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a b s t r a c t

Recent results in equivalence between classes of multipliers for slope-restricted nonlinearities are
extended to multipliers for bounded and monotone nonlinearities. This extension requires a slightly
modified version of the Zames–Falb theorem and a more general definition of phase-substitution. The
results in this paper resolve apparent contradictions in the literature on classes ofmultipliers for bounded
and monotone nonlinearities.
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1. Introduction

Different classes of multipliers can be used for analysing the
stability of a Lur’e system (see Fig. 1) where the nonlinearity is
bounded and monotone. A loop transformation allows us to anal-
yse slope-restricted nonlinearities with the same classes of mul-
tipliers [1]. Apparently contradictory results can be found in the
literature with respect to which class provides better results. On
the one hand, it is stated that a complete search over the class
of Zames–Falb multipliers will provide the best result that can
be achieved [2,3]. On the other hand, searches over a subclass
of Zames–Falb multipliers [4,5] have been improved by adding a
Popov multiplier [6–8].

The class of Zames–Falb multipliers is formally given in the cel-
ebrated paper [1]. Two main results are given: Theorem 1 in [1]
presents the Zames–Falb multipliers for bounded and monotone
nonlinearities; Corollary 2 in [1] applies the Zames–Falb multipli-
ers to slope-restricted nonlinearities via a loop transformation.We
have formally shown in [9] that the class of Zames–Falb multipli-
ers for slope-restricted nonlinearities, i.e. using Corollary 2 in [1],
should provide the best result in comparison with any other class
ofmultipliers available in the literature. The result relies on the fact
that only biproper plants need to be considered in the search for a
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Zames–Falb multiplier, since the original plant becomes biproper
after the loop transformation in Fig. 2 [1,10].

However, for bounded and monotone nonlinearities, biproper-
ness of the LTI system G cannot be assumed without loss of gen-
erality. But the conditions of Theorem 1 in [1] cannot hold when
the plant is strictly proper. An example has been proposed in [11]
where the addition of a Popov multiplier to the Zames–Falb mul-
tiplier is essential to guarantee the stability of the Lur’e system.
This prompts the natural question: is the addition of a Popov mul-
tiplier an improvement over the class of Zames–Falb multipliers
for bounded and monotone nonlinearities? In fact, we show that
this restriction of the conditions of Theorem 1 in [1] leads to more
fundamental contradictions.

This paper proposes a slightly modified version of Theorem 1 in
[1] in such a way that strictly proper plants can be analysed. Then,
generalizations of phase-substitution and phase-containment de-
fined in [9] are given in order to show the relationship between
classes of multipliers. As a result, we show that a search over the
class of Zames–Falb multipliers is also sufficient for bounded and
monotone nonlinearities, i.e. if there is no suitable Zames–Falb
multiplier then there is no suitable multiplier within any other
class of multipliers. This paper resolves some apparent paradoxes,
providing consistency to results in the literature.

The structure of the paper is as follows. Section 2 gives
preliminary results; in particular, the equivalence results in [9] are
stated and the differences between the cases of slope-restricted
and bounded and monotone nonlinearities are highlighted.
Section 3 provides the relationships between classes for the case
of bounded and monotone nonlinearities. Section 4 analyses the
example given in [11], showing that there exists a Zames–Falb
multiplier that provides the stability result under our modification
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Fig. 1. Lur’e system.

Fig. 2. Loop shifting transforms a slope restricted nonlinearity φ into a monotone
nonlinearity φ̂. Simultaneously, a new linear system Ĝ is generated. In [9], we
have shown that when generated via loop shifting Ĝ can be assumed biproper
without loss of generality from the necessity of the Kalman conjecture (for further
discussion, see Section 2.3 in [9]), but such an assumption cannot be made when
there is no loop shifting.

of Theorem 1 in [1]. Finally, the conclusions of this paper are given
in Section 5.

2. Notation and preliminary results

Let Lm
2 [0, ∞) be the Hilbert space of all square integrable and

Lebesgue measurable functions f : [0, ∞) → Rm. Similarly,
Lm

2 (−∞, ∞) can be defined for f : (−∞, ∞) → Rm. Given T ∈

R, a truncation of the function f at T is given by fT (t) = f (t)∀t ≤ T
and fT (t) = 0∀t > T . The function f belongs to the extended space
Lm

2e[0, ∞) if fT ∈ Lm
2 [0, ∞) for all T > 0. In addition,L1(−∞, ∞)

(henceforth L1) is the space of all absolute integrable functions;
given a function h : R → R such that h ∈ L1, its L1-norm is given
by

∥h∥1 =


∞

−∞

|h(t)| dt. (1)

A nonlinearity φ : L2e[0, ∞) → L2e[0, ∞) is said to be
memoryless if there exists N : R → R such (φv)(t) = N(v(t)) for
all t ∈ R. Henceforward we assume that N(0) = 0. A memoryless
nonlinearity φ is said to be bounded if there exists a positive
constant C such that |N(x)| < C |x| for all x ∈ R. The nonlinearity
φ is said to be monotone if for any two real numbers x1 and x2 we
have

0 ≤
N(x1) − N(x2)

x1 − x2
. (2)

The nonlinearityφ is said to be odd ifN(x) = −N(−x) for all x ∈ R.
This paper focuses the stability of the feedback interconnection

of a proper stable LTI system G and a bounded and monotone
nonlinearity φ, represented in Fig. 1 and given by

v = f + Gw,
w = −φv.

(3)
Since G is a stable LTI system, the exogenous input in this part of
the loop can be taken as the zero signal without loss of general-
ity. It is well-posed if the map (v, w) → (0, f ) has a causal in-
verse on L2

2e[0, ∞); this interconnection is L2-stable if for any
f ∈ L2[0, ∞), then Gw ∈ L2[0, ∞) and φv ∈ L2[0, ∞), and
it is absolutely stable if it is L2-stable for all φ within the class
of nonlinearities. In addition, G(jω) means the transfer function
of the LTI system G. Finally, given an operator M , then M∗ means
its L2-adjoint (see [12] for a definition). For LTI systems, M∗(s) =

M⊤(−s), where ⊤ means transpose.
The standard notation L∞ (RL∞) is used for the space of all

(proper real rational) transfer functions bounded on the imaginary
axis and infinity; RH∞ (RH2) is used for the space of all (strictly)
proper real rational transfer functions such that all their poles
have strictly negative real parts; and RH−

∞
is used for the space of

all proper real rational transfer functions such that all their poles
have strictly positive real parts. Moreover, the subset of RH2 with
positive DC gain is referred to as RH+

2 . The H∞-norm of a SISO
transfer function G is defined as

∥G∥∞ = sup
ω∈R

(|G(jω)|). (4)

With some acceptable abuse of notation, given a rational strictly
proper transfer functionH(s) bounded on the imaginary axis, ∥H∥1
means the L1-norm of the impulse response of H(s).

2.1. Zames–Falb theorem and multipliers

The original Theorem 1 in [1] can be stated as follows:

Theorem 2.1 ([1]). Consider the feedback system in Fig. 1 with G ∈

RH∞, and a bounded and monotone nonlinearity φ. Assume that the
feedback interconnection is well-posed. Then suppose that there exists
a convolution operator M : L2(−∞, ∞) → L2(−∞, ∞) whose
impulse response is of the form

m(t) = δ(t) −

∞
i=0

ziδ(t − ti) − za(t), (5)

where δ is the Dirac delta function and

∞
i=0

|zi| < ∞, za ∈ L1, and ti ∈ R ∀i ∈ N. (6)

Assume that:

(i)

∥za∥1 +

∞
i=0

|zi| < 1, (7)

(ii) either φ is odd or za(t) > 0 for all t ∈ R and zi > 0 for all i ∈ N,
and

(iii) there exists δ > 0 such that

Re {M(jω)G(jω)} ≥ δ ∀ω ∈ R. (8)

Then the feedback interconnection (3) is L2-stable. �

Eqs. (5)–(7) in Theorem 2.1 provide the class of Zames–Falb
multipliers. It is a subset of L∞, i.e. it is not limited to rational
transfer functions. However, for the remainder of this paper we
restrict our attention to such rational multipliers, i.e. we set zi = 0
for all i ∈ N.

Definition 2.2. The class of SISO rational Zames–Falb multipliers
M contains all SISO rational transfer functionsM ∈ RL∞ such that
M(s) = 1 − Z(s), where Z(s) is a rational strictly proper transfer
function and ∥Z∥1 < 1.
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Lemma 2.3 ([5]). Let M ∈ RL∞ be a rational transfer function
with M(s) = M(∞) + M(s), where M(s) denotes its associated
strictly proper transfer function. Then, M(s)/M(∞) is a Zames–Falb
multiplier if and only if ∥M∥1 < M(∞). �

If M ∈ RH∞, the multiplier is said to be causal. If M ∈ RH−

∞
,

the multiplier is said to be anticausal. Otherwise, the multiplier is
noncausal (see [8] for further details).

2.2. List of classes of multipliers for monotone and bounded
nonlinearities

The first class of multipliers we consider for bounded nonlin-
earities is the class of Popov multipliers:

Definition 2.4. The class of Popov multipliers is given by

M(s) = 1 + qs, (9)

where q ∈ R.

Following [11,6], two extensions of the class of Zames–Falb
multipliers by combination with the Popov multipliers have been
proposed:

Definition 2.5. The class of Popov-extended Zames–Falbmultipli-
ers is given by

MPZF(s) = qs + M(s) (10)

where q ∈ R and where M(s) belongs to the class of Zames–Falb
multipliers.

Definition 2.6. The class of Popov plus Zames–Falb multipliers is
given by

MP+ZF(s) = ϑ(1 + qs) + M(s) (11)

where q ∈ R, where ϑ > 0 and whereM(s) belongs to the class of
Zames–Falb multipliers.

Another important class ofmultipliers is generated by including
both a Popov multiplier and a quadratic term. It was given
originally by Yakubovich [13], and an LMI search over this set has
been proposed in [14]:

Definition 2.7. The class of Park’s multipliers is given by

MP(s) = 1 +
bs

−s2 + a2
(12)

where a and b are real numbers.

Following [15], an extension of the class of Zames–Falb multi-
pliers with this quadratic term can be proposed:

Definition 2.8. The class of Yakubovich–Zames–Falbmultipliers is
given by

MYZF(s) = −κ2s2 + M(s), κ ∈ R, (13)

where κ ∈ R and M(s) is a Zames–Falb multiplier.

2.3. Previous equivalence results

In [9], Theorem 1 in [1] is considered but restricted to a partic-
ular set of biproper plants Ĝ(s), as a result of a previous loop trans-
formation (see Fig. 2). Under such a restriction, a search over the
class of Zames–Falb multipliers should be sufficient to obtain the
best possible result using any other class in the literature.
Definition 2.9. The subset SR ⊂ RH∞ is defined as follows

SR = {G ∈ RH∞ : G−1
∈ RH∞ and G(∞) > 0}. (14)

This characterization of SR plays a key role to show that Popov
multipliers are ‘‘limiting cases’’ of Zames–Falb multipliers and is
also essential for the extension using the Popov multipliers. With
this aim, some definitions are mathematically formalized in [9].
For instance, a definition of phase-substitution is proposed with
respect to SR:

Definition 2.10 ([9]). Let Ma and Mb be two multipliers and G ∈

SR. The multiplier Mb is a phase-substitute of the multiplier Ma
when

Re {Ma(jω)G(jω)} ≥ δ1 ∀ω ∈ R (15)

for some δ1 > 0 implies

Re {Mb(jω)G(jω)} ≥ δ2 ∀ω ∈ R (16)

for some δ2 > 0.

Using Definition 2.10 for phase-substitution, the relationship
between two classes can be given as follows:

Definition 2.11 ([9]). LetMA andMB be two classes of multipliers.
The class MA is phase-contained within the class MB if given a
multiplier Ma ∈ MA, then there exists Mb ∈ MB such that it is
a phase-substitute ofMa.

Result 2.12 ([9]). Under the assumption G(s) ∈ SR, the classes
of multipliers given in Section 2.2 are phase-contained within the
class of Zames–Falb multipliers. �

A graphical interpretation of Result 2.12 is given in Fig. 3.
In this paper, we focus on extending Result 2.12 to monotone

and bounded nonlinearities. For this, strictly proper plants must
be included in the set of interest. Then Result 2.12 is no longer
valid in general since Popov multipliers are only phase-contained
under Definition 2.11 within the class of Zames–Falb multipliers if
G ∈ SR.

All constant gains K are included in the class of bounded
and monotone nonlinearities. Trivially, a necessary condition for
absolute stability is that the feedback interconnection of G and a
constant gain K must be L2-stable for any value of K . Thus if G
is biproper, then G must belong to SR as commented in [9] and
Result 2.12 can be applied. Therefore we can restrict our attention
to strictly proper plants without loss of generality. Further, we
only consider strictly proper plants with positive DC gain RH+

2 ,
i.e. G(∞) = 0 and G(0) > 0. It is straightforward to show that
if G(0) < 0, then the feedback interconnection of G and K = −

1
G(0)

is not L2-stable.

2.4. Counterexample

Let us consider the plant given by

G(s) =
b

s + a
(17)

where a, b > 0. If the nonlinearity is bounded andmonotone, then
Theorem2.1 is not able to demonstrate the absolute stability of this
system since, given δ > 0, there exists no Zames–Falb multiplier
M satisfying

Re

M(jω)

b
jω + a


≥ δ ∀ω ∈ R, (18)
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Fig. 3. For any G ∈ SR, when there exist a multiplierMa within the classes of multipliers in Section 2.2, and δ1 > 0 such that the Nyquist plot ofMa(jω)G(jω) is within the
allowed region, then there exist a Zames–Falb multiplierMb and δ2 > 0 such that the Nyquist plot of Mb(jω)G(jω) is within the allowed region (see [16] and c.f. Fig. 4).
for some δ > 0, since limω→∞ M(jω) = M(∞) > 0 for any
Zames–Falb multiplierM , thus limω→∞ M(jω) b

jω+a = 0.
However, it is possible to find δ > 0 and a Popov-extended

Zames–Falb multiplier (Definition 2.5) such that:

Re

MPZF(jω)

b
jω + a


≥ δ ∀ω ∈ R, (19)

since the transfer function on the left side is now biproper. So,
the use of a Popov-extended Zames–Falb multiplier seems to
outperform the original class of Zames–Falb multipliers. A similar
example is discussed in [11] and a similar conclusion is drawn.

But we are immediately led into a more fundamental paradox.
For any nonlinearity bounded with a finite constant C > 0, the
Circle Criterion [10] states that the feedback in Fig. 1 is absolutely
stable if 1 + CG(s) is strictly positive real (SPR). It is straightfor-
ward that 1+CG(s) is SPR for any finite constant C . Using the same
argument, we conclude that a constant multiplier outperforms the
class of Zames–Falbmultipliers. Nevertheless, the class of constant
multipliers is included within the Zames–Falb multipliers.

The difficulties arise because the original version of the
Zames–Falb theorem is not adequate for strictly proper plants. If
we use this version of the Theorem to compare multipliers, we
must conclude not only that the Popov-extended Zames–Falbmul-
tipliers are superior to the original class of Zames–Falb multipliers
(as argued in [11]), but also that the class of constant multipliers
can outperform the original class of Zames–Falb multipliers. This
is clearly paradoxical, and in the following section we address the
paradox by modifying the Zames–Falb theorem itself.

3. Main results

In the following, we state a modification of the original Zames–
Falb theorem which is able to cope with strictly proper plants.
Then, a more general definition of phase-substitution is given.
Finally, we will show that the class of Popov and Popov-extended
Zames–Falb multipliers are ‘‘phase-contained’’ within the original
class of Zames–Falb multipliers under our more general definition.

3.1. Modification of the Zames–Falb theorem

We have seen that if G is strictly proper then no multiplier
within the class of Zames–Falb multipliers satisfies (8). However,
this conservatism can be avoided by exploiting the boundedness of
the nonlinearity. In the IQC framework [17], it is straightforward to
combine the positivity constraint and boundedness constraint of
the nonlinearity. Applying Corollary 1 in [17], we can propose an
alternative version of the Zames–Falb theorem.

Corollary 3.1. Consider the feedback system in Fig. 1 with G ∈ RH∞

and any bounded and monotone nonlinearity φ. Assume that the
feedback interconnection is well-posed. If there exists a Zames–Falb
multiplier such that

Re {M(jω)G(jω)} ≥ ϵG∗(jω)G(jω) ∀ω ∈ R (20)

for some ϵ > 0, then the feedback interconnection (3) is L2-
stable. �

Remark 3.2. Note that the homotopy conditions imposed by the
IQC theorem are trivially satisfied for these classes of nonlineari-
ties.

Remark 3.3. The extension of results in [18] in order to show the
equivalence between IQC and classical passivity theory for Corol-
lary 3.1 is possible by using classical results in factorization [19].

3.2. General definition of phase-substitution

The modification of the Zames–Falb theorem shows that
Definition 3.1 in [9] is not general. A general definition of phase-
substitution should allow different properties of the multiplier
to hold as they arise either in different stability theorems or in
different versions of the same stability theorem. We will use the
classical concept of quadratic constraint [20,17].

Definition 3.4. The plant G andmultiplierM satisfy the frequency
quadratic constraint QC(ϵ, δ) if
G(jω)

1

∗ 
−2ϵ M∗(jω)
M(jω) −2δ

 
G(jω)

1


≥ 0 ∀ω ∈ R. (21)

Loosely speaking, a multiplier Ma can be phase-substituted by
a multiplier Mb if Mb is able to show the same stability prop-
erties as Ma. As different versions of stability theorems can use
different quadratic constraints, a generalized definition of phase-
substitution is given as follows:
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Definition 3.5. Let Ma and Mb be two multipliers and let G be a
set of plants. The multiplier Mb is a QC(ϵa, δa)–QC(ϵb, δb) phase-
substitute with respect toG of themultiplierMa if whenever the pair
{Ma,G} satisfies the frequency quadratic constraint QC(ϵa, δa) for
G within a set G, then the pair {Mb,G} also satisfies the frequency
quadratic constraint QC(ϵb, δb).

Remark 3.6. Definition 2.10 is a particular case of Definition 3.5
where QC(ϵa, δa) = QC(0, δ1) and QC(ϵb, δb) = QC(0, δ2).

With this generalization, different classes of multipliers can be
analysed under different quadratic constraints. For example, Corol-
lary 3.1 avoids the conservatism of Theorem 2.1 when it is ap-
plied for monotone nonlinearities. Thus the following counterpart
of Definition 3.1 in [9] is appropriate here.

Definition 3.7. Let Ma and Mb be two multipliers and G ∈ RH+

2 .
The multiplier Mb is a QC(0, δ)–QC(ϵ, 0) phase-substitute with
respect to RH+

2 of the multiplier Ma when

Re {Ma(jω)G(jω)} ≥ δ ∀ω ∈ R (22)

for some δ > 0 implies

Re {Mb(jω)G(jω)} ≥ ϵG∗(jω)G(jω) ∀ω ∈ R (23)

for some ϵ > 0.

This relationship between multipliers can be straightforwardly
extended to classes of multipliers:

Definition 3.8. Let MA and MB be two classes of multipliers. The
class MA is QC(0, δ)–QC(ϵ, 0) phase-contained with respect to RH+

2
within the classMB if given amultiplierMa ∈ MA, then there exists
Mb ∈ MB such that it is a QC(0, δ)–QC(ϵ, 0) phase-substitute with
respect to RH+

2 of Ma.

Henceforth we will use the terminology ‘‘phase-contained in
the sense of Definition 3.8’’ to mean ‘‘QC(0, δ)–QC(ϵ, 0) phase-
contained with respect to RH+

2 ’’.

3.3. Popov multipliers

In this section, we state that the class of Popov multipliers,
the class of Popov-extended Zames–Falb multipliers, and the class
of Popov plus Zames–Falb multipliers are phase-contained within
the class of Zames–Falb multipliers for bounded and monotone
nonlinearities.

Lemma 3.9. The class of Popov multipliers with positive constant q
is phase-contained in the sense of Definition 3.8 within the class of
causal first order Zames–Falb multipliers.

Proof. Assume thatMP is a Popov multiplier with q > 0 such that

Re {MP(jω)G(jω)} ≥ δ ∀ω ∈ R (24)

for some δ > 0 and G ∈ RH+

2 . Note that if (24) holds, then G is
strictly proper with relative degree one. In the following, we show
that MP can be phase-substituted in the sense of Definition 3.8 by
the following Zames–Falb multiplier:

M(jω) =
(1 + qjω)

1 + κ jω
(25)

where κ is appropriately small.
The phase of (1+qjω)G(jω) is as close as desired to the phase of

(1+qjω)

1+κ jω G(jω) at low frequency by choosing κ > 0 sufficiently small.
However, the high frequency range must be carefully considered.
Since G satisfies (24), MPG must be biproper, hence G must have
relative degree −1. As a result, at high frequency, the plant can be
described as:

G(jω) =
Gr

ω2
− j

Gi

ω
,

where Gi > 0 and Gr ∈ R. The real part of the above product
between the Zames–Falb multiplier and G is given by

Re


(qκω2
+ 1) + jω(q − κ)

κ2ω2 + 1


Gr

ω2
− j

Gi

ω


=


(qκω2

+ 1)Gr

ω2(κ2ω2 + 1)
+

Gi(q − κ)

κ2ω2 + 1


. (26)

Considering only the terms in ω−2, then it follows

Re


(1 + qjω)

1 + κ jω
G(jω)


=


q − κ

κ2
Gi +

q
κ
Gr


1
ω2

(27)

whenω → ∞. For any value of Gr and a sufficient small value of κ ,
the real part in (27) approaches zero asω−2. Finally, asG∗(jω)G(jω)
also approaches zero as ω−2 at high frequencies, once κ has been
chosen, taking

ϵ =


q−κ

κ2 Gi +
q
κ
Gr


2G2

i
> 0

then

Re

1 + qs
1 + κs

G(jω)


− ϵG∗(jω)G(jω)

=
1
2


q − κ

κ2
Gi +

q
κ
Gr


1
ω2

> 0 (28)

when ω → ∞.
Note that low frequency and high frequency constraints require

small values of κ . Hence, choosing the minimum κ for satisfying
both conditions, the result is obtained.

In summary, if the PopovmultiplierMP and G ∈ RH+

2 satisfy the
constraint QC(0, δ) for some δ > 0, then there exist a Zames–Falb
multiplierM and positive constant ϵ > 0 such thatM and G satisfy
the constraint QC(ϵ, 0). �

Lemma 3.10. The class of Popov multipliers with negative constant
q is phase-contained in the sense of Definition 3.8 within the class of
anticausal first order Zames–Falb multipliers.

Proof. Similar to Lemma 3.9 but with κ < 0. �

As a result, we can conclude that any Popov multiplier can
be phase-substituted by a Zames–Falb multiplier in the sense of
Definition 3.8.

Lemma 3.11. The class of Popov-extended Zames–Falb multipliers
is phase-contained in the sense of Definition 3.8 within the class of
Zames–Falb multipliers.

Proof. Following the same idea as in [9], given amultiplierM ∈ M
then M(s) = 1 + H(s) for some strictly proper transfer function
H(s) with ∥H(s)∥1 < 1. Then, there exists ρ > 0 such that
∥H(s)∥1 < 1 − ρ. Thus,

M(s) = ρ + ((1 − ρ) + H(s)) = ρ + M ′(s) (29)

whereM ′(s) is a Zames–Falb multiplier. Hence, (11) can be rewrit-
ten as follows

MPZF(s) = ρ


1 +

q
ρ
s


+ (M(s) − ρ) (30)
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Fig. 4. For any G ∈ RH+

2 , when there exist a Popov-extended Zames–Falb multiplier MPZF and a δ > 0 such that the Nyquist plot of MPZF(jω)G(jω) is within the allowed
region, then there exist a Zames–Falb multiplier M and an ϵ > 0 such that the Nyquist plot of M(jω)G(jω) is within the allowed region. We have used the inequality
M∗(jω)M(jω) < 22 (see Fig. 3 in [5]), hence Re(M(jω)G(jω)) > 8ϵ|M(jω)G(jω)|2 for all ω ∈ R. See [16] for further details on the classical frequency description of SISO
output strictly passive systems.
and choosing κ as small as desired, it holds that

M(s) = ρ


1 +

q
ρ
s

1 + κs


+ (M(s) − ρ) (31)

is a Zames–Falbmultiplier. Thus applying the same procedure as in
the proof of Lemma 3.9 leads to the result: if the Popov-extended
multiplier MPZF and G ∈ RH+

2 satisfy the constraint QC(0, δ) for
some δ > 0, then there exist a Zames–Falb multiplier M and pos-
itive constant ϵ > 0 such that M and G satisfy the constraint
QC(ϵ, 0). �

A graphical interpretation of Lemma 3.11 is given in Fig. 4.

Corollary 3.12. The class of Popov plus Zames–Falb multipliers is
phase-contained in the sense of Definition 3.8 within the class of
Zames–Falb multipliers.

Proof. This result is part of the above proof. �

3.4. Popov multiplier for boundedness condition

In many cases the properties of the nonlinearity may differ
from the conditions of Theorem 2.1. A subtle distinction arises for
nonlinearities that are monotone and with known finite bound C.

Although Theorem 2.1 may be used, there is an inherent con-
servativeness as the value of the bound is not exploited. The ad-
ditional sector bound allows a less conservative stability criterion
than Theorem 2.1. Loosely speaking, the feedback interconnection
is stable provided there exists some Zames–Falb multiplier M(s),
some Popov multiplier (1+ qs) and some λ > 0 such that for all ω

Re {M(jω)G(ωj) + λ(1 + qs)[1 + CG(jω)]} > 0. (32)

Then a Popov multiplier can be more appropriate than a Zames–
Falb multiplier if C is small.

A similar observation has been stated for the case of slope-
restricted nonlinearities with a sector condition smaller than its
slope condition [6].

4. Example

Let us consider the example given by [11], where it is suggested
that the class of Popov-extended Zames–Falb multipliers is wider
Fig. 5. Nyquist plot of G(jω) and G(jω)M(jω) − 0.01G∗(jω)G(jω).

than the class of Zames–Falb multipliers. As commented in [11], a
search over the set of Zames–Falbmultipliers is not able to find the
stability of this example if Theorem 2.1 is used. This is trivial since
the plant

G(s) =
(2s2 + s + 2)(s + 100)
(s + 10)2(s2 + 5s + 20)

(33)

is strictly proper (a factor −1 has been included to consider
negative feedback). On the other hand, [11] shows a Popov-
extended Zames–Falb multiplierMPZF such that

Re {MPZF (jω)G(jω)} > δ ∀ω ∈ R. (34)

Hence, the stability of the feedback interconnection is guaranteed.
However, the use of Corollary 3.1 allows us to replace the Popov-
extended Zames–Falb multiplier, and the stability of the feedback
interconnection can also be ensured.

The multiplier proposed in [11] is

MPZF (s) = 0.04s + 1 +
0.92
s − 1

= 0.04
s2 + 24s − 2

s − 1
. (35)

Considering that the phase of G reaches a constant value at ap-
proximately 103 rad/s, a phase-substitute Zames–Falb multiplier
of that in (35) can be constructed as follows

M(s) = 0.01
4s + 1

0.001s + 1
+


0.99 +

0.92
s − 1


. (36)
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Fig. 6. Phase ofM(jω),MPZF (jω), and G(jω). The extra pole inM(jω) is included at
high frequency when the phase of the plant is near to −90°, so that the addition of
the phases ofM(jω) andG(jω) is above−90°. At low frequency,M(jω) andMPZF (jω)

have approximately the same phase. It is worth noting that the pole can be included
at a frequency as high as desired.

Fig. 7. Phase of G(jω)M(jω) − 0.01G∗(jω)G(jω). The phase lies between −90 and
90 indicating that the real part is always positive.

The phase of both multipliers are shown in Fig. 6. We find
Re{G(jω)M(jω) − 0.01G∗(jω)G(jω)} > 0 for all frequencies (see
Figs. 5 and 7).

5. Conclusions

This paper has analysed the apparent contradiction between
different results in the literature for bounded and monotone non-
linearities. The original version of the Zames–Falb theorem has an
inherent conservatism for strictly proper plants. This conservatism
has been exploited in the literature to suggest that the class of
Popov-extended Zames–Falb multipliers is a wider class of multi-
pliers. However, a slightlymodified version of the Zames–Falb the-
oremallowsus to extend the equivalence result presented in [9] for
the case of slope-restricted nonlinearities to the case of bounded
and monotone nonlinearities.

As a conclusion, the Zames–Falb multipliers is also the widest
available class ofmultipliers for bounded andmonotonenonlinear-
ities. The example given by Jönsson [11] is used for demonstrating
our results.
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