) assuming α = 1. See the proof in [42] for
further details. Similarly, same conclusion can be reached for
the anticausal component of the multipliers.

Although this parametrization has been shown to be a
complete parametrization when N → ∞ [45], this limit is
not feasible due to numerical issues. To increase the flexibility
without increasing the order of the multiplier, we propose a
second method similar to the parametrization proposed in [32],
Z(jω) = Λα,β(jω)∗KeΛα,β(jω), so that flexibility of the
asymmetric poles in a multiplier can be used (see example

3The transfer function in (10) is noncausal, and its region of convergence
(ROC) includes the imaginary axis. See Table 8.4 in [44].

in [26], [28]). Let Λα,β(jω) be a second basis function given
by

Λα,β(jω) =
[
nΛα(jω)> nΛβ(jω)>

]>
, (14)

with β, α > 0, and Ke containing free parameters of Z
function expressed as

Ke =



z1 −a1 −a2 · · · −an−1 0 · · · 0
0 0 0 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 0 z2 · · · 0
0 0 0 · · · 0 −b1 · · · 0
0 0 0 · · · 0 −b2 · · · 0
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 0 −bn−1 · · · 0


(15)

and condition proposed in (12) is redefined as

aᾱ+ bβ̄ < z1 + z2, (16)

where β̄ is defined similarly to ᾱ. Similarly, conditions on H1

and H2 still ensure that the new q(t) is non-negative for all
t ∈ R, as has been mentioned in Remark 3. Henceforward,
we will use Λe as the basis associated with the Zames-Falb
multiplier, regardless of the selection on the poles and order.
If one pole is used, it means that the first option has been
used whereas the second option has been used if two poles
are given.

Parametrization of the multipliers for uncertainties caused
by time delay can be performed in a similar fashion as in
passivity multiplier. For constant time delay case, infinite
dimensional frequency dependent functions Ω(ω) and positive
definite D(ω) can be parametrized as

D(ω) = nΛα(jω)∗Kd
nΛα(jω),

Ω(ω) = nΛα(jω)∗Kr
nΛα(jω),

(17)

where Kd,r = KT
d,r, and basis functions Λα are designed as

in (1) with different poles and orders. Henceforward we will
use the notation Λd and Λr to represent some selection for the
poles and orders of these two multipliers.

For clarity, we parametrize and factorize Π ∈ Πd2 as
follows

Π = (?)∗


0 Kd 0 0
Kd −Kd 0 0
0 0 0 Kr

0 0 Kr Kr




ΛdΥd 0
0 Λd

Λr 0
0 Λr


where, dependence on (jω) has been omitted.

It can be noted that IQC defined for time variable de-
lays, (9), is equal to (7) when Ṫd(t) = 0 (constant delay case).

B. Combination of The Classes of Multipliers

We have already identified in Section II (Figs 2(b) and 3(b))
two important uncertain structures in bilateral teleoperation.
However, a third class of structure will be analysed since it is
relevant in other problems and our result can be benchmarked
with other results in the literature. This class is a diagonal
structure consisting of a slope-restricted nonlinearity and the
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?

φe(·)
∆d

-

?

∆h

φe(·)
-

(a) (b) (c)

∆h

φe(·)
∆d1

∆d2 ?

-

Fig. 7. Structured uncertainties: (a) is nonlinearity and time delay, (b) is
passive plus nonlinear, and (c) is combination of the passive, nonlinear, and
time delays.

time delay operator ∆d. In this section we generate the class
of multipliers for those three structures depicted in Fig. 7.

Firstly, let us define the class of multipliers for the structure
in Fig. 7 (a) by combining the class of Zames-Falb multipli-
ers (6) and multipliers proposed for time delay (8).

Definition 7. Given some selection of Λe, Λd, and Λr, let Πa

be the class of multipliers with the following structure:

Π = (?)∗


0 0 K>e 0 0 0 0 0
0 0 0 Kd 0 0 0 0
Ke 0 0 0 0 0 0 0
0 Kd 0 −Kd 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Kr
0 0 0 0 0 0 0 0
0 0 0 0 0 Kr 0 Kr


︸ ︷︷ ︸

Ka

[
Ψa(1, 1)
Ψa(2, 1)

]
︸ ︷︷ ︸

Ψa

, (18)

where, Ψa(1, 1) = diag(Λe,ΛdΥd,Λe,Λd),
Ψa(2, 1) = diag(0,Λr, 0,Λr), and Ke, Kd, Kr are
defined by (15), and (17), respectively. Then, Π ∈ Πa if the
following constraint and LMIs hold if
•

aᾱ+ bβ̄ < z1 + z2, (19)

• there exists Xj = X>j such that,[
A>j Xj +XjAj C>j −XjBj
Cj −B>j Xj −(Dj +D>j )

]
≤ 0, (20)

where Aj , Bj , Cj , Dj are state space parameters of
Hj(s) in (13), for j = 1, 2,

• there exist symmetric matrices, Pd, Kd such,[
A>d Pd + PdAd PdBd

B>d Pd 0

]
− (?)>Kd

[
Cd Dd

]
≤ 0,

(21)
• there exist symmetric matrices Pr, Kr such that,[
A>r Pr + PrAr PrBr

B>r Pr 0

]
+ (?)>Kr

[
Cr Dr

]
≤ 0,

(22)
where Aj , Bj , Cj , Dj are state space parameters of the
basis functions Λj(jω), for j = d, r.

Lemma 8. Given an uncertainty ∆ = diag(φe,∆d) as in
Fig. 7 (a) and Π ∈ Πa, then ∆ satisfies the IQC defined by
Π(jω).

Secondly, we develop the class of multipliers that we will
use to analyse the absolute stability of the bilateral teleoperated
system when the human block is modelled as an LTI passive
system and the environment as a bounded and monotone
nonlinearity, see Fig. 7 (b). We combine frequency dependent
multipliers for LTI passive systems, (2), and Zames-Falb
multipliers, (6) as follows:

Definition 8. Given some selection of Λh and Λe, then let us
consider the multiplier with the following structure:

Π = (?)∗

[
0 0 Kh 0

0 0 0 K>e
Kh 0 0 0
0 Ke 0 0

]
︸ ︷︷ ︸

K
b

[
Ψb(jω) 0

0 Ψb(jω)

]
, (23)

where Kh is any symmetric matrix, Ke is defined in (15), and
Ψb(jω) =

[
Λh(jω) 0

0 Λe(jω)

]
. Then, Π ∈ Πb if the following

statements hold:
• there exist symmetric matrices Ph and Kh such that,[
A>h Ph + PhAh PhBh

B>h Ph 0

]
− (?)>Kh

[
Ch Dh

]
≤ 0,

(24)
where Ah, Bh, Ch, and Dh are the state space represen-
tation of Λh(jω),

• constraint (19) and LMI (20) are satisfied.

Lemma 9. Given a structured uncertainty block
∆ = diag(∆h, φe) as in Fig. 7 (b), then ∆ satisfies
the IQC defined by Π(jω) ∈ Πb.

Definition 9. Given some selection of Λh, Λe, Λd1 , Λd2 , Λr1 ,
Λr2 and rational transfer functions Υdi , i = 1, 2; let Πc be
the class of multipliers with the following structure:

Π = (?)∗


0 K̄>1 0 0
K̄1 K̄2 0 0
0 0 0 K̄3

0 0 K̄3 K̄3


︸ ︷︷ ︸

K̄

[
Ψc(1, 1)
Ψc(2, 1)

]
, (25)

where K̄1 = diag(Kh,Ke,Kd1 ,Kd2), K̄2 =
diag(0, 0,−Kd1 ,−Kd2), K̄3 = diag(0, 0,Kr1 ,Kr2), and
Ψc(1, 1) = diag(Λh,Λe,Λd1Υd1 ,Λd2Υd2 ,Λh,Λe,Λd1 ,Λd2),
Ψc(2, 1) = diag(0, 0,Λr1 ,Λr2 , 0, 0,Λr1 ,Λr2). Then Π ∈ Πc

if constraint (19) and LMIs (20), (21), (22), and (24) are
satisfied 4.

Lemma 10. A constructed uncertainty block
∆ = diag(∆h, φe,∆d1 ,∆d2), as in Fig. 7 (c), satisfies
the IQC defined by Π(jω) ∈ Πc.

V. MAIN RESULTS

Initially, we use Lemma 8 to analyse system with saturation
and time delay via IQC theorem, where the results can
be compared with other techniques. Afterwards, we apply
Lemmas 9 and 10 to bilateral teleoperation.

A. Systems with Saturation and Time Delay

Stability of time delay system has attracted much atten-
tion over the last decades. The literature is dominated by
the Lyapunov-Krasovskii functional technique [46], but IQC
framework has been also used [40], [41], [47], [48].

Time-domain techniques such as Lyapunov-Krasovskii
functional are versatile tools for time-delay systems; but when
delay is combined with other nonlinearities as saturation, the

4LMIs for D1,2(ω) and Ω1,2(ω) need to be defined for each delay
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modularity of IQC framework may provide some advantages.
For example, if the nonlinearity is slope or sector bounded then
Zames-Falb multipliers outperform Lyapunov techniques [28],
[38]. In this section, we focus our attention on the absolute
stability of a system containing both slope-restricted nonlin-
earities and constant time delay in an interval [0, Tdmax].

The system is transformed into feedback connection be-
tween nominal plant G and structured uncertainty, see Fig. 8.
Then absolute stability of the whole system is transformed to
a search for appropriate multipliers within the defined class
such that Π(jω) ∈ Πa.

φe(·)
∆d

G

−

Fig. 8. Time delayed Lurye system, where ∆ is structured uncertainty
contains bounded nonlinearity, φe, and encapsulated time delay, ∆d.

Corollary 11. Consider the negative feedback interconnection
between G and structured uncertainty block in Fig. 7 (a). Let
us define a minimal state space representation as

Ψa(jω)

[
−G(jω)

I

]
∼
[
Aa Ba
Ca Da

]
,

where Ψa(jω) is defined in (18). Assume that interconnection
between G and τ∆ is well posed for τ ∈ [0, 1]. Then the
interconnection is absolutely stable if there exist symmetric
matrices Pa and Ka; where Ka is given in (18), such that
there exists Π = (?)∗Ka

[
Ψa(jω) 0

0 Ψa(jω)

]
∈ Πa and following

LMI holds[
A>a Pa + PaAa PaBa

B>a Pa 0

]
+ (?)>Ka

[
Ca Da

]
≤ 0.

(26)

Proof. If LMIs (20), (21), and (22) hold with defined condi-
tions, then uncertainty block in Fig. 7 (a) satisfies IQC defined
by Π(jω) ∈ Πa, see Lemma 8.

Well-posedness condition in IQC theorem was assumed to
be satisfied and as the lower right corner of Π(jω) ∈ Πa

is negative semi-definite, τ∆ satisfies the IQC defined by for
τ ∈ [0, 1] if ∆ satisfies so second condition in the theorem
is streamlined. Thirdly, based on the KYP Lemma, satisfying
the LMI (26) implies that[

−G(jω)
I

]∗
Π(jω)

[
−G(jω)

I

]
≤ −εI, ∀ω ∈ R,

also holds for some ε > 0 and based on the Theorem 1 it can
be concluded that the proposed interconnection is stable.

Eventually, the infinite dimensional inequality in the IQC
theorem is converted into an LMI which is a convex cone and
search can be carried out with semi definite programs.

B. Teleoperation with Memoryless Monotonic Environment

In this section, we develop results to analyse the stability
of the bilateral teleoperation when human operator and envi-
ronment are modelled as LTI passive system, and a monotone
and bounded nonlinearity, respectively. Then, we need to use
parametrization of both multipliers, λ(ω) and Z(jω) in order
to develop a convex search for proper class of multipliers
such that results give idea about the stability condition of the
interconnection depicted in Fig. 9.

∆h

φe(·)

Y

−

Fig. 9. Delay free bilateral teleoperation as a classical nominal plant-
uncertainty interconnection.

Corollary 12. Consider the negative feedback interconnection
between admittance matrix Y and structured uncertainty in
Fig. 7 (b). Let us consider the following minimal state space
representation:[

Ψb(jω) 0
0 Ψb(jω)

] [
−Y (jω)

I

]
∼
[
Ab Bb
Cb Db

]
.

where Ψb has been defined in (23). Assume that interconnec-
tion between Y and τ∆ is well posed for τ ∈ [0, 1]. Then,
interconnection in Fig. 9 is absolutely stable if there exist
symmetric matrices Pb and Kb, where Kb is given in (23),
such that (?)∗Kb

[
Ψb(jω) 0

0 Ψb(jω)

]
∈ Πb, and following LMI

holds[
A>b Pb + PbAb PbBb

B>b Pb 0

]
+ (?)>Kb

[
Cb Db

]
≤ 0.

(27)

Proof. If constraint (16) is satisfied with LMI (20), and
LMI (24) holds, then there exists a multiplier class such that
structured uncertainty satisfies IQC defined by Π(jω) ∈ Πb,
see Lemma 9. Finally, with KYP Lemma LMI (27) implies
that,[
−Y (jω)

I

]∗
Π(jω)

[
−Y (jω)

I

]
≤ −εI, ∀ω ∈ R, (28)

is satisfied for some ε > 0, where Y (jω) is admittance transfer
function matrix of the designed teleoperation system.

Remark 4. In [23] it has been stated that nominal system,
Y, needs to be perturbed because the inequalities (28) cannot
be satisfied when ω → ∞, as the plant is strictly proper.
Here we use the same approach as [23]; using Y + ζI , with
ζ = 10−4, instead of Y . This constant is interpreted as having
uncertainties within the sector (0, ζ−1).

Additionally, delay is an inevitable phenomenon if master
and slave manipulators are placed at different locations. Sub-
sequently, to analyse absolute stability of the time delayed
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bilateral teleoperation, multipliers for passive, Zames-Falb,
and time delay are required. Therefore, existence of any
multiplier within the suitable class as in Definition 9 needs
to be searched. Overall, the system is transformed into the
interconnection of Ȳ and uncertainty block in Fig. 7 (c),
where Ȳ (jω) is a transformation of the admittance matrix,
correspondingly whole time delayed bilateral teleoperation is
reconstructed as system illustrated in Fig. 10.

-
∆h

φe(·)
∆d1

∆d2

�Ȳ

Fig. 10. Time delayed bilateral teleoperation as Ȳ - ∆ interconnection,
where human and environment are defined with ∆h and φe, respectively,
and latencies between manipulators are characterized as ∆di = e−sTdi − 1,
i = (1, 2).

Corollary 13. Consider feedback interconnection between
Ȳ and uncertainty block in Fig. 7 (c). Let us consider the
following minimal state space representation:

Ψc(jω)

[
Ȳ (jω)
I

]
∼
[
Ac Bc
Cc Dc

]
,

where Ψc has been defined in (25). Assume that feedback
interconnection between Ȳ and τ∆ is well posed for τ ∈ [0, 1].
Then, the feedback between Ȳ and diag(∆h, φe,∆d1,∆d2) in
Fig. 10 is stable if there exist symmetric matrices Pc and K̄;
where K̄ is given in (25), such that Ψ∗c(jω)K̄Ψc(jω) ∈ Πc

and subsequent LMI holds[
A>c Pc + PcAc PcBc

B>c Pc 0

]
+ (?)>K̄

[
Cc Dc

]
≤ 0 (29)

Proof. If constraint (16) is satisfied with LMI (20), and
LMIs (21), (22), (24) hold, then there exists a multiplier
class such that structured uncertainty satisfies IQC defined by
Π(jω) ∈ Πc, see Lemma 10. In the end, based on the KYP
Lemma, LMI (29) implies that[
Ȳ (jω)
I

]∗
Ψ∗c(jω)K̄Ψc(jω)

[
Ȳ (jω)
I

]
≤ −εI, ∀ω ∈ R,

is satisfied for some ε > 0 and with IQC theorem it can be
concluded that depicted interconnection in Fig. 10 is stable.

VI. EXAMPLES

In this section, we show numerical examples of our main
results, which are given as a convex optimization problem.
We have used Yalmip with sdpt3 solver [49] to test the LMI
conditions.

A. Absolute Stability of Time Delayed System with Saturation

In the first instance, validity of the proposed method was
evaluated using an example which is commonly used in the
literature [50]–[53]; an illustration of a system with slope
restricted nonlinearity and delayed states. Consider the system
given by

ẋ(t) = Ax(t) +Bx(t− Td) +Dw(t),

m(t) = Mx(t) +Nx(t− Td),
w(t) = −φ(t,m(t)),

(30)

where φ(t,m(t)) belongs to the slope-restricted5 [K1,K2],
x(t) ∈ Rn, w(t) ∈ Rk, m(t) ∈ Rk are the state, input, and
output of the system, respectively. Let A ∈ Rn×n, B ∈ Rn×n,
D ∈ Rn×k, M ∈ Rk×n, and N ∈ Rk×n be known constant
matrices as

A =

[
−2 0
0 −0.9

]
, B =

[
−1 0
−1 −1

]
D =

[
−0.2
−0.3

]
, M =

[
0.6 0.8

]
N =

[
0 0

]
, K1 = 0.2,K2 = 0.5

(31)

The system (30) is transformed into the interconnection de-
picted in Fig. 8. The stability of the system with the parameters
given in (31) was transformed into a convex search for
multiplier class in Definition 7, and results were obtained
by using Corollary 11. For comparison and evaluation of the
method, results are given in Table I.

TABLE I
MAXIMUM ALLOWABLE TIME DELAYS IN SYSTEM WITH SLOPE

RESTRICTED NONLINEARITY

Method Maximum delay, Tdmax

Han [50] 2.4859
Wu et al. [51] (n = 2) 3.0080
Wu et al. [51] (n = 3) 3.1110
Kazemy and Farrokhi [52] 3.0216
Zeng et al. [53] (k = 4 ) 3.1730
Πa (i.e. using Πd2) 3.2191
Counterpart of Πa using Πd1 3.2378
Nyquist value (only for φ(u) = ku) 3.2520

The proposed method leads to the less conservative results
under the mild assumption of slope-restriction; maximum time
delay for which we can guarantee the stability of the system
with any nonlinearity within the defined class. These results
were obtained with the proposed parametrization and combi-
nation of the multipliers, values of the selected parameters are
given in Table II. A linear search was carried out to gain the
basis function parameters and for this particular example it
was observed that they do not have significant effect on the
final results. Optimal design of basis functions is still an open
question, and its selection depends on designer’s ability. For
Zames-Falb multipliers, automatic selection of the poles has
been proposed in [38], [55], but their techniques can not be
implemented here since they require odd nonlinearities.

5Previous results in literature have only considered sector conditions, but
slope-restriction is a standard assumption in constrained input control [54] or
delayed neural network [30], [33]
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Meanwhile, similar results were obtained while using asym-
metric poles in multiplier with (14) as in both cases positivity
of the nominal system was recovered, see Fig. 11. Orders and
poles of the basis functions Λd and Λr

6 will remain same for
the rest of analyses in this paper.

TABLE II
BASIS FUNCTIONS’ PARAMETERS FOR RETARDED SYSTEM WITH

NONLINEARITY

Λe Λd1 Λr1 Λd2 Λr2
Order (n) 5 4 4 4 4
Pole (−α) -10 -21 -14 -13 -8

These results establish the usefulness of the Zames-Falb and
delay multipliers while interconnected system contains both
monotonic nonlinearity and latency. Henceforth, we implement
the methodology in the stability analyses of the bilateral tele-
operation where nonlinearity and time delay naturally occur
in environment and communication medium, respectively.
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Fig. 11. Minimum eigenvalues of G(jω)+G∗(jω) (Top): Nominal system is
not positive definite without multiplier. Minimum eigenvalues with multiplier
that ensures stability against Tdmax ≈ 3.2191 sec (bottom).

B. Stability of Bilateral Teleoperation

The analyses of bilateral teleoperation are based on the
position-force control architecture where master and slave
are 1 degree-of-freedom (DOF) rigid robotic manipulators.
System’s equation of motions are

vm = Ym(Fh + τm), vs = Ys(τs − Fe),

where Ym and Ys are the admittances of the manipulators,
τm and τs are forces generated by controllers, Fh and Fe are
applied human and environmental contact forces, respectively.
Due to the rigid body conditions, manipulators’ speeds are

6Number of the delay operators based on the system’s dimension.

equal to operator’s and environment’s speed such that vm = vh
and vs = ve. And controllers’ forces are given by

τm = −KfFe, (32)
τs = Cs(µxm − xs), (33)

where Cs is the controller at the slave side and it is used
for motion tracking, Kf and µ are environmental interaction
force and position scaling factors, respectively, xm and xs are
manipulators’ positions.

Based on this architecture different types of controllers (Cs)
can be implemented, yet it is generally designed as a PD-
controller such that Cs(s) = Kp+Kvs. P controller have also
been implemented, but extra damping was inserted to certify
stability

τs = Kp(µxm − xs)−Kvvs. (34)

The values of the system parameters, which are used in the
analyses, are given in Table III [14]. The parameters appertain
to linearised 1 DOF Phantom Omni haptic manipulator, which
was used in experiments, and controller’s values are acquired
with Internal Model Control (IMC) principles [56].

TABLE III
SYSTEM’S PARAMETERS

Model Controller
Mm = 0.001 kg Ms = 0.001 kg Kp = 10 N/m
Bm = 0.02 N s/m Bs = 0.02 N s/m Kv = 0.18 N s/m

Two types of control algorithms are going to be tested with
delayed and delay free bilateral teleoperation systems.

1) Delay Free Case: In some instances, master and slave
manipulators are located close to each other such as surgery
robotics where patient and surgeon are in the same room.
Initially, we assumed that there is no latency in the com-
munication medium. Let Ym(s) = (Mms + Bm)−1 and
Pp(s) = (s2Ms+s(Bs+Kv)+Kp)

−1, the admittance matrix
representation of damping injected, controlled with (32) and
(34), P-F controller is

YP (s) =

[
Ym −KfYm

−KpµYmPp (KpµYmKf + s)Pp

]
. (35)

The system controlled with (32) and (33) will be called as
PD-F architecture, and its admittance matrix representation is
slightly different such that

YPD(s) =

[
Ym −KfYm

−µ(sKv +Kp)YmPp Z22YmPp

]
, (36)

where Z22(s) = s2Mm + s(Bm +µKfKv) +µKfKp. These
admittance matrices are used within FDI, such as (28). As
previously mentioned, stability is necessary but not the only
criterion that needs to be considered while designing the
bilateral teleoperation parameters.

Firstly, the absolute stability of the P-F control architecture
was analysed. In the first stage Llewellyn’s stability criterion
was used under LTI passive operators assumption for both
human and environment. The parameters are given in Table
III, and the admittance matrix is given in (35). For the
analysis, we choose the frequency range to be as 0 rad/s to
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TABLE IV
MAXIMUM OBTAINABLE TRANSPARENCY INDEXES

Controller
P-F Architecture PD-F Architecture

Passivity 0.399 -
With symmetric poles 0.645 0.418
With asymmetric poles 0.809 0.622

1× 106 rad/s where the maximum achievable transparency
index is searched without destroying passivity of the 2-port
network via bisection algorithm. It was concluded that with
this hypothesis maximum achievable Kfµ value is approxi-
mately 0.399 so that admittance matrix is on the boundary
of the positive realness. If the environment is also monotone
and bounded, less conservative results were obtained with
Zames-Falb multipliers by using Corollary 12; results are
given in Table IV. If we use symmetric poles, we obtain 0.645,
whereas the result reaches 0.809 when asymmetric poles are
considered.

Secondly, we have analysed stability of the bilateral teleop-
eration with PD-F controller architecture whose admittance
matrix defined in (36) . As it is highlighted in [14] it is
not possible to fulfil Llewellyn’s stability criteria with this
controller unless Ms = 0. Namely the admittance matrix
is not positive real, so it cannot be ensured that the design
is absolutely stable with the parameters in Table III, when
both human and environment are assumed to be passive
LTI systems. However, with the novel assumption on the
environment, the use of Zames-Falb multipliers in Corollary 12
allows us to conclude that PD-F controller architecture is
absolutely stable and maximum achievable transparency index
is 0.418. Similarly, the transparency index can be improved
by using asymmetric poles, reaching 0.622. These results are
obtained with parameters given in Table V.

TABLE V
BASIS FUNCTIONS’ PARAMETERS FOR BILATERAL TELEOPERATION

P-F Architecture PD-F Architecture
Λh Λe Λh Λe

Order (n) 5 6 6 5 6 6
Pole (−α) -110 -75 -500, -0.1 -110 -380 -400, -0.01

2) Time Delayed Case: Admittance matrix representations
of architectures are need to be redefined if there exist time
delay in the communication medium; for instance with a
constant delay P-F’s admittance matrix become

YPd(s) =

[
Ym −KfYme

−sTd

−KpµYmPpe
−sTd (KpµYmKfe

−2sTd + s)Pp

]
For simplicity, initially it was assumed that delay duration, Td
is equal in both directions and then delay is pulled out from
the admittance matrix to treat as a perturbation

Yd(s) =


Ym 0 −Ym 0
0 sYs

s+YsCs
0 YsCs

s+YsCs

0 Kf 0 0
−µYm 0 µYm 0

 ,
where Ys(s) = (Mss+Bs)

−1 and Yd(s) is interconnected with
structured uncertainty block, ∆ = diag(∆h, φe, e

−sTd , e−sTd).
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Fig. 12. Transparency index reduction against maximum delay duration in
the communication medium.

In order to get the interconnection as illustrated in Fig. 10 first
two channels of Yd need to be multiplied with negative sign,
and due to the feed-forward inclusion in the delay channels
positive feedbacks are included to the last two ports of the
transfer function matrix, in that way Yd is transformed to Ȳ .

Initial studies have shown that having light and fast manip-
ulators does largely degrade the stability margin when there
exists time delay in the communication. With the mass and
damping values given in Table III, performance index leads to
small values so the scaled force signal might not be perceivable
by human. In order to obtain reasonable performance indexes
in delayed teleoperation, additional damping has virtually been
injected into the master manipulator. Thus Bm = 0.2 N s/m is
used in the following analyses parameters. Test with several
delay duration, Tdmax ∈ [0.01, 0.1]s, was carried out with
bisection algorithm and maximum performance indexes for
both type of controller are shown in Fig. 12. Basis function pa-
rameters in Table V were used with Corollary 13. For Zames-
Falb multiplier the selection of the poles is very important, but
for the delay we can reach same results with different poles.

For variable time delay, on the other hand, we have analysed
characteristic of the internet communication medium between
two laboratories; one way maximum transmission delay is
approximately 28 msec and variation of the delay is less than
0.45, Ṫd ≤ 0.45. Based on these features bisection algorithm
was carried out for searching maximum performance indexes
and it was stated that with P-F controller µKf = 0.0744 and
with PD-F architecture µKf = 0.0261, when n = 5 in both
controllers while using multipliers given in (2), (6), and (9)
for uncertain operators human, environment, and time delay,
respectively. As a result, these performance indexes are going
to be used in the experimental evaluations.

3) Experimental Results: An experimental set-up is con-
structed between Manchester (UK) and Vigo (Spain) Univer-
sities and evaluation of the numerical results has been carried
out experimentally with Phantom Omni haptic manipulators
which have 6 DOF (3 actuated and 3 non-actuated joints).
As analyses are not based on multi-DOF, only 1 DOF has
been used while moving first joint and blocking/immobilizing
the remaining. Omni manipulators have only position sensors
so master’s and slave’s positions are sensed in radians with
sensor located at the first joints, yet human and environmental
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forces are simulated with pre-designed passive and nonlinear
operators, respectively.

Delay-free and constant time delay scenarios were carried
out in the same laboratory while Omni manipulators are
connected to a PC, where controllers are embedded into the
Matlab/Simulink environment, through fire-wire cables and
constant time delays are virtually injected to the commu-
nication medium. Variable time delay case, however, was
carried out in two different laboratories; master and slave were
located at The University of Manchester and University of
Vigo, respectively. The internet was used as a communication
medium and the data (position and force) were carried out with
UDP7 packets. To be consistent in all cases, end effector of
the master was aimed to follow hemicycle shape trajectory,
meanwhile monotonic nonlinear type environmental force;
Fe(vs) = k arctan(vs), k > 0, were acting on the slave. Using
the designed controllers, the reference signal for the joint and
master-slave manipulator behaviours as shown in Fig. 13.
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Fig. 13. Joint positions and reference signals; experiment taken between
Manchester and Vigo.

Slave needs to mimic the behaviour of the master manip-
ulator to be able to complete challenging tasks in an high
quality manner. In order to evaluate this, we have tested
the designed two control architectures, P-F and PD-F, with
aforementioned maximum achievable transparency indexes. It
is worth to highlight that P-F architecture position error is
approximately 1.5 times higher than the PD-F architecture
position in all scenarios, see Fig. 14. Fig. 15 shows that the
improvement in the position tracking is not due to a reduction
in the transparency, as PD-F architecture provides similar
force mismatches as the P-F architecture under delay in the
communication. As a result, Figures 14 and 15 demonstrate
the benefit of the current analysis.

VII. CONCLUSION

In this paper, we have analysed the stability of Lurye sys-
tems with memoryless, monotone, and bounded nonlinearities
and time delays within their internal structure. The suggested
methodology was evaluated with a commonly proposed system
with saturation type nonlinearity plus time delay and results
are competitive in comparison with results previously given in

7User Datagram Protocol (UDP) is one of the main internet communication
protocols.
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Fig. 14. Position mismatches between master and slave: Top is delay free case,
middle is simulated constant delay (in one way Tdmax = 28msec) between
manipulators, and bottom is the experiment taken between Manchester and
Vigo.

the literature. In particular, absolute stability of bilateral tele-
operation was analysed by using passive multipliers, Zames-
Falb multipliers, and suitable IQC descriptions for both time-
invariant and time-variant time delays. Parametrizations of
these classes of multipliers allow us to transform the infinite
dimensional problem into a convex optimization search over
a subclass of multipliers.

We have demonstrated that the new description of the
environments in conjunction with the IQC framework leads
to less conservative conditions. As a result, we are able to
achieve more transparent designs for bilateral teleoperation.
The usefulness of this description has been demonstrated in
a 2-channel architecture, where the term Y22 in the admit-
tance matrix is no longer restricted to be passive, since the
Zames-Falb multiplier can correct some lack of passivity of
this term. Moreover, the analysis has been validated with
the experimental test bed between two distant laboratories
with a communication over the internet. Both numerical and
experimental evaluations show that the better description of the
environment leads to less conservative results, yet with some
computational load. Current results depend on user’s ability to
select the basis function for the parametrizations; hence further
work is required to develop better selection of the poles and
dimensions of the multiplier parametrizations.
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Heath for the fruitful discussions and for revising early
manuscript of the paper also to the anonymous reviewers for



13

0 2 4 6 8 10 12 14
−5

0

5
·10−2

M
ag

ni
tu

de
(N

)

0 2 4 6 8 10 12 14
−5

0

5
·10−2

M
ag

ni
tu

de
(N

)
P-F PD-F

0 2 4 6 8 10 12 14
−5

0

5
·10−2

Time (sec)

M
ag

ni
tu

de
(N

)

Fig. 15. Difference between the actual and transmitted (to master side)
environmental interaction forces: Top is delay free case, middle is simulated
constant delay (in one way Tdmax = 28msec) between manipulators, and
bottom is the experiment taken between Manchester and Vigo.

their helpful comments. This work has been partially funded
by Turkish Ministry of Education.

REFERENCES

[1] J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix,
S. E. Butner, and M. K. Smith, “Transatlantic robot-assisted telesurgery,”
Nature, vol. 413, no. 6854, pp. 379–380, 2001.

[2] X. Wang, W. Xu, B. Liang, and C. Li, “General scheme of teleoperation
for space robot,” in IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, jul 2008, pp. 341–346.
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