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Abstract—In this paper we develop and analyse convex
searches for Zames–Falb multipliers. We present two different
approaches: Infinite Impulse Response (IIR) and Finite Impulse
Response (FIR) multipliers. The set of FIR multipliers is complete
in that any IIR multipliers can be phase-substituted by an
arbitrarily large order FIR multiplier. We show that searches
in discrete-time for FIR multipliers are effective even for large
orders. As expected, the numerical results provide the best `2-
stability results in the literature for slope-restricted nonlinearities.
In particular, we establish the equivalence between the state-of-
the-art Lyapunov results for slope-restricted nonlinearities and
a subset of the FIR multipliers. Finally, we demonstrate that
the discrete-time search can provide an effective method to find
suitable continuous-time multipliers.

Index Terms—Zames–Falb multipliers, absolute stability, Lur’e
problem.

I. INTRODUCTION

The stability of a feedback interconnection between a linear
time-invariant system G and any nonlinearity φ within the
class of nonlinearities Φ is referred to as the Lur’e problem
(see Section 1.3 in [1] for a history of this problem). As
the stability is obtained for the whole class of nonlinearities,
the adjective “absolute” or “robust” is added. In the classical
solution of this problem frequency-domain conditions on the
linear system are determined by the class of nonlinearites. The
inclusion of a multiplier reduces the conservativeness of the
approach. The stability problem is translated into the search
for a multiplier M which belongs to the class of multipliers
associated with the class of nonlinearities Φ, where G and M
satisfy some frequency conditions.

The class of Zames–Falb multipliers is defined both for
the continuous-time domain [2] and for the discrete-time
domain [3] (see [4] for a tutorial on Zames–Falb multipliers for
the continuous-time domain). Loosely speaking, a Zames–Falb
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multiplier preserves the positivity of a monotone and bounded
nonlinearity. Hence if an LTI plant G is in negative feedback
with a monotone and bounded nonlinearity then stability is
guaranteed if there is a multiplier M such that

Re{MG}> 0, (1)

with M and G evaluated over all frequencies (i.e. at jω ,
ω ∈R for continuous-time systems and at e jω , ω ∈ [0,2π] for
discrete-time systems). Similarly (and by loop tranformation)
if an LTI plant G is in negative feedback with an S[0,K] slope-
restricted nonlinearity, then stability is guaranteed if there is
a multiplier M such that

Re{M(1+KG)}> 0, (2)

with M and G evaluated over all frequencies. In addition a
wider class of multipliers is available if the nonlinearity is odd;
multipliers for quasi-odd multipliers can also be derived [5].

A. Overview of searches for Zames–Falb multipliers in the
continuous-time domain

To date, most of the literature on search methods for Zames–
Falb multipliers has been focused on continuous-time systems,
where three types of method have been developed:

a) Finite Impulse Response (FIR): Searches over sums
of Dirac delta functions are proposed and developed in [6], [7]
and [8]. The main advantage of this method is the simplicity
and versatility of using impulse responses for the multiplier.
However the searches require a sweep over all frequencies,
which can lead to unreliable results in some cases [9]. More-
over, the choice of times for the Dirac delta functions is
heuristic.

b) Basis functions: In [10] and [11] it is proposed to
parameterise the multiplier in terms of causal basis functions
e+i (t) = t ie−tu(t) where u(t) is the unit (or Heaviside) step
function, and anticausal basis functions e−i (t)= t ietu(−t), with
i= 1, . . . ,N for some N. As an advantage over the FIR method,
the positivity of M(1+ kG) can be tested through the KYP
lemma. Moreover the search provides a complete search over
the class of rational multipliers as N approaches infinity [12].
The method provides significant advantages, such as the
combination with other nonlinearities [13]. Nonetheless if N
is required to be large then the search becomes numerically
ill-conditioned. With small N there is conservatism for odd
nonlinearities, since the impulse of the multiplier is allowed
to change sign. In fact the results reported in [10] for SISO
examples are not significantly better for odd nonlinarities than
for non-odd.
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c) Restricted structure rational multipliers: In [16] an
LMI method is proposed where the L1 norm of a low-
order causal multiplier is bounded in a convex manner (see
also [17]). Several extensions have been proposed: adding
a Popov multiplier [18], developing an anticausal counter-
part [9], and increasing the order of the multiplier [19]. The
method is quasi-convex and effective but does not provide a
complete search. It has two further drawbacks: the bound of
the L1-norm may be conservative and it can only be applied
if the nonlinearity is odd.

In [21], [4], it has been shown that the searches’ relative per-
formances vary with different examples. It must be highlighted
that results using basis functions can be significantly improved
by manually selecting the parameters of the basis [14], [15].
Similarly, manual tuning of delta functions can be useful for
time-delay systems [22].

In addition, there are several other stability tests in the
literature, where either the Zames–Falb multipliers are not
explicitly invoked or extensions to the Zames–Falb multipliers
are proposed. These can all be viewed as searches over
subclasses of Zames–Falb multipliers [20], [21]. In particular,
the off-axis circle criterion is a powerful technique that uses
graphical tools to ensure the existence of a possibly high-order
multiplier by using graphical methods [23], hence avoiding the
use of an optimization tool. It can be used to establish a large
set of plants that satisfy the Kalman conjecture [24], [25].

B. Zames–Falb multipliers in the discrete-time domain

In [3], [26], the discrete-time counterparts of the Zames–
Falb multipliers [2] are given. The conditions are the natural
counterparts to the continuous-time case, where the L1-norm
is replaced by the `1-norm and the frequency-domain inequal-
ity must be satisfied on the unit circle. In the continuous-
time case, the use of improper multipliers has generated
“extensions” of the original that have been analysed in [20],
[21]. In the discrete-time case, the conditions for the Zames–
Falb multipliers are necessary and sufficient to preserve the
positivity of the nonlinearity [26]; it follows that the class
of Zames–Falb multipliers is the widest class of multipliers
that can be used. The result has been extended to MIMO
systems [27], repeated nonlinearities in [28] and MIMO re-
peated nonlinearities in [29]. These works are focused on the
description of the available multipliers, but no explicit search
method is discussed.

Modern digital control implementation requires a complete
study in the discrete-time domain. In addition the possibility
of using the Zames–Falb multipliers for studying the stability
and robustness properties of input-constrained model predic-
tive control (MPC) [30] provides an inherent motivation for
discrete-time analysis, since MPC is naturally formulated in
discrete time. Recently, Zames–Falb multipliers in discrete-
time have been attracting attention in their use to ensure
convergence rates of optimization algorithms [31], [33].

More generally, the absolute stability problem of discrete-
time Lur’e systems with slope–restricted nonlinearities con-
tinues to attract attention. Recent studies include [34], [35],
[36], [37] which all take a Lyapunov function approach; as an

advantage they generate easy-to-check linear matrix inequality
(LMI) conditions. However one might expect that improved
results could be obtained via a multiplier approach, since this
provides a more general condition. In fact some of these ap-
proaches can be interpreted as a search over a small subclass of
Zames–Falb multipliers; see [36] for further details. Although
this paper deals with SISO systems, it must be highlighted
that a tractable stability test using Zames–Falb multipliers
for MIMO nonlinearities has been proposed in [38], which
can be seen as a MIMO extension of the results in Section
IV.B. Results in [38] focus on the most suitable structure
for the MIMO multiplier, where a combination of Zames–
Falb multipliers and circle criterion must be used to exploit
possible differences between sector and slope condition; by
contrast results in this paper focus on the use of different
search algorithms in the discrete-time domain.

The differences between continuous-time and discrete-time
Lur’e systems are non-trivial. As an example, second-order
counterexamples to the discrete-time Kalman conjecture have
been found [39], [40]. For continuous-time systems the
Kalman conjecture holds for first, second, and third order
plants [41]. This is reflected by phase restrictions that can
be placed on discrete-time Zames–Falb multipliers that are
different in kind to their continuous-time counterparts [42].

In this paper we propose several searches for SISO LTI
discrete-time Zames–Falb multipliers. The search of multipli-
ers can be carried out with two different approaches:

a) Infinite impulse response (IIR) multiplier: The search
is the counterpart of the method proposed by Turner et al.
[16], [9], presented in [43] and included for the sake of
completeness. The multipliers are parametrised in terms of
their state-space representation, and classical multiobjective
techniques are used to produce an LMI search.

b) Finite impulse response (FIR) multiplier: This search
can be considered as combining the searches of both Sa-
fonov’s [6] and Chen and Wen’s methods [11] in continuous-
time. Initial results were presented in [44]. Here, two alterna-
tive versions are provided: firstly we propose a novel ad hoc
factorisation where we can exploit some additional flexibility;
secondly we use standard lifting techniques, e.g. [45].

We show the equivalence of state-of-the-art Lyapunov re-
sults in [37] with a particular subclass of FIR multipliers in
Section V. Numerical results and some computational consid-
eration are discussed in Section VI. In Section VII we consider
how the discrete-time FIR search may be used effectively
to find continuous-time multipliers. We show by numerical
examples that tailoring the method can match or beat searches
proposed in the literature for rational transfer functions.

We must highlight that discrete-time Zames–Falb multi-
pleirs have been defined as LTV operators [3]. However, we
reduce our attention to LTI Zames–Falb multiplier. In the spirit
of [20], it remains open whether the restriction to LTI Zames–
Falb multiplier can be made without loss of generality when G
is an LTI system. Moreover we have conjectured [42] about the
connection between the lack of a Zames-Falb multiplier and
the lack of absolute stability. In short, if there is no suitable
Zames–Falb multiplier for a plant G and gain k smaller than
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its Nyquist gain (see Section II for a definition), then we
conjecture that there exists a slope-restricted nonlinearity in
[0,k] such that the feedback interconnection between G and
the nonlinearity is unstable [42]. However, further work is
required to prove or disprove this conjecture.

II. NOTATION AND PRELIMINARY RESULTS

Let Z and Z+ be the set of integer numbers and positive
integer numbers including 0, respectively. Let ` be the space
of all real-valued sequences, h : Z+ → R. Let `1(Z) be the
space of all absolute summable sequences, so given a sequence
h :Z→R such that h ∈ `1, then its `1-norm is

‖h‖1 =
∞

∑
k=−∞

|hk|, (3)

where hk means the kth element of h. In addition, let `2 denote
the Hilbert space of all square-summable real sequences f :
Z+→R with the inner product defined as

〈 f ,g〉=
∞

∑
k=0

fkgk, (4)

for f , g ∈ `2, k ∈ Z+. Similarly, we can define the Hilbert
space `2(Z) by considering real sequences f : Z→ R. We
use 0i to denote a row vector with i entries, all equal to
zero. Similarly 0 denotes a matrix with zero entries where the
dimension is obvious from the context. We use Ii to denote
the i× i identity matrix.

The standard notation RL∞ is used for the space of all real
rational transfer functions with no poles on the unit circle.
If G ∈ RL∞, its norm is defined as ‖G‖∞ = sup|z|=1 |G(z)|.
Furthermore RH∞ is used for the space of all real rational
transfer functions with all poles strictly inside the unit circle.
Similarly, RH−∞ is used for the space of all real rational transfer
functions with all poles strictly outside the unit circle. With
some reasonable abuse of the notation, given a rational transfer
function H(z) analytic on the unit circle, ‖H‖1 means the `1-
norm of impulse response of H(z).

Let M̄ denote a linear time invariant operator mapping a
time domain input signal to a time domain output signal and
let M denote the corresponding transfer function. We consider
that the domain of convergence includes the unit circle, so
that the `1-norm of the inverse z-transform of M is bounded if
M ∈RL∞. We say the multiplier M̄ is causal if M ∈RH∞, M̄ is
anticausal if M ∈RH−∞ , and M̄ is noncausal otherwise. See [48]
for further discussion on causality and stability. Henceforth,
we will use M for both the operator and its transfer function.

A discrete LTI causal system G has the state space real-
ization of (A, B, C, D). That is to say, assuming the input
and output of G at sample k are uk and yk, respectively, and
the inner state is denoted as xk, the following relationship is
satisfied

G :

{
xk+1 = Axk +Buk,

yk =Cxk +Duk,
(5)

in short

G∼
[

A B
C D

]
. (6)

-

6

-

?
� m� fv

w

φ

Gm
−

g

Fig. 1. Lur’e problem

Its transfer function is given by G(z) = C(zI − A)−1B + D,
where z is the z-transform of the forward (or left) shift
operator. In fact, this notation is not always adopted in the
literature since the definition of the z-transform is not uniform
in the use of z or z−1. See [48], [50].

The discrete-time version of the KYP lemma will be used
to transfer frequency domain inequalities into LMIs:

Lemma II.1. (Discrete KYP lemma, [51]) Given A, B, M, with
det(e jω I−A) 6= 0 for ω ∈R and the pair (A,B) controllable,
the following two statements are equivalent:

(i) For all ω ∈R[
(e jω I−A)−1B

I

]∗
M
[
(e jω I−A)−1B

I

]
≤ 0. (7)

(ii) There is a matrix X ∈Rn×n such that X = X> and

M+

[
A>XA−X A>XB

B>XA B>XB

]
≤ 0. (8)

The corresponding equivalence for strict inequalities holds
even if the pair (A,B) is not controllable.

Throughout this paper, the superscript ∗ stands for conjugate
transpose.

Remark II.2. State space representations such as (5) are
appropriate for causal systems, but not for anticausal and
noncausal systems. These can be represented in state space
as descriptor systems. The KYP lemma has been extended to
descriptor systems in [52] for continuous-time LTI systems. In
[53] an approach to the analysis of discrete singular systems
is presented; however it is restricted to causal systems. In this
work we exploit the structure of our multipliers to find causal
systems that have the same frequency response on the unit
circle. Hence the classical KYP lemma suffices.

The discrete-time Lur’e system is represented in Fig. 1. The
interconnection relationship is{

vk = fk +(Gw)k,

wk =−φ(vk)+gk.
(9)

The system (9) is well-posed if the map (v,w) 7→ (g, f ) has
a causal inverse on `× `, and this feedback interconnection is
`2-stable if for any f ,g ∈ `2, both w,v ∈ `2.

The memoryless nonlinearity φ : R 7→ R with φ(0) = 0 is
said to be bounded if there exists C such that |φ(x)|<C|x| for
all x ∈R, φ is said to be sector bounded in the interval [0,Ψ]
if for any real number x 6= 0 then

0≤ φ(x)
x
≤Ψ, (10)
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and φ is said to be monotone if for any two real numbers x1
and x2 then

0≤ φ(x1)−φ(x2)

x1− x2
. (11)

Moreover, φ is slope-restricted in the interval S[0,K] if

0≤ φ(x1)−φ(x2)

x1− x2
≤ K, (12)

for all x1 6= x2. Finally, the nonlinearity φ is said to be odd if
φ(x) =−φ(−x) for all x ∈R.

Zames–Falb multipliers preserve the positivity of the class
of monotone nonlinearities [2], [3]. Then a loop transformation
allows us to obtain the following result for slope restricted
nonlinearities:

Theorem II.3 ([26], [3]). Consider the feedback system
in Fig. 1 with G ∈ RH∞, and φ is a slope-restricted in
S[0,K]. Suppose that there exists a multiplier M : `2(Z) 7→
`2(Z) whose impulse response is m : Z 7→ R and satisfies
∑

∞
k=−∞

|mk| ≤ 2m0,

Re{M(z)(1+KG(z))}> 0 ∀|z|= 1, (13)

and either mk ≤ 0 for all k 6= 0 or φ is also odd. Then the
feedback interconnection (9) is `2-stable.

The above theorem leads to the definition of the class of
Zames–Falb multipliers:

Definition II.4. (DT LTI Zames–Falb multipliers [3]) The
class of discrete-time SISO LTI Zames–Falb multipliers con-
tains all LTI convolution operators M : `2(Z) 7→ `2(Z) whose
impulse response is m : Z 7→ R satisfies ∑

∞
k=−∞

|mk| < 2m0.
Without loss of generality, the value of m0 can be chosen to
be 1.

Remark II.5. An important subclass of Zames–Falb multipli-
ers is obtained by adding the limitation mk ≤ 0, which must
be used if we only have information about slope-restriction of
the nonlinearity.

Remark II.6. It is also standard to write Definition II.4 using
the `1-norm by stating the condition as ‖M‖1 ≤ 2.

Definition II.7. (Nyquist value) Given G ∈RH∞, the Nyquist
value kN is the supremum of all the positive real numbers K
such that τKG(z) satisfies the Nyquist Criterion for all τ ∈
[0,1]. It can also be expressed as:

kN = sup{K ∈R+ : inf
ω
{|1+ τKG(e jω)|}> 0),∀τ ∈ [0,1]}.

(14)
In terms of its state space realization (5), kN is the supremum
of K such that all eigenvalues of (A−BKC) are located in the
open unit disk, with K in the interval [0,kN ].

Remark II.8. The Kalman conjecture is not valid for discrete-
time systems even for plants of order 2 [39], [40]. There is
no a priori guarantee (except for first order systems) that if K
is less than the Nyquist value for the plant then the negative
feedback interconnection of the plant and a nonlinearity slope-
restricted in S[0,K] is stable.

III. SEARCHES FOR IIR MULTIPLIERS

In III-A we present a search for discrete-time causal mul-
tipliers that is the counterpart to the search for continuous-
time causal multipliers presented in [16] (see also [17]). In
Section III-B we present the anticausal counterpart, similar
in spirit to the continuous-time anticausal search of [9]. The
results in this section were fully presented in [43], so proofs
are omitted.

When the multiplier is parameterised in terms of its state-
space representation as in [16], [17], we require the following
bound [54] for all the searches.

Lemma III.1 ([54]). Consider a dynamical system G rep-
resented by (5) and x0 = 0. Suppose that there exist µ > 0,
0 < λ < 1 and P = P> such that[

A>PA−λP A>PB
? B>PB−µI

]
< 0, (15)

[
(λ −1)P+C>C C>D

? (µ− γ2)I +D>D

]
< 0. (16)

Then ‖G‖1 < γ . Furthermore, A has all its eigenvalues in the
open unit disk.

The use of this result is a fundamental limitation of this
method as the parameterisation of the multipliers requires their
causality to be established before carrying out the search.
Another important feature of this method is that it requires
the nonlinearity to be odd as it is not possible to ensure the
positivity of the impulse response of the multiplier.

A. Causal multiplier search

In the spirit of [16], a search over the class of causal
discrete-time Zames–Falb multipliers is presented as follows:

Proposition III.2. Let

G(z)∼
[

Ag Bg
Cg Dg

]
where Ag ∈ Rn×n, Bg ∈ Rn×1, Cg ∈ R1×n and Dg ∈ R1×1. Let
φ be an odd nonlinearity slope-restricted in S[0,K]. Without
loss of generality, assume that the feedback interconnection of
G and a linear gain K is stable. Define Ap, Bp, Cp and Dp as
follows:

Ap = Ag; (17)
Bp = Bg; (18)
Cp = KCg; (19)
Dp = 1+KDg. (20)

Assume that there exist positive definite symmetric matrices
S11 > 0, P11 > 0, unstructured matrices Â, B̂ and Ĉ with the
same dimension as A, B, and C, respectively, and positive
constants 0 < µ < 1 and 0 < λ < 1 such that the LMIs (21),
(22), and (23) (given on the following page) are satisfied. Then
the feedback interconnection (1) is `2-stable.

Remark III.3. Similar to the continuous case [16], [17], the
inequalities (21), (22), and (23) are not LMIs if λ is defined as
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LMIs in Proposition III.2:
−S11 ? ? ? ?
−S11 −P11 ? ? ?

−Cp− Ĉ −Cp −D>p −Dp ? ?
S11Ap S11Ap S11Bp −S11 ?

P11Ap + B̂Cp + Â P11Ap + B̂Cp P11Bp + B̂Dp −S11 −P11

< 0, (21)

λ (S11−P11) ? ?
0 −µI ?

−Â −B̂ S11−P11

< 0, (22)

(λ −1)(P11−S11) ? ?
0 (µ−1)I ?

Ĉ 0 −I

< 0. (23)

variable. Hence, the use of this result requires a linear search
of λ over the interval between 0 and 1.

Remark III.4. The change of variable is the same as in the
continuous case (see [16], [21], [36]). The multiplier defined
by

M(z)∼
[

Au Bu
Cu 1

]
where Au, Bu, and Cu can be recovered following [17] using

Au = −(P11−S11)
−1Â, (24)

Bu = −(P11−S11)
−1B̂, (25)

Cu = Ĉ. (26)

Remark III.5. Under further conditions, e.g. Dp = 0, it is
possible to extend this method with a first order anticausal
component in the multiplier, i.e. M(z) = (1+m−1z)+Mc(z),
under the constraint |m−1|< 1. The development of the result
is similar with the use of the state-space representation of
zG(z).

B. Anticausal multiplier search

The anticausal counterpart of the above search can be stated
as follows:

Proposition III.6. Let G ∈ RH∞ be represented in the state
space by Ag, Bg, Cg and Dg where Ag ∈ Rn×n, Bg ∈ Rn×1,
Cg ∈ R1×n and Dg ∈ R1×1. Let φ an odd nonlinearity slope-
restricted in S[0,K]. Without loss of generality, assume that
the feedback interconnection of G and a linear gain K is well-
posed and stable. Define Ap, Bp, Cp and Dp as follows:

Ap = Ag−Bg(KDg +1)−1KCg; (27)

Bp =−Bg(KDg +1)−1; (28)

Cp = (KDg +1)−1KCg; (29)

Dp = (KDg +1)−1. (30)

Assume that there exist positive definite symmetric matrices
S11 > 0, P11 > 0, unstructured matrices Â, B̂ and Ĉ, and
positive constants 0 < µ < 1 and 0 < λ < 1 such that the
LMIs (21), (22), and (23) are satisfied, then the feedback
interconnection (1) is `2-stable.

Remark III.7. Once the search has provided the matrices Â,
B̂ and Ĉ, the matrices Au, Bu, and Cu are computed as in
Remark III.4, then the multiplier is given by:

Mac(z) =Cu
(
z−1I−Au

)−1
Bu +1, (31)

which can be written as

Mac(z)∼
[

A−>u A−>u C>u
B>u A−>u 1−B>u A−>u C>u

]
, (32)

if Au is non-singular. If Au is singular, then the result is still
valid but the multiplier does not have a forward represen-
tation. Note that the region of convergence of this transfer
function does not include z = ∞ and the term m0 in the
inverse z-transform of Mac(z) corresponds with Mac(0), i.e.
(Z −1(Mac))(0) = Mac(0).

IV. SEARCHES FOR FIR MULTIPLIERS

In this section, we restrict our attention to FIR multipliers,
i.e.

M(z) =
nb

∑
i=−n f

miz−i, (33)

where nb ≥ 0 and n f ≥ 0. Without loss of generality we set
m0 = 1. If the nonlinearity is not odd we consider only the
subclass of Zames–Falb multipliers with mi ≤ 0 for all i ∈
Z\{0}. The multiplier M is said to be causal if nb ≥ 0 and
n f = 0, it is said to be anticausal if nb = 0 and n f ≥ 0, and it
is said to be noncausal if nb > 0 and n f > 0.

Two different searches are included as they provide alter-
native insights to the design of the multiplier:
• firstly we provide a special factorisation for SISO Zames-

Falb multipliers where the design of the multiplier is more
flexible as n f and nb can be selected independently;

• secondly we present a basis factorisation for SISO mul-
tipliers, which can be seen as a counterpart of the
continuous-time domain, under the constraint n f = nb.

Although there are no significant numerical differences, there
is a very significant difference from a theoretical point of
view: the first search guarantees a positive definite matrix
when the KYP lemma is used. It must be highlighted that
there is no such search of noncausal Zames-Falb multipliers
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in continuous-time. Further research is required to investigate a
possible transformation to the time-domain, where local prop-
erties can be analysed [46], [47]. To conclude the section, we
show that any Zames–Falb multiplier can be phase-substituted
by an appropriate FIR multiplier.

A. Special search of FIR Zames–Falb multipliers

In this section we develop an LMI search for FIR Zames–
Falb multipliers. In Lemma IV.1 we show that the `1 condition
can be expressed with linear constraints. In Lemma IV.3 we
show that although our multiplier is noncausal, the positivity
condition can be expressed in terms of a nonsingular state-
space representation, leading to an LMI formulation. Our main
stability result is stated in Theorem IV.4. It is possible to show
that the LMI requires a positive definite matrix.

We seek a Zames–Falb multiplier M(z) with structure
of (33) and m0 = 1 such that

Re{M(z)(1+KG(z))}> 0 ∀ |z|= 1. (34)

Lemma IV.1. If M(z) has the structure of (33) with m0 = 1,
then M(z) is a Zames–Falb multiplier provided

mi ≤ 0 for i =−n f , . . . ,−1 and i = 1, . . . ,nb, (35)

and nb

∑
i=−n f

mi ≥ 0. (36)

If the nonlinearity is odd then we can write mi = m+
i −m−i for

i = −n f , . . . ,nb (we define m+
0 = 1 and m−0 = 0) and M(z) is

a Zames–Falb multiplier provided:

m+
i ≥ 0 and m−i ≥ 0 for i =−n f , . . . ,nb, (37)

and nb

∑
i=−n f

m+
i +

nb

∑
i=−n f

m−i ≤ 2. (38)

Proof. This follows immediately from Theorem II.3. The
decomposition for odd nonlinearities is the Jordan measure
decomposition (e.g. [55]).

Remark IV.2. If the nonlinearity is not odd this leads to n f +
nb +1 linear constraints while if the nonlinearity is odd this
leads to 2n f +2nb +1 linear constraints.

Given P(z) = 1+ kG(z), condition (34) can be written:

M(z)P(z)+ [M(z)P(z)]∗ > 0 for all |z|= 1. (39)

However, since M is noncausal and P ∈ RH∞, it follows
that MP does not have a nonsingular state-space description.
This is addressed in Lemma IV.3 below.

First we define some quantities. Let P(z) have state-space
description

P∼
[

Ap Bp
Cp Dp

]
, (40)

where Ap ∈Rnp×np . Let n = max(n f ,nb) and define

Ã =

 Ap Bp 0
0 0 In−1
0 0 0

 and B̃ =

 0
0
1

 , (41)

where Ã ∈R(np+n)×(np+n). Also let

Cn =
[

Cp Dp 0n−1
]
, (42)

and

Cd,i =
[

0np+n−i 1 0i−1
]

for i = 1, . . . ,n f . (43)

Define Ci as

Ci =CnÃn−i +
−i

∑
j=1

(
CnÃn−i− j−1B̃

)
Cd, j for i =−n f , . . .−1,

(44)

C0 =CnÃn, (45)

Ci =CnÃn−i for i = 1, . . . ,nb, (46)

and Di as

Di =CnÃn−i−1B̃ for i =−n f , . . . ,−1, (47)

D0 =CnÃn−1B̃, (48)
Di = 0 for i = 1, . . . ,nb. (49)

Then we can say:

Lemma IV.3. Suppose P(z) is a causal and stable discrete-
time transfer function with state-space description (40) and
suppose M(z) is a noncausal FIR transfer function given by
(33) with m0 = 1. There exist Pi(z) for i = −n f , . . . ,nb with
nonsingular state-space representation such that

M(z)P(z)+[M(z)P(z)]∗ =
nb

∑
i=−n f

mi (Pi(z)+Pi(z)∗) , ∀|z|= 1.

(50)
Furthermore the statement

M(z)P(z)+ [M(z)P(z)]∗ > 0 ∀|z|= 1, (51)

is equivalent to the statement that there exists a matrix X ∈
R(np+n)×(np+n) such that X = X> and[

Ã>XÃ−X Ã>XB̃
B̃>XÃ B̃>XB̃

]
−M>f ΠM f < 0, (52)

with

Π =

[
Π11 Π12
Π21 Π22

]
=

[
0 m

m> 0

]
, (53)

m> =
[

m−n f , . . . , m−1, 1, m1, . . . mnb

]
, (54)

and

M f =

[
M f ,11 M f ,12
M f ,21 M f ,22

]
=


C−n f D−n f

...
...

Cnb Dnb

0 1

 , (55)

with Ã, B̃, Ci and Di given by (41), (44-46) and (47-49),
respectively.

Proof. We can write

M(z)P(z) =
nb

∑
i=−n f

miz−iP(z). (56)
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Hence we must choose causal Pi(z) for i = −n f , . . . ,nb such
that

Pi(z)+ [Pi(z)]
∗ = z−iP(z)+

[
z−iP(z)

]∗
for all |z|= 1. (57)

It follows immediately that for i = 0, . . . ,nb we can choose

Pi(z) = z−iP(z). (58)

When i is negative, z−iP(z) is not causal (beware: if i is
negative then z−i is anticausal). We can partition z−iP(z) into
causal and anticausal parts

z−iP(z) = PAC
i (z)+PC

i (z). (59)

The partition is standard since PAC
i is FIR (e.g. [48]). If we

write P as

P(z) =
∞

∑
k=0

pkz−k, (60)

then, for i =−n f , . . . ,−1, we have

PAC
i (z) =

−i−1

∑
k=0

pkz−i−k

= Dpz−i +
−i−1

∑
k=1

CpAk−1
p Bpz−i−k, (61)

and

PC
i (z) = z−iP(z)−PAC

i (z)

=CpA−i
p (zI−Ap)

−1Bp +CpA−i−1
p Bp. (62)

Then we can choose

Pi(z) = PC
i (z)+PAC

i (z−1). (63)

We parameterize each Pi(z) as follows. Let n = max(n f ,nb).
Define Ã and B̃ as (41) and Cn as (42). Then

z−nP(z) =Cn(zI− Ã)−1B̃. (64)

When i is positive we can write

Pi(z) = z−iP(z)

=CnÃn−i(zI− Ã)−1B̃

=Ci(zI− Ã)−1B̃+Di for i = 1, . . . ,nb, (65)

where Ci and Di are given by (46) and (49) respectively.
Similarly

P0(z) = P(z)

=CnÃn(zI− Ã)−1B̃+CnÃn−1B̃

=C0(zI− Ã)−1B̃+D0, (66)

where C0 and D0 are given by (45) and (48) respectively.
When i is negative, we write

Pi(z) =CpA−i
p (zI−Ap)

−1Bp +CpA−i−1
p Bp

+Dpz−i +
−i−1

∑
k=1

CpAk−1
p Bpz−i−k. (67)

The state space realization of the delay operator z− j is formu-
lated as

z− j =Cd, j(zI− Ã)−1B̃, (68)

with Cd,i given by (43). So we can write this

Pi(z) =CnÃn−i(zI− Ã)−1B̃+CnÃn−i−1B̃

+CnÃn−1B̃z−i +
−i−1

∑
k=1

CnÃn+k−1B̃z−i−k

=Ci(zI− Ã)−1B̃+Di for i =−n f , . . . ,−1, (69)

where Ci and Di are given by (44) and (47) respectively.
Finally we can write

M(z)P(z)+ [M(z)P(z)]∗

=


P−n f (z)

...
Pnb(z)

1


∗ [

0 m
m> 0

]
P−n f (z)

...
Pnb(z)

1


=

[
(zI− Ã)−1B̃

1

]∗
M>f ΠM f

[
(zI− Ã)−1B̃

1

]
. (70)

The result then follows immediately from the KYP Lemma
for discrete-time systems (Lemma II.1).

We can now state our main result.

Theorem IV.4. Consider the feedback system in Fig.1 with
G ∈ RH∞, and φ is a nonlinearity slope-restricted in S[0,k].
Suppose we can find m and X such that the LMI (52) is sat-
isfied under the conditions of Lemma IV.3 with the additional
constraints either (35) and (36) or φ is also odd and (37) and
(38). Then the feedback interconnection (9) is `2-stable.

Proof. This follows immediately from Lemma IV.1,
Lemma IV.3 and Theorem II.3.

Proposition IV.5. If there exists X = XT satisfying (52) in
Lemma IV.3, then X > 0.

Proof. It follows since the diagonal matrix block MT
f ΠM f

with the (n + np) first rows and columns, denoted by
(MT

f ΠM f )11, is zero, hence condition (52) requires

ÃT XÃ−X < 0

with all eigenvalues of Ã in the open unit disk, hence X > 0.
In detail, the eigenvalues of Ã are the the eigenvalues of A

and 0, so Ã is Hurwitz when A is Hurwitz.
Then, it follows

(MT
f ΠM f )11 = MT

f ,11Π11M f ,11 +MT
f ,11Π12M f ,21

+MT
f ,21Π21M f ,11 +MT

f ,21Π22M f ,21.

Since Π11 = 0(nb+n f +1)×(nb+n f +1), and M f ,21 = 01×(n+np), we
have (MT

f ΠM f )11 = 0(n+np)×(n+np).
Therefore, X > 0 holds.

B. FIR search using causal basis

In this section we provide a causal-factorisation ap-
proach which is widely discrete-time for general robust tech-
niques [45], but here we focus on Zames–Falb multipliers. One
can think of this technique as the discrete-time counterpart
of factorisation approach in [13] for general continuous-time
multipliers.
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By the IQC theorem, we seek a Zames–Falb multiplier such
that[
−G(z)

1

]∗ [ 0 KM∗(z)
KM(z) −(M(z)+M∗(z))

][
−G(z)

I

]
< 0 ∀|z|= 1.

Substituting the Zames–Falb multiplier M(z) by its FIR
form (33) with nb = n f = n, then the IQC multiplier can be
factorized via lifting as follows[

0 KM∗(z)
KM(z) −(M(z)+M∗(z))

]
= Ψ(z)∗κ(K,m)Ψ(z),

where

Ψ(z) =



1 0
z−1 0
z−2 0

...
...

z−n 0
0 1
0 z−1

0 z−2

...
...

0 z−n


,

and κ(K,m) is given in (71) in next page.

Theorem IV.6. Consider the feedback system in Fig.1 with
P ∈ RH∞, and φ is a nonlinearity slope-restricted in S[0,K].
Let

Ψ(z)
[
−G(z)

1

]
∼
[

Â B̂
Ĉ D̂

]
,

and

m> =
[
m−n, . . . , m−1, 1, m1, . . . mn

]
.

If there exist X = XT and m such that[
Â>XÂ−X Â>XB̂

B̂>XÂ B̂>XB̂

]
+
[
Ĉ D̂

]T
κ(k,m)

[
Ĉ D̂

]
< 0, (72)

n

∑
i=−n
|mi| ≤ 2, (73)

and either mi ≤ 0 for all i 6= 0 or φ is odd, then the feedback
interconnection (9) is `2-stable.

Proof. The proof follows by the application of the KYP
lemma, as (72) is equivalent to (13); hence the conditions of
Theorem II.3 hold, and stability is then guaranteed.

Remark IV.7. Conditions for quasi-odd, quasi-monotone non-
linearities [5] can be straightforwardly implemented.

Remark IV.8. In this factorisation, it is not possible to ensure
X > 0. The introduction of the condition X > 0 would reduce
the class of available multipliers.

Remark IV.9. This approach ensures the extension to MIMO
system as shown in [38]. It must be highlighted that the
structure of the multiplier then depends on the structure of the
nonlinearity as shown in [28], [29]. However the extension of
the result in Section IV.A requires further research.

C. Phase-Equivalence

In the spirit of [20], [21], we can state the phase-equivalence
between the full class of LTI Zames–Falb multipliers and FIR
Zames–Falb multipliers as follows:

Lemma IV.10. Given P ∈RH∞, if there exists a Zames–Falb
multiplier M such that

Re{M(z)P(z)}> 0 ∀|z|= 1, (74)

then there exists an FIR Zames–Falb multiplier MFIR such that

Re{MFIR(z)P(z)}> 0 ∀|z|= 1. (75)

Proof. Given an LTI Zames–Falb multiplier

M(z) =
∞

∑
i=−∞

miz−i, and
∞

∑
i=−∞

|mi| ≤ 2m0, (76)

for any ε > 0, there exists N such that

−N−1

∑
i=−∞

|mi|+
∞

∑
i=N+1

|mi|< ε. (77)

We can write

M(z) =
N

∑
i=−N

miz−i +Mt(z) = MFIR(z)+Mt(z), (78)

with ‖Mt‖∞ ≤ ‖Mt‖1 < ε .
Meanwhile, as P(z) and M(z) are continuous functions in

the unit circle, by the extreme value theorem [49], there exists
δ1 > 0 such that

Re{M(z)P(z)} ≥ δ1 for all |z|= 1. (79)

Let us choose N such that (77) is satisfied with ε = δ1
2‖P‖∞ .

Then for all z satisfying |z|= 1 we find

Re{M(z)P(z)}= Re{MFIR(z)P(z)}+Re{Mt(z)P(z)}
≤ Re{MFIR(z)P(z)}+ |Mt(z)P(z)|
≤ Re{MFIR(z)P(z)}+ |Mt(z)||P(z)|
≤ Re{MFIR(z)P(z)}+‖Mt‖∞‖P‖∞

≤ Re{MFIR(z)P(z)}+
δ1

2
, (80)

Finally, rearranging using (80) and using (74), it follows that

Re{MFIR(z)P(z)} ≥ Re{M(z)P(z)}− δ1

2

≥ δ1

2
> 0 for all |z|= 1. (81)

V. RELATIONS TO LYAPUNOV RESULTS

In [36], a time domain stability criterion based on a Lya-
punov function is shown be equivalent to a frequency domain
stability theorem with a first order noncausal FIR Zames-Falb
multiplier. Recently, a state-of-the-art Lyapunov criterion has
been presented in [37]. In this section, a similar analysis is
conducted to show the relations between the stability crite-
rion in [37] and a second order noncausal FIR Zames-Falb
multiplier.
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κ(K,m) =



0 0 0 · · · 0 Km0 Km−1 Km−2 · · · Km−n
0 0 0 · · · 0 Km1 0 0 · · · 0
0 0 0 · · · 0 Km2 0 0 · · · 0
...

...
... · · ·

...
...

...
... · · ·

...
0 0 0 · · · 0 Kmn 0 0 · · · 0

Km0 Km1 Km2 · · · Kmn −2m0 −m1−m−1 −m2−m−2 · · · −mn−m−n
Km−1 0 0 · · · 0 −m1−m−1 0 0 · · · 0
Km−2 0 0 · · · 0 −m2−m−2 0 0 · · · 0

...
...

... · · ·
...

...
...

... · · ·
...

Km−n 0 0 · · · 0 −mn−m−n 0 0 · · · 0


(71)

A. Stability criterion in Lyapunov approach

The Theorem 1 in [37] can be rewritten as follows.

Theorem V.1. ([37]) For the discrete time Lur’e system

G ∼
[

A B
C 0

]
with the nonlinearity φ ∈ [0,Ψ]∩ S[0,K], the

closed-loop system is absolutely stable if there exist a symmet-
ric matrix X ∈ R(2n+2m)×(2n+2m), positive diagonal matrices
Mi ∈ Rm×m (i = 1,2), Ni ∈ Rm×m (i = 1, · · · ,4), Πk ∈ Rm×m,
Λk ∈Rm×m (k = 1,2,3), and any matrices Θ1, Θ2 ∈Rn×n, Θ3,
Θ4, Θ5 ∈ Rm×n, such that

X̂ ≡ X +Ξ > 0, Ω≡Ω1 +Ω2 +Ω3 +Ω4 < 0, (82)

where Ξ is defined below. In addition, Ω1, Ω2, Ω3, Ω4 are on
the next page, where some terms are added and subtracted at
the same time respectively on the basis of Ω in [37].

Ξ11 =CT (M2K +N2Ψ)C, Ξ21 =−CM2KCT ,

Ξ22 =CT (M2K +N4Ψ)C, Ξ31 =−(M2 +N2)C,

Ξ32 = M2C, Ξ33 = (M1 +M2 +N1 +N2)K−1,

Ξ41 = M2C, Ξ42 =−(M2 +N4)C,

Ξ43 =−(M1 +M2)K−1, Ξ44 = (M1 +M2 +N3 +N4)K−1.

B. Frequency domain interpretation for SISO systems

In the spirit of the development in [36], the second inequal-
ity can be translated into a frequency domain condition for the
case Ψ = K and m = 1.

Theorem V.2. Let G be a SISO system. If the condition in
Theorem V.1 are satisfied for some K = Ψ, then there exists
a FIR Zames-Falb multiplier M(z) =−m2z−2−m1z−1 +m0−
m−1z−m−2z2 such that

Re{M(z)(1+KG(z))}> 0 ∀|z|= 1. (86)

Proof. The term Ω1 +Ω2 in (82) can be written

Ω1 +Ω2 =

[
ÂT X̂ Â− X̂ ÂT X̂ B̂

B̂T X̂ Â B̂T X̂ B̂

]
,

where the state-space matrices

Â =


0 1 0 0
0 A 0 −B
0 0 0 1
0 0 0 0

 , B̂ =


0
0
0
1



correspond to the augmented state

x̂k = [xT
k xT

k+1 φ(yk)
T

φ(yk+1)
T ]T .

Then by the KYP Lemma, the condition (82) can be
rewritten in frequency domain[

(zI− Â)−1B̂
I

]∗ (
Ω3 +Ω4

)[(zI− Â)−1B̂
I

]
< 0, ∀|z|= 1.

(87)
In addition, the identity

He
{

ζ
T
k Θ[−xk+1 +Axk−Bφ(yk)]

}
= 0,

with
ζk = [xT

k xT
k+1 φ(yk)

T
φ(yk+1)

T
φ(yk+2)

T ]T ,

and
Θ = [ΘT

1 Θ
T
2 Θ

T
3 Θ

T
4 Θ

T
5 ]

T ,

implies[
(zI− Â)−1B̂

I

]∗
Ω3

[
(zI− Â)−1B̂

I

]
= 0, ∀|z|= 1.

Hence condition (87) is equivalent[
(zI− Â)−1B̂

I

]∗
Ω4

[
(zI− Â)−1B̂

I

]
< 0, ∀|z|= 1. (88)

Noting than

zG(z) =CA(zI−A)−1B+CB

and

Re{(M1 +M2)z}= Re
{
(M1 +M2)z−1}= Re

{
M1z−1 +M2z

}
,

with MT
1 = M1, MT

2 = M2 for all |z| = 1, then condition (88)
can be written

He
{

Λs(G(z)+Ψ
−1)+M(z)(G(z)+K−1)

}
> 0, ∀|z|= 1,

(89)
where Λs = Λ1 +Λ2 +Λ3, M(z) = −m2z−2−m1z−1 +m0−
m−1z−m−2z2, and

m0 = 2(M1 +M2)+N1 +N2 +N3 +N4 +2(Π1 +Π2 +Π3)> 0,
m1 = M1 +M2 +N1 +N3 +Π1 +Π3 > 0,
m−1 = M1 +M2 +N2 +N4 +Π1 +Π3 > 0,
m2 = Π2 > 0, m−2 = Π2 > 0.

It is clear that m0 =m2+m1+m−1+m−2, so M(z) is an FIR
multipliers with structure given by (33) with nb = n f = 2.
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Ω1 =



0 ? ? ? ?

0

ATCT (M2K +N4Ψ)CA
+CT (M2K +N2Ψ)C

−He{ATCT M2KC}+X11
AT X22A+He{X21A}

? ? ?

0 0 0 ? ?

0

−BTCT (M2K +N4Ψ)CA
+BTCT M2KC+M2CA
−(M2 +N2)C−BT X22A
+X32A−BT X21 +X31

0

BTCT (M2K +N4Ψ)CB
−He{BTCT M2 +BT X32}

+BT X22B+X33
+(M1 +M2 +N1 +N2)K−1

?

0 −(M2 +N4)CA
+M2C+X42A+X41

0
(M2 +N4)CB−X42B
+X43− (M1 +M2)K−1

(M1 +M2 +N3 +N4)K−1

+X44


, (83)

Ω2 =

 −X−Ξ

?
?
?
?

0 0 0 0 0

 , Ω3 =


Θ1A+AT ΘT

1 ? ? ? ?
Θ2A−ΘT

1 −Θ2−ΘT
2 ? ? ?

Θ3A−BT ΘT
1 −Θ3−BT Θ2 −Θ3B−BT ΘT

3 ? ?
Θ4A −Θ4 −Θ4B 0 ?
Θ5A −Θ5 −Θ5B 0 0

, (84)

Ω4 =



0 ? ? ? ?
0 0 ? ? ?(

Π1 +Π2
+Λ1

)
C −(N2 +Π1)C

−Π2CA
−2Λ1Ψ−1

−2(Π1 +Π2)K−1 ? ?

−(N1 +Π1)C

 M1 +M2
+N1 +N2
+Π1 +Π3

+Λ2

C

−
(

M1 +M2
+N4 +Π3

)
CA

(
N1 +N2
+2Π1

)
K−1

+BTCT Π2

He
{(

M1 +M2
+N4 +Π3

)
CB
}

−2Λ2Ψ−1

−2

 M1 +M2
+N1 +N2
+Π1 +Π3

K−1

?

−Π2C

−
(

M1 +M2
+N3 +Π3

)
C M1 +M2

+N3 +N4
+Π2 +Π3

+Λ3

CA
2Π2K−1

−

 M1 +M2
+N3 +N4
+Π2 +Π3

+Λ3

CB

+

 2M1 +2M2
+N3 +N4
+2Π3

K−1

−2Λ3Ψ−1

−2

 M1 +M2
+N3 +N4
+Π2 +Π3

K−1



.

(85)

This shows that the Lyapunov result [37] for SISO can
be obtained with a low order FIR Zames–Falb multiplier. It
remains open whether similar equivalences can be found for
Lyapunov results for MIMO systems.

VI. NUMERICAL RESULTS

A. Comparison with other results

Table I presents the numerical examples that we analyse.
Six plants are taken from previous papers [36], [40] and a
new plant is used (Example 7). Results are shown in Table II.
We have run results in Theorem IV.4 for values of n = nb = n f
between 1 and 100, and optimal results are presented in
Table II indicating n∗ the optimal value of n. There are small
numerical differences between results with both factorisations.
In general, there is a slightly better performance of the
factorisation presented in Section IV.A.

The FIR search is significantly better than all competitive
results in the literature, it beats classical searched as the
Tsypkin Criterion [56], [57] as well as the most recent result in
the Lyapunov literature [36], [37]. It is worth highlighting that
these Lyapunov methods correspond with particular cases of
FIR Zames–Falb multipliers, besides small numerical discrep-
ancies. Results [36] corresponds with the case nb = n f = 1,

whereas results in [37] correspond with the case nb = n f = 2,
besides small numerical discrepancies. Results have been
obtained by using CVX [58], [59] with the SDPT solver [60].

Roughly speaking, the higher the order of the multiplier,
the better the results. However, there is a small deterioration
due to numerical issues as n = nb = n f increases. We show
that the maximum slope suffers also a small deterioration as
n increases by including the values of the maximum slope
with n = 100. Figure 2 shows that the search improves as
n increases until n = 10 but it is able to keep a significant
consistency until n = 100. Figure 3 shows some signs of
deterioration as n increase, but the behaviour of the search
is completely different to the search in continuous-time when
the search collapses to zero high-order multipliers (see Figure
7in [13] where a discussion on the selection of the basis is
provided). We associate this deterioration to the numerical
error associated with an increment in the size of the matrices
in the LMIs.

Although for several examples the improvements are limited
for n > 3, the new example has been provided to show that
improvements can be found with larger values of n.

As expected, results for odd nonlinearities are always better
than results for non-odd nonlinearities. Although this is natural
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Fig. 2. Maximum slope for Example 1 for odd nonlinearities as n = n f = nb
increases. The search is not affected by the significant numerical problems of
the continuous-time counterpart (see [4], [13] for further details).
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Fig. 3. Detail of Figure 2 showing a small deterioration in the performance
of the search for large values of n.

as the set of available multipliers increases and their phase
restrictions are reduced, this contrasts with the SISO results
reported in [10] for the continuous case. In Examples 1 to 4
the FIR results beat all others in the literature. In Example 5
both the FIR results and others in the literature achieve the
Nyquist value. Example 6 is used in [40] to show that stability
is deteriorated by the lack of symmetry. From [40], we expect a
maximum slope above 1 for odd nonlinearities and below 1 for
non-odd nonlinearities. Finally, Example 7 has been developed
to show an staggered improvement in the maximum slope,
showing a significant improvement with respect to [37].
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Fig. 4. Maximum slope for Example 7 for odd and non-odd nonlinearities.

TABLE I
EXAMPLES

Ex. Plant

1 [36] G1(z) = 0.1z
z2−1.8z+0.81

2 [36] G2(z) = z3−1.95z2+0.9z+0.05
z4−2.8z3+3.5z2−2.412z+0.7209

3 [36] G3(z) =− z3−1.95z2+0.9z+0.05
z4−2.8z3+3.5z2−2.412z+0.7209

4 [36] G4(z) = z4−1.5z3+0.5z2−0.5z+0.5
4.4z5−8.957z4+9.893z3−5.671z2+2.207z−0.5

5 [36] G5(z) = −0.5z+0.1
z3−0.9z2+0.79z+0.089

6 [40] G6(z) = 2z+0.92
z2−0.5z

7 (new) G7(z) = 1.341z4−1.221z3+0.6285z2−0.5618z+0.1993
z5−0.935z4+0.7697z3−1.118z2+0.6917z−0.1352

B. CVX implementation

False positives are possible under some conditions when
CVX [58], [59] is used. As suggested in [61], a possible
solution is to add a positive variable in the left-hand side
of (52) multiplied with by an identity matrix, and maximize
this variable.

C. Computational time

It is interesting to analyse the performance of the search as
n increases. As expected, the computational time increases in
a polynomial fashion. However, it is worth highlighting that
the use of the Jordan measure decomposition in (38) increases
slightly the computational time as the number of variables in
the multiplier is doubled. The code is run in HP EliteDesk
800G2 with Intel Core i7-6700 processor at 3.40 GHz.
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Fig. 5. Computational time require to find the maximum slope in Example 1
with a precision of 10−5 in the bisection algorithm. The bisection method is
started with kmin = 0 and kmax = kN . The case mi ≤ 0 in red (slope-restricted
nonlinearities), and the in blue the most general class of multipliers (slope-
restricted and odd nonlinearities).

VII. APPLICATION TO SAFONOV’S METHOD

Safonov proposed the first numerical method to search for
Zames–Falb multipliers [6]. Various modifications have been
proposed [7], [8] to produce numerical optimization of the
multiplier. In this section, we provide a different approach,
which require manual tuning from the user, but may be used to
test the conservatism of fully-autonomous numerical searches.
Note that other manual tunings of rational multipliers have
been suggested in the literature [13], [15], which also lead to
improvements over fully-autonomous searches.
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TABLE II
SLOPE-RESTRICTED RESULTS BY USING DIFFERENT STABILITY CRITERIA.

Criterion Odd φ? Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7
Circle Criterion [56] N 0.7934 0.1984 0.1379 1.5312 1.0273 0.6510 0.1069
Tsypkin Criterion [57] N 3.8000 0.2427 0.1379 1.6911 1.0273 0.6510 0.1069
Ahmad et. al. (2015), Thm 1 [36] N 12.4309 0.7261 0.3027 2.5904 2.4475 0.9067 0.1695
Park et al. (2019)[37] N 12.9960 0.7397 0.3054 2.5904 2.4475 0.9108 0.1695
Causal DT Zames-Falb (Prop. III.2.) Y 12.4355 0.7687 0.2341 3.3606 2.3328 0.9222 0.1966
Anticausal DT Zames-Falb (Prop. III.6.) Y 1.4994 0.4816 0.3058 3.2365 2.4474 1.0869 0.2365
FIR Zames-Falb (n f = 1, nb = 1) N 12.9960 0.7397 0.3054 2.5904 2.4475 0.9108 0.1695
FIR Zames-Falb (n f = 2, nb = 2) N 12.9959 0.7397 0.3054 2.5904 2.4475 0.9115 0.1695
FIR Zames-Falb (n f = 3, nb = 3) N 12.9960 0.7397 0.3054 3.2254 2.4475 0.9115 0.4347
FIR Zames-Falb (n f = 100, nb = 100) N 12.9766 0.7984 0.3100 3.8227 2.4475 0.9115 0.4921
FIR Zames-Falb (n f = nb = n∗) N 13.0283 (7) 0.8027 (15) 0.3120 (14) 3.8240 (5) 2.4475 (1) 0.9115 (2) 0.4922 (25)
FIR Zames-Falb (n f = 1, nb = 1) Y 12.9959 0.7782 0.3076 3.1350 2.4475 1.0870 0.2366
FIR Zames-Falb (n f = 2, nb = 2) Y 12.9959 1.1056 0.3104 3.8240 2.4475 1.0870 0.2940
FIR Zames-Falb (n f = 3, nb = 3) Y 13.4822 1.1056 0.3121 3.8240 2.4475 1.0870 0.4759
FIR Zames-Falb (n f = 100, nb = 100) Y 13.5101 1.1056 0.3121 3.8240 2.4475 1.0870 0.5278
FIR Zames-Falb (n f = nb = n∗) Y 13.5113 (17) 1.1056 (2) 0.3121 (3) 3.8240 (2) 2.4475 (1) 1.0870 (1) 0.5280 (19)
Nyquist Value N/A 36.1000 2.7455 0.3126 7.9070 2.4475 1.0870 1.1766

A. Procedure
The idea is straightforward. Given a continuous plant G(s)

we find the maximum slope as follows:
1) Choose a sampling time Ts and find the discrete-time

counterpart Gd(z).
2) Choose n f and nb. By using algorithm in Section IV.A,

search for the discrete-time Zames–Falb multiplier

Md(z) =
nb

∑
i=−n f

miz−i,

corresponding to the maximum Kd such that

Re{Md(z)(1+KdGd(z))}> 0 ∀|z|= 1.

3) (Optional) Choose ε > 0. For −n f ≤ i≤ nb, if |mi|< ε ,
set mi = 0 for tractability.

4) Define

M(s) =
nb

∑
i=−n f

mie−iTss.

It follows immediately that M(s) belongs to the appro-
priate class of Zames–Falb multipliers.

5) Find the maximum K such that

Re{M(s)(1+KG(s))}> 0 for all Re{s}= 0.

B. Numerical results
We compare the performance of the Procedure with the

numerical results given in [9]. The results are summarised in
Table III. Here we just provide details of the suitable multi-
plier obtained by the above method. We have used standard
command in MATLAB c2d to perform the discretisation. We
use ε = 10−3 in Step 3. A summary of the results is given
in Table IV, but we provide detailed information for each
example.

Example 1: Choose Ts = 0.05, n f = 1, nb = 1. The
discrete search leads then to the continuous-time multiplier
given by

M(s) =−0.5436e0.05s +1−0.4561e−0.05s.

The multiplier reaches the Nyquist value in this example
(K=4.5984) which matches the best results reported in [9].

Ex. G(s)

1 G1(s) = s2−0.2s−0.1
s3+2s2+s+1

2 G2(s) =−G1(s)
3 G3(s) = s2

s4+0.2s3+6s2+0.1s+1
4 G4(s) =−G3(s)
5 G5(s) = s2

s4+0.0003s3+10s2+0.0021s+9
6 G6(s) =−G5(s)
7 G7(s) = s2

s3+2s2+2s+1

8 G8(s) =
9.432(s2+15.6s+147.8)(s2+2.356s+56.21)(s2−0.332s+26.15)

(s2+2.588s+90.9)(s2+11.79s+113.7)(s2+14.84s+84.05)(s+8.83)

9 G9(s) = s2

s4+5.001s3+7.005s2+5.006s+6

TABLE III
CONTINUOUS-TIME EXAMPLES FROM [21]

Example 2: Choose Ts = 0.05, n f = 0, nb = 1. The
discrete search leads then to the continuous-time multiplier
given by

M(s) = 1−0.9551e−0.05s.

The multiplier reaches the Nyquist value in this example
(K=1.0894) which matches the best results reported in [9].

Example 3: Choose Ts = 0.1, n f = 20, nb = 0. The
discrete search leads then to the continuous-time multiplier
given by

M(s) = 1−0.6507e1.9s−0.3493e2s.

The multiplier reaches K = 1.945, a 21% improvement over
the best results reported in [9].

Example 4: Choose Ts = 0.02, n f = 1, nb = 80. The
discrete search leads then to the continuous-time multiplier
given by

M(s) =−0.9186e0.02s +1−0.0809e−1.6s.

The multiplier reaches K = 1.29, a 2% improvement over the
best results reported in [9].

Example 5: Choose Ts = 0.02, n f = 0, nb = 50. The
discrete search leads then to the continuous-time multiplier
given by

M(s) = 1−0.8902e−0.02s +0.1087e−s.
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Ex.1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9
Best results in [9] 4.5849 1.0894 1.6122 1.2652 0.00333 0.00333 10,000+ 87.3854 91.0858

Procedure in Section VII 4.5849 1.0894 1.945 1.29 0.0055 0.0039 Unreliable Unreliable 360
Nyquist value 4.5894 1.0894 ∞ 3.5000 ∞ 1.7142 ∞ 87.3854 ∞

TABLE IV
COMPARISON BETWEEN BEST RESULTS REPORTED IN [9] AND CONTINUOUS TIME METHOD IN SECTION VI.

The multiplier reaches K = 0.0055, a 65% improvement over
the best results reported in [9].

Example 6: Choose Ts = 0.02, n f = 50, nb = 0. The
discrete search leads then to the continuous-time multiplier
given by

M(s) = 1−0.7909e0.02s +0.2090es.

The multiplier reaches K = 0.0039, a 20% improvement over
the best results reported in [9].

Example 7: For this example the method is poor. We
must sample at Ts < 0.0002 to achieve a Nyquist value of over
10,000. But with Ts so small, we require N f and Nb intractably
large to obtain good multipliers. For example, choosing Ts =
0.0001, and n f = nb = 50 gives a maximum K = 28.6. By
contrast, setting Ts = 0.001 gives a maximum K = 768. Setting
Ts = 0.01 sets it back to K = 147.

Example 8: Again for this example the method is poor.
Extreme care must be taken when discretising the model.
Setting Ts = 0.001 and nb = n f = 40 yields a maximum K = 64.
Other methods yield the Nyquist value, which is circa 87.

Example 9: Choose Ts = 0.01, n f = 70, nb = 1. The
discrete search leads then to the continuous-time multiplier
given by

M(s) = 1−0.976e−0.01s−0.0013e0.48s−0.0227e0.7s. (90)

The multiplier reaches K = 360, a 395% improvement over
the best results reported in [9]. Figure 6 shows that the phase
of M(s)(1+360G9(s)) is in the interval (−90,90).

10-4 10-3 10-2 10-1 100 101 102 103 104

Frequency (rad/unit of time)

-100

-80

-60

-40

-20

0

20

40

60

80

100

P
ha

se
 (

de
gr

ee
s)

Fig. 6. Phase of M(s)(1+360G9(s)) where M(s) is given by (90).

C. Discussion

Loosely speaking the smaller the sampling time with respect
to the bandwidth of G(s), the larger the required dimension

of M(z) (i.e. the values of n f and/or nb). Since the search
behaves well, these values could be kept circa 100. If the
required dimension of M(z) is too large then an efficient
solution becomes intractable. But if G(s) is in some sense stiff,
a smaller sampling time must be chosen to ensure sufficiently
large Nyquist gain of the discretized system (note that while
the Nyquist gain of G(s) may be infinity, the Nyquist gain of
the discretized plant must be finite). Thus although the method
is seen to be highly effective for some simple benchmark
examples, it may be less useful for higher order plants. Such
considerations remain open to further investigation.

VIII. CONCLUSIONS

The results in this paper provide the best results in the
literature for absolute stability of discrete-time LTI systems in
feedback interconnection with slope-restricted nonlinearities.
We have developed two search methodologies for discrete-
time Zames–Falb multiplier: IIR and FIR. In contrast with
continuous-time domain, one of the available searches is
better for all examples. We show the superiority of these
searches with respect to the recent method based on Lyapunov
functions, whose results can be shown to be a subset of the FIR
search with nb = n f = 2. Finally, we have extended the results
to be used as a tunable search of continuous time Zames–Falb
multipliers. The results shows the conservativeness of current
state-of-the-art of fully-autonomous searches over the class of
Zames–Falb multipliers.
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