
Systems & Control Letters 70 (2014) 17–22
Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

LMI searches for anticausal and noncausal rational
Zames–Falb multipliers✩

Joaquin Carrasco ∗, Martin Maya-Gonzalez, Alexander Lanzon, William P. Heath
Control Systems Centre, School of Electrical and Electronic Engineering, The University of Manchester, Sackville Street Building, Manchester M13 9PL, UK

a r t i c l e i n f o

Article history:
Received 14 August 2013
Received in revised form
18 March 2014
Accepted 14 May 2014
Available online 7 June 2014

Keywords:
Slope-restricted nonlinearities
Zames–Falb multipliers
Multiplier search

a b s t r a c t

Given a linear time-invariant plant, the search for a suitable multiplier over the class of Zames–Falb
multipliers is a challenging problem which has been studied for several decades. Recently, a new linear
matrix inequality search has been proposed over rational and causal Zames–Falb multipliers. This letter
analyzes the conservatism of the restriction to causality on themultipliers and presents a complementary
search for rational and anticausal multipliers. The addition of a Popov multiplier to the anticausal
Zames–Falb multiplier is implemented by analogy with the causal search. As a result, a search over a
noncausal subset of Zames–Falb multipliers is obtained. A comparison between all the search methods
proposed in the literature is given.
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1. Introduction

The use of noncausal multipliers in absolute stability was
widely studied in the sixties, with particular attention to the class
of slope-restricted nonlinearities. O’Shea [1,2] was the first to
propose a class of noncausal multipliers; see also [3]. Zames and
Falb [4] propose a general framework for the use of noncausal
multipliers in passivity theory and provide a formal proof for the
results given in [2], since the validity of the results given by O’Shea
in [2] was limited by ‘‘the a priori assumption that the solutions
are bounded’’ [4]. Nowadays these multipliers are referred to as
Zames–Falb multipliers.

Definition 1.1. The class of Zames–Falb multipliers is given by the
operators M : L2(−∞, ∞) → L2(−∞, ∞)1 whose transfer
function is within the following set

M =


M(s) = 1 − H(s) : H(s) = L(h(t)),


∞

−∞

|h(t)|dt < 1


,

(1)
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where h : R → R and H(s) means the bilateral Laplace transform
of h(t), i.e. H(s) =


∞

−∞
h(t)e−stdt .

By use of a loop-transformation [5], the stability of a system
G ∈ RH∞ in feedback interconnection with any slope restricted
S[0, k] and odd nonlinearity can be guaranteed if there exists a
Zames–Falb multiplierM such thatM(G+ 1/k) is strictly positive,
i.e.

Re

M(jω)


G(jω) +

1
k


> 0 ∀ω ∈ R. (2)

But given G, it is not straightforward to find such an M . The
difficulty arises from the characterization of the Zames–Falb
multipliers: their definition includes a bound on the time-domain
response (1). The problem to be addressed is: given a system G ∈

RH∞ and a constant k > 0, under what conditions is the existence
of a Zames–Falb multiplierM ∈ M ensured?

To date, different partial solutions have been given. In [6–8],
a linear program is proposed to find a suitable irrational multi-
plier whose impulse response is parameterized with delta func-
tions. This method requires the computation of the Nyquist plot
over an infinitely dense frequency sweep, whichwhile not compu-
tationally attractive gives results that are very competitive. In gen-
eral, the positiveness of the solution cannot be checked in a linear
matrix inequality (LMI) framework; hence it may provide a false
positive solution. In [9], a rational parametrization of a trans-
fer function is proposed in such a way that its L1-norm can be
bounded. A search over the set of parameters under the condition
in (1) must be carried out. As an advantage, it can be optimized
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by using LMIs; moreover, the localization of the poles may be se-
lected using the IQC toolbox [10]. Recently, it has been shown that
this search is asymptotically complete [11].

These methods avoid any conservatism in the characterization
of the multiplier when the nonlinearity is slope restricted, since
the parametrization is chosen in order to compute analytically
the integral in (1). However, the rational parametrization will
introduce some conservatism when the nonlinearity is odd, since
the integral can only be bounded using a triangular inequality. This
conservatismmay be avoided by using very high order multipliers,
but the problem becomes numerically ill-conditioned. The result
depends on the skill of the user, since a prior parameter selection
must be done and a posterior check could be required. In general,
the results using exponential functions are less competitive than
using delta functions, but delta functions may lead to unreliable
results.

Park [12] develops an LMI search for a particular Lyapunov func-
tion. The result is interpreted in the frequency domain, and the
resulting multipliers are equivalent to first order Zames–Falb mul-
tipliers [13]. Hence, one can think of Park’s LMIs as a search over the
first order Zames–Falbmultipliers. Recently, an LMI search over ra-
tional and causal Zames–Falbmultipliers has been proposed in [14]
(see also [15]), by using the multiobjective synthesis technique
presented in [16]. The restriction on the causality of the multi-
plier has partially been overcome by adding a Popov multiplier
[17,18], which can include a pole at +∞, with the resulting multi-
plier noncausal.

The LMI methods are independent of the skills of the user and
are easily reproducible. The existence of a suitable multiplier can
be guaranteed by checking the feasibility of a set of LMIs, but two
main drawbacks to the method proposed in [14] can be stated:

• The search has an inherent conservativeness. For the check if a
transfer function is a Zames–Falb multiplier, the integral in (1)
is not computed, but bounded via an LMI. As commented in [16],
this upper bound ‘‘can be fairly conservative’’.

• The multiplier is restricted to be causal and the same order of
the plant.

The authors [14] justify the last restriction stating that other classes
of multipliers, as used in the Circle and Popov criteria (see [19,20]),
and Park’s method [12], are within this characterization.

However, Park’s method uses the following class of multipliers:

Mp(s) = 1 +
bs

a2 − s2
(3)

where a, b ∈ R. Hence causality is not required in Park’s method.
The numerical results in [14,15] are competitive with Park’s
method [12] for some examples and worse than Park’s method
for other examples discussed, hinting that the causal restriction
may be significant. The extension proposed in [17,18] adds a Popov
multiplier to the Zames–Falb multiplier. The Popov multiplier can
be interpreted as an anti-causal component in the Zames–Falb
multiplier [13]. This extension gives an improvement for some
examples, but fails to reach the Nyquist value for Example 1 in
[14,18]. Since the Kalman conjecture is guaranteed for third order
systems [21], this example shows some conservatism.

In this letter we analyze the limitations on the phase of the
multiplier when it is restricted to be either causal or anticausal.
We give specific bounds on the phase for first order multipliers.
The analysis motivates the development of anticausal counter-
parts of the searches proposed in [14,15,17,18]. The key novelty
is the possibility of using P < 0. Since the previous literature in
multiobjective techniques [16] has been focused on control syn-
thesis, the condition P > 0 has been always required. This condi-
tion can be relaxed in the multiplier synthesis. Technical details
are omitted in some places where their direct counterparts are
Fig. 1. Lur’e problem.

found in [14,17]. We show that the main source of conservatism in
[14,15,17,18] is the limitation of the multiplier to be causal. When
causal, anticausal and noncausal searches are used together, it is
clear that the loose bound on the L1-norm is not the main source
of conservatism. Finally, we are able to answer the question raised
in [18] on the performance of the algorithms. Limitations on the
phase of causal and anticausal multipliers are the key idea to un-
derstanding a priori the performance of the corresponding search
algorithms. Thus we have been able to develop an example (Ex-
ample 9), where the algorithms presented in this paper improve
all search methods proposed in the literature. In particular, our re-
sult for this example is 16 times better than [14] and 5 times better
than [18]. Preliminary results for anticaulsal multipliers were pre-
sented in [22].

2. Notation and preliminary results

Let Lm
2 [0, ∞) be the Hilbert space of all square integrable and

Lebesgue measurable functions f : [0, ∞) → Rm with the in-
ner product defined as ⟨f , g⟩ =


∞

0 f (t)⊤g(t)dt , for f , g ∈

Lm
2 [0, ∞). The symbol⊤ means transpose. Similarly,Lm

2 (−∞, ∞)

can be defined and its inner product is given by ⟨f , g⟩ =


∞

−∞
f (t)⊤

g(t)dt .
A truncation of the function f at T is given by fT (t) = f (t), ∀t ≤

T and fT (t) = 0, ∀t > T . The function f belongs to the extended
space Lm

2e[0, ∞) if fT ∈ Lm
2 [0, ∞) for all T > 0. In addition,

Lm
1 (−∞, ∞) is the space of all absolute integrable functions, and

given a function h : R → R such that h ∈ L1; then its L1-norm is
given by ∥h∥1 =


∞

−∞
|h(t)|dt .

A nonlinearity φ : L2e[0, ∞) → L2e[0, ∞) is said to be
memoryless if there exists N : R → R such that (φv)(t) =

N(v(t)) for all t ∈ R. Henceforward we assume that N(0) = 0.
A memoryless nonlinearity φ is said to be bounded if there exists
C such that |N(x)| < C |x| for all x ∈ R. A memoryless nonlinearity
φ is slope restricted in the interval S[0, k], henceforward φk, if

0 ≤
N(x1) − N(x2)

x1 − x2
≤ k (4)

for all x1 ≠ x2. The nonlinearity φ is said to be odd if N(x) =

−N(−x) for all x ∈ R.
This paper focuses on the stability of the feedback interconnec-

tion of a stable LTI system G and a slope-restricted nonlinearity φk,
represented in Fig. 1 and given by

v = f + Gw,
w = g − φkv.

(5)

It is well-posed if the map (v, w) → (g, f ) has a causal inverse on
L2

2e[0, ∞). SinceG is a stable LTI system, the exogenous input g can
be taken as the zero signalwithout loss of generality. This intercon-
nection is stable if for any f ∈ L2[0, ∞), both w ∈ L2[0, ∞) and
v ∈ L2[0, ∞). In addition, G(s) means the transfer function of the
LTI system G.
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The standard notation L∞ is used for the space of all transfer
functions bounded on the imaginary axis and at infinity. RL∞ is
used for the space of all proper real rational transfer functions
bounded on the imaginary axis, RH∞ is used for the space of all
(proper real rational) transfer functions such that all their poles
have strictly negative real parts, and RH−

∞
is used for the space

of all proper real rational transfer functions such that all their
poles have strictly positive real parts. With some reasonable abuse
of the notation, given a rational strictly proper transfer function
H(s) bounded at the imaginary axis, ∥H∥1 means the L1-norm of
impulse response of H(s).

Let M̄ denote a linear time-invariant operator mapping a time
domain input signal to a time domain output signal and M denote
the corresponding transfer function, for some particular region
of convergence of the bilateral Laplace integral, mapping the
bilateral Laplace transform of the time-domain input signal to the
bilateral Laplace transform of the time domain output signal. To
avoid ambiguity in impulse responses that correspond to transfer
functions when the bilateral Laplace transform is used (see [23]),
we insist on a causal M̄ whenM ∈ RH∞ with the RHP contained in
the region of convergence and an anticausal M̄ when M ∈ RH−

∞

with the LHP contained in the region of convergence. Since any
M ∈ RL∞ with a region of convergence that includes the imaginary
axis can be split into the sum of two functions, one in RH∞ and
one in RH−

∞
, the corresponding M̄ is noncausal corresponding to

the sum of a causal part and an anticausal part. Henceforward and
with some abuse of notation, we will use the same notation for the
operator and its transfer function.

The following theoremprovides the absolute stability of system
(5) subject to the search of an appropriate Zames–Falb multiplier.

Theorem 2.1 ([4,5]). Consider the feedback system in Fig. 1 with
G ∈ RH∞, and φk a slope restricted S[0, k] and odd nonlinearity.
Suppose that there exists M ∈ M (Definition 1.1) such that

Re {M(jω)(1 + kG(jω))} > 0 ∀ω ∈ R ∪ {∞}. (6)

Then the feedback interconnection (5) is L2-stable. �

This theorem characterizes the class of Zames–Falb multipliers.
The search presented in this letter focuses on rational multipliers,
i.e.M ∈ RL∞.

In this letter the symbol M∼ means the L2-adjoint of M . This
operator satisfies ⟨y,Mx⟩ = ⟨M∼y, x⟩ for all u ∈ L2(−∞, ∞)
and y ∈ L2(−∞, ∞). As a result, M∼ is anticausal if and only if
M is causal [5]. In particular, the L2-adjoint of a rational transfer
functionM(s) is given byM⊤(−s). In the time domain, the impulse
response is reflected with respect to t = 0, i.e. given a linear
operator M with an impulse response m(t) the impulse response
of M∼ is m⊤(−t). As a result, M∼ is an anticausal Zames–Falb
multiplier if and only ifM is a causal Zames–Falb multiplier.

The following lemma identifies when a transfer function is a
Zames–Falb multiplier.

Lemma 2.2 ([15]). Let M ∈ RL∞ be a rational transfer function
with M(s) = M(∞) + M̂(s), where M̂(s) denotes its associated
strictly proper transfer function. Then, M(s)/M(∞) is a Zames–Falb
multiplier if and only if ∥M̂∥1 < M(∞). �

The Nyquist value is defined and the Kalman conjecture is
stated as follows.

Definition 2.3. Given a stable linear plant G ∈ RH∞, the Nyquist
value, kN is the supremum of the values k̄ such that kG(s) satisfies
the Nyquist criterion for all k ∈ [0, k̄], i.e.

kN = sup{k̄ ∈ R
+

: inf
ω∈R

{|1 + kG(jω)|} > 0 ∀k ∈ [0, k̄]}. (7)
This value is used as a benchmark in other papers discussing
Zames–Falb multiplier searches [6,9], and it is straightforward to
show that Theorem 2.1 cannot be satisfied for k ≥ kN . As a result,
given G ∈ RH∞, the search for Zames–Falb multipliers must only
be carried out for 0 < k < kN .

Conjecture 2.4 (Kalman Conjecture). The feedback interconnection
of a strictly proper plant G and φk is stable for any k < kN . �

Remark 2.5. This conjecture has an important role in the develop-
ment of absolute stability and is true for n ≤ 3 [21], where n is the
order of G(s), but is false in general.

Lemma 2.6 ([21,13]). Given a strictly proper plant G with order 3 or
less, and k < kN , there exists a first order Zames–Falb multiplier M
such that

Re {M(jω)(1 + kG(jω))} > 0 ∀ω ∈ R. (8)

3. Discussion on causal multipliers

In this sectionwe show that causality can be a significant source
of conservatism. Let us consider Example 1 in [14], which considers
the plant

G(s) =
s2 − 0.2s − 0.1
s3 + 2s2 + s + 1

(9)

where a factor −1 has been applied to take into account nega-
tive feedback. A linear search shows that kN ∈ (4.5894, 4.5895);
thus the search of suitable Zames–Falbmultipliers satisfying Theo-
rem2.1 can be restricted to k ∈ [0, 4.5894]. Then there exists a first
order Zames–FalbmultiplierM such that Re{M(1+4.5894G)} > 0
for all ω ∈ R (see Lemma 2.6).

After a simple trial and error procedure, a suitable noncausal
Zames–Falb multiplier given by inspection is

Mnc(s) =
s − 0.0012
s − 1.09

. (10)

We can check the following properties:

• It is a Zames–Falb multiplier since

∥M̂nc∥1 =

 1.0888
s − 1.09


1

= 0.9989 < 1 = Mnc1(∞), (11)

where Lemma 2.2 has been used.
• Re{Mnc(jω)(1 + 4.5894G(jω))} > 0 for all ω ∈ R.

Thus, Theorem 2.1 ensures the absolute stability of G and φ ∈

S[0, 4.5894]. This property has also been checked via LMI using the
KYP lemma [24]. Some questions can be immediately asked: why
is thismultiplier anticausal? Is it possible to find a causal first order
Zames–Falb multiplier satisfying the above condition?

There exists a trade-off between phase and L1-norm [25],
which is exacerbated when the multiplier is limited to be either
causal or anticausal. Analytic results can be shown if we restrict
our attention to first order Zames–Falb multipliers.

Lemma 3.1. If Mc is a causal first order Zames–Falb multiplier, then
̸ Mc(jω) > − arcsin(1/3) for all ω ∈ R. Moreover, given ϵ > 0,
there exists a causal Zames–Falb multiplier such that its phase is
90° − ϵ at some frequency. �

Lemma 3.2. If Mac is an anticausal first order Zames–Falbmultiplier,
then ̸ Mac(jω) < arcsin(1/3) for all ω ∈ R. Moreover, given ϵ > 0,
there exists an anticausal Zames–Falb multiplier such that its phase is
−90° + ϵ at some frequency. �
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The above two lemmas can be proved by using Lemma 2.2
on a first order transfer function. Summarizing, they state that
the phase of a causal first order Zames–Falb multiplier must be
within (− arcsin(1/3), 90°) and the phase of an anticausal first or-
der Zames–Falb multiplier must be within (−90°, arcsin(1/3)).

We can now investigate the dependence of the phase of 1 +

kG(jω) with respect to k. For 0 ≤ k ≤ 1.2431, the phase will
be with the interval (−90°, 90°) and the circle criterion can be
applied. For 1.2431 < k ≤ 4.5894, the phase lead defect in-
creases from 0 at k = 1.2431 up to 75° at k = 4.5894. There-
fore, for a causal first order Zames–Falb multiplier, a theoretical
limitation can be set when (1 + kG) has a phase lead larger than
90° + arcsin(1/3), approximately, 109.47°. This limit is crossed at
k = 1.805.

Now we can answer the two questions given at the beginning
of the section. Since the system (1 + 4.5894G) has a phase lead
larger than 109.47°, there exists no causal first order Zames–Falb
multiplier Mc satisfying (6). If we are restricted to first order
Zames–Falb multipliers then anticausal Zames–Falb multipliers
must be used.

If we consider causal third order Zames–Falb multipliers by
using the search in [14,15], we find that the maximum slope is
2.2428, improving the value of the causal first order Zames–Falb
multiplier. Thus, one could postulate that the theoretical limita-
tions given by restricting the search over the set of causal first or-
der Zames–Falb multipliers may be avoided by using higher order
or irrational causal Zames–Falb multipliers. Table 1 shows the re-
sult obtained with different methods for searches for Zames–Falb
multipliers proposed in the literature. The othermethods [6,9] con-
sider noncausal multipliers, so they have been modified to search
over causal multipliers only. Although they have been optimized
withmore powerful tools than the above inspectionmethod, these
causal multipliers remain conservative. In conclusion and for this
example, all searches proposed in the literature are conservative
if the search is restricted to causal multipliers. Even the relaxation
of causal Zames–Falb multipliers plus Popovmultipliers [18] is not
able to reach the Nyquist value.

4. LMI search for anticausal multipliers

This section presents a modification to the causal method
of [14] able to search for an anticausal Zames–Falb multiplier. This
modificationmust be considered as a complementarymethod. It is
known that any rational Zames–Falb multiplierM(s) has a canoni-
cal factorization [4], i.e.M = M−M+ whereM∼

−
∈ RH∞, (M∼

−
)−1

∈

RH∞,M+ ∈ RH∞, and M−1
+ ∈ RH∞. Loosely speaking, in [14] M−

is taken as the identity, whereaswe propose a equivalent synthesis
takingM+ as the identity.

Some proofs in this section are omitted since they can be
developed with the same mathematical machinery as in [14,17]
and setting P < 0.

4.1. Anticausal search

The method proposed in [14] is based on the multiobjective
synthesis developed in [16]. In our complementary method, we
substitute the condition P < 0 (for P > 0 in [14]). Note that P
nonsingular ensures that the change of variable is feasible. A prior
lemma is needed to bound the L1-norm of an anticausal transfer
function.

Lemma 4.1. Given a strictly proper transfer function H ∈ RH−

∞
given

byH(s) = C(sI−A)−1B, where−A is Hurwitz, assume that there exist
Table 1
Maximum slope for different classes of multipliers.

Multiplier Maximum slope k

Causal high order [9] 1.624
Causal irrational [6] 1.775
Causal order 1, Lemma 3.1 1.8 (approx)
Causal order 3, Turner method [14] 2.2428
Causal order 3 plus Popov multiplier [18] 3.5026
Noncausal order 1, Eq. (10) 4.5894
Nyquist value 4.5894

Y < 0, µ > 0, ξ > 0, and λ > 0 such that
A⊤Y + YA − λY YB

⋆ −µ


< 0, (12)−λY 0 C⊤

⋆ (ξ − µ) 0
⋆ ⋆ ξ

 > 0. (13)

Then ∥H∥1 < ξ .

Proof. The result is straightforward since ∥H∥1 is the same as
∥H∼

∥1, where H∼(s) is given by

H∼(s) = (C(sI − (−A))−1(−B)). (14)

Taking W = −Y in (12) and (13), there exist W > 0, µ > 0, and
λ > 0 such that
(−A⊤)W + W (−A) + λW WB

⋆ −µ


< 0, (15)λW 0 C⊤

⋆ (ξ − µ)I 0
⋆ ⋆ ξ

 > 0. (16)

Then applying results in [16], it is obtained that ∥ − H∼
∥1 =

∥H∥1 < ξ . �

Using this lemma, the result for anticausal multipliers can be
stated as follows.

Proposition 4.2. Let G ∈ RH∞ be represented by the state spacema-
trices Ag , Bg , Cg , and Dg . Let φ be a slope restricted S[0, k] and odd
nonlinearity. Assume that there exist positive definite symmetric ma-
trices S11 > 0, P11 > 0, unstructured matrices Au, Bu, and Cu, and
positive constant µ > 0 and λ > 0, such that the LMIs (17)–(19) are
satisfied (Eqs. (17)–(19) are given in Box I). Then the feedback inter-
connection (5) is L2-stable.

4.2. Addition of a Popov multiplier

As shown in [26], the Popov multiplier is a limiting case of a
Zames–Falb multiplier

1 + qs = lim
ϵ→0

1 + qs
1 + ϵs

. (20)

A detailed analysis of this limit has been carried out in [13]. There-
fore, since the method proposed originally in [14] is restricted to
causal multipliers and its anticausal counterpart has been devel-
oped in the previous section, the addition of a Popov multiplier
as proposed in [17,18] to these causal or anticausal searches im-
proves the parametrization of the Zames–Falb multiplier. The re-
sult in [18] will generate noncausal Zames–Falb multipliers with a
limited anticausal part whereas the following result will generate
Zames–Falb multipliers with a limited causal part.
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7)

8)

9)
S11Ag + A⊤

g S11 S11Ag + A⊤

g P11 + kC⊤

g B⊤

u + A⊤

u S11Bg − kC⊤

g + C⊤

u
⋆ P11Ag + A⊤

g P11 + BukCg + kC⊤

g B⊤

u P11Bg + Bu(1 + kDg) − kC⊤

g
⋆ ⋆ −(I + kDg) − (I + kDg)

⊤

 < 0, (1


−Au − A⊤

u − λ(P11 − S11) Bu
⋆ −µ


< 0, (1−λ(P11 − S11) 0 C⊤

u
⋆ (1 − µ)I 0
⋆ ⋆ 1

 > 0. (1

Box I.
1)

2)

3)
S11Ag + A⊤

g S11 S11Ag + A⊤

g P11 + kC⊤

g B⊤

u + A⊤

u S11Bg − kC⊤

g − k(γ + νA⊤

g )C⊤

g + C⊤

u

⋆ P11Ag + A⊤

g P11 + BukCg + kC⊤

g B⊤

u P11Bg − kC⊤

g − k(γ + νA⊤

g )C⊤

g + Bu

⋆ ⋆ −2 − 2γ − νkCgBg − νkB⊤

g C
⊤

g

 < 0, (2


−Au − A⊤

u − λ(P11 − S11) Bu
⋆ −µ


< 0, (2−λ(P11 − S11) 0 C⊤

u
⋆ (1 − µ)I 0
⋆ ⋆ 1

 > 0. (2

Box II.
Proposition 4.3. Let G ∈ RH2 be represented by the state space
matrices Ag , Bg , and Cg . Let φ be a slope restricted S[0, k] and
odd nonlinearity. Assume that there exist positive definite symmetric
matrices S11 > 0, P11 > 0, unstructured matrices Au, Bu, and Cu, and
positive constants γ > 0, µ > 0 and λ > 0, and a real constant
ν , such that the LMIs (21)–(23) are satisfied (Eqs. (21)–(23) are given
in Box II). Then the feedback interconnection (5) is L2-stable.

Remark 4.4. As commented in [15], a search over λ is required for
obtaining competitive results. In the causal Zames–Falb search [14,
15] as well as in the anticausal search presented in the previous
section, the maximum slope k appears to have a quasi-convex
dependence with respect to λ. However, the addition of the Popov
multiplier, in [18] and in this section, changes this behavior, and
several local maxima can appear.

Remark 4.5. The Zames–Falb multiplier can be reconstructed
fromAu, Bu, andCu as in [15],whereas the Popovmultiplier is given
by 1 + ν/γ s. Hence

MP+ZF(s) = MZF(s) + γ


1 +

ν

γ
s


(24)

is the multiplier obtained from the search.

It is straightforward to obtain the counterpart version of the
L2-gain bound result in [17], when the Zames–Falb multiplier is
an anticausal multiplier.

5. Numerical examples

Table 2 shows nine examples. Examples 1-6 are discussed
in [14,15] (Example 1 has been used in Section 3), while Examples
7 and 8 are given in [27,8], respectively. Example 9 is new. Results
are obtained using theMATLAB LMI Toolbox. For Examples 1, 2 and
9, results of the anticausal methods are obtained using 1/k+G(jω)
rather than 1 + kG(jω) as the numerical results sometimes differ.
In the use of IQC-β , four poles have been placed at 1 and another
four poles at −1.
Table 2
Examples.

Ex. G(s)

1 [14] G1(s) =
s2−0.2s−0.1
s3+2s2+s+1

2 [14] G2(s) = −G1(s)
3 [14] G3(s) =

s2

s4+0.2s3+6s2+0.1s+1
4 [14] G4(s) = −G3(s)
5 [14] G5(s) =

s2

s4+0.0003s3+10s2+0.0021s+9
6 [14] G6(s) = −G5(s)
7 [27] G7(s) =

s2

s3+2s2+2s+1

8 [8] G8(s) = 9.432 (s2+15.6s+147.8)(s2+2.356s+56.21)(s2−0.332s+26.15)
(s2+2.588s+90.9)(s2+11.79s+113.7)(s2+14.84s+84.05)(s+8.83)

9 (new) G9(s) =
s2

s4+5.001s3+7.005s2+5.006s+6

Table 3 gives the results for the plants in Table 2. As ex-
pected, results for the anticausal method improve the maximum
slope for the plants where Park’s method is better than the causal
method [14] (Examples 1, 3, and 6). Park’s multipliers are compet-
itive for slightly damped plants, since they carry no conservative-
ness in the bound of the L1-norm. Nevertheless, the addition of
the Popov multiplier in [17,18] and its implementation for the an-
ticausalmethod provides a reliable and competitivemethod if they
are combined.

Example 9 has been designed to show under what circum-
stances themethods proposed in this letter are expected to provide
better results than alternative methods in the literature. Loosely
speaking, anticausal multipliers are expected to be more appro-
priate than causal multipliers for achieving negative values of the
phase. In addition, temporal searches such as the delta and expo-
nential methods are conservative for multipliers within the full set
of Zames–Falb multipliers, due to the use of a triangular inequal-
ity for bounding the L1-norm as commented earlier (see Eq. (10)
in [9]); hence in plantswith slightly damped poles it can be a draw-
back. Therefore, the proposed example has two resonant poles at
(−0.0005 ± i), two zeros at 0 to ensure the Nyquist value is infin-
ity, and two other poles at −2 and −3 so the order is more than 3
poles.

The numerical results show that the difference between causal
and anticausal multipliers is larger at low order than at high
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Table 3
Sector/slope bounds obtainable using various stability criteria.

Criteria Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9

Circle 1.2431 0.7640 0.3263 0.3081 0.00040 0.00039 8.1235 4.3159 0.0482
Park’s method [12] 4.5894 1.0894 0.7883 0.7083 0.00183 0.00183 10,000+ 62.5691 26.0097
Causal method [14] 2.2428 1.0894 0.7049 0.8526 0.00181 0.00095 17.605 87.3854 5.2643
Anticausalmethod 4.5894 1.0745 0.9846 0.6135 0.00095 0.00182 10,000+ 21.6190 38.5982
Causal + Popov method [17,18] 3.2897 1.0894 0.7760 1.0792 0.00333 0.00318 17.724 87.3854 13.7834
Anticausal + Popov method 4.5894 1.0745 1.4513 0.7222 0.00319 0.00333 10,000+ 22.4304 91.0858
Delta method [6–8] 4.5894 1.0894 1.6122 1.2652 Unreliable Unreliable 95.406 83.1430 80.2735
Exponential method via IQC-β [9,10] 4.5885 1.0893 1.1700 0.9541 0.00067 0.00068 10,000+ 9.1375 48.7639
Nyquist value 4.5894 1.0894 ∞ 3.5000 ∞ 1.7142 ∞ 87.3854 ∞
order, but several other factors, such as the amount of phase
required, are important. From numerical results, causalmultipliers
are more appropriate when the Nyquist plot of the plant reaches
theminimum value of its real part in the third quadrant (Examples
4 and 6), whereas anticausal multipliers are more appropriate
when this minimum is reached in the second quadrant (Examples
1, 3, 5, and 7). If the Nyquist plot has similar real parts in the
second and third quadrants, then the results are similar for causal
and anticausal multipliers (Examples 2 and 8). This empirical rule
agrees with the analysis of Section 3.

6. Conclusion

This letter has analyzed the consequences of restricting the
set of Zames–Falb multipliers to causal multipliers. For first order
Zames–Falbmultipliers, theoretical results have shown that causal
Zames–Falb multipliers have a strong constraint on their phase
lag and anticausal Zames–Falb multipliers have a corresponding
constraint on their phase lead. An example given in the literature
has been used to show that a noncausal multiplier obtained by
inspection beats all the convex searches if they are restricted to
causal Zames–Falb multipliers.

Using the method developed in [14], a search of anticausal
multipliers has been proposed, which is a complementary solution
to the search of causal multipliers. The new search has been tested
and it improves the results given by Turner’s method [14] in
the examples where this method is not competitive. A similar
extension to that of [17] is proposed to avoid the anticausal
limitation. The anticausal search developed in this paper confirms
that a major source of conservatism for some examples in [14]
is the restriction to causal multipliers. The combination of causal
and anticausal methods with the addition of the Popov multiplier
generates results at least competitive with the best in the
literature. However, the delta method can provide better results
in some cases due to its advantages measuring the L1-norm of
the multiplier. Finding an efficient search over the entire class of
Zames–Falb multipliers remains an open problem.
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