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Classical motivation
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Every actuator is affected by saturation, saturation is a standard
nonlinearity in every control system.
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Core history of Control Engineering

The golden decade (1962-1972)

Input-Output stability
Small Gain Theorem
Passivity Theorem
Circle Criterion
Popov Criterion
Kalman-Yakubovich-Popov lemma
Dissipativity Theory

Stand on the shoulders of giants

Kalman, Yakubovich, Zames, Popov, Falb, (JC&JL) Willems,
Brocket, Desoer, Vidyasagar,...
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Recent motivation
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Lurye Problem

Lurye system
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G is L.T.I.
ϕ is a nonlinear/uncertain system.

Lurye in memoriam of Dmitry A Altshuller (1961-2017)
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Absolute stability

Stability definitions

Lyapunon stability

For a system ẋ(t) = f (x(t), t), with x0 = x(0).
We say that the system is globally asymptotically stable if
limt→∞ x(t) = 0 for all x0.

Input-output stability
Our system is a causal operator, i.e. y = Su.
Stability is defined in terms of the properties of the signal, i.e. S is
stable if y is energy-bounded for any energy bounded u
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Absolute stability

Input-Output stability of a feedback system
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y1 = Gu1 y2 = ϕu2
u1 = r1 − y2 u2 = r2 + y1

Definition
The feedback is input-output stable if for any energy bounded pair
of inputs (r1, r2), the pair of outputs (y1, y2) is also energy
bounded.
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Absolute stability

Absolute stability problem
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y1 = Gu1 y2 = ϕu2, ϕ ∈ Φ
u1 = r1 − y2 u2 = r2 + y1

Problem
Find conditions on G such that the feedback interconnection
between G and any ϕ ∈ Φ is stable.
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Absolute stability

Solutions in three-step procedure

Step 1
Characterise the nonlinear class appropriately by means of a class of
LTI multipliers

Step 2
Produce a frequency domain condition by using a stability result
subject to the existence of one admissible multiplier

Step 3
Given a system G , develop a procedure to search for the admissible
multiplier
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Definitions

Sector-restricted nonlinearities

0 ≤ ϕ(x)/x ≤ k
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Definitions

Slope-restricted nonlinearities

0 ≤ ϕ(x1)−ϕ(x2)
x1−x2

≤ k
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Definitions

Lurye problem

Lurye problem
For a given G , find the supremum k such that the feedback
interconnection between G and any sector-restricted (or
slope-resctricted) in the sector [0, k] is stable.

Step 4
Find the minimum value of k such that Step 3 cannot be fulfilled.

Nyquist gain
The Nyquist gain kN of a stable LTI system G is the supremum of
the set of gains k such that the feedback interconnection between
G and the linear gain τk is stable for all τ ∈ [0, 1]
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Conjectures

Conjectures in the 50’s

Aizerman Conjecture (1949)

The negative feedback interconnection between an LTI stable
system G and any nonlinearity in the sector [0, k] is stable if and
only if the feedback interconnection between G and the linear gain
τk is stable for all τ ∈ [0, 1].
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Conjectures

Conjectures in the 50’s

Kalman Conjecture (1957)

The negative feedback interconnection between an LTI stable
system G and any nonlinearity in the slope [0, k] is stable if and
only if the feedback interconnection between G and the linear gain
τk is stable for all τ ∈ [0, 1].
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Graphical results

Circle Criterion

Circle Criterion
The negative feedback interconnection between an LTI stable
system G and a nonlinearity in the sector [0, k] is stable if there
exists ϵ > 0 such that

Re(1 + kG (jω)) > ϵ ∀ω ∈ R.
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Graphical results

Circle Criterion

Step 1. Characterization

0 ≤ xϕ(x) ≤ k − ϵ =⇒ 0 ≤ x ϕ̃(x)
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Graphical results

Circle Criterion

Step 2 (and 3). Use the passivity theorem

There exists ϵ > 0 such that Re(1 + kG (jω)) > ϵ ∀ω ∈ R.
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Graphical results

Circle Criterion

Step 4
The Circle Criterion hold for any k < kcc
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Graphical results

Popov Criterion

Popov Theorem
The negative feedback interconnection between a
strictly proper LTI stable system G and a nonlinearity in the sector
[0, k] is stable if there exists q ∈ R and ϵ > 0 such that

Re((1 + jqω)(1/k + G (jω)) ≥ ϵ ∀ω ∈ R.
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Graphical results

Popov multiplier

Step 1. Characterization

If ϕ is sector restricted, the composition operator ϕ̃(1 + jqω)−1 is
passive for all q.

Multiplier as a mathematical operator

The object (1 + jqω) is referred to as the Popov multiplier.
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Graphical results

Popov Criterion

Step 2. Use the passivity theorem
There exist ϵ > 0 and q such that
Re((1 + jqω)(1 + kG (jω)) > ϵ ∀ω ∈ R.
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Graphical results

Popov Criterion

Popov plot

The Popov plot of a system G is the plot of Re(G (jω)) versus
ωIm(G (jω)) for all ω ≥ 0.

Step 3. Graphical interpretation
The negative feedback interconnection between a strictly proper
LTI stable system G and a nonlinearity in the sector [0, k] is stable
if the Popov plot of G lies to the right of a line passing through the
point (−1/k + ϵ, 0) with arbitrary slope.

Where is the multiplier?
The slope of the line is related to q.
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Graphical results

Popov Criterion

Step 4
The Popov Criterion hold for any 0 ≤ k < kpc
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Graphical results

Off-Axis Circle Criterion

Step 1 Development of the class of RL/RC multipliers
preserving the positivity of ϕ (Brockett and
J. L. Willems, 1965);

Step 2 Frequency domain condition on G via Passivity
Theorem subject to the existence of one RL/RC
multiplier;

Step 3 Selection of an RL/RC multiplier for a given G by
restricting attention to multipliers with quasi-constant
phase (Cho and Narendra, 1968);

Step 4 Procedure to find the solution of the Lurye Problem.

Further reading
Absolute Stability, Carrasco and Heath, Wiley EEE Encyclopedia.
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Graphical results

Off-Axis Circle Criterion

Step 4
The Off-Axis Circle Criterion holds for any k < koacc
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Graphical results

Discrete-time result

Circle Criterion

Direct translation replacing the jω axis by the unit circle e jω.

Popov Criterion
It is not possible to extend the Popov Criterion to the discrete-time
domain.

Off-Axis Circle Criterion
It is not possible to extend the Popov Criterion to the discrete-time
domain.
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KYP & IQC

KYP Lemma

KYP Lemma, Rantzer 1996

Given A ∈ Rn×n, B ∈ Rn×m, and M = MT ∈ R(n+m)×(n+m), with
det(jωI − A) ̸= 0 for all ω ∈ R and (A,B) controllable, the
following two statements are equivalent:

1 [
(jωI − A)−1B

I

]∗
M

[
(jωI − A)−1B

I

]
≤ 0, ∀ω ∈ R ∪ {∞}.

2 There exists P = PT ∈ Rn×n such that

M +

[
ATP + PA PB

BTP 0

]
≤ 0.

The corresponding equivalence for strict inequalities holds even if
(A,B) is not controllable.
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KYP & IQC

IQC: One theorem to rule them up

IQC Theorem
The positive feedback interconnection between a stable LTI system
G ∈ RHl×m

∞ and a bounded operator ∆ : Ll
2[0,∞) → Lm

2 [0,∞) is
stable if the feedback between G and τ∆ is well-posed for all τ ∈ [0, 1]
and there exists a measurable Hermitian-valued function
Π : jR→ C(l+m)×(l+m) such that:

1 for any u ∈ L2[0,∞), the integral quadratic constraint holds∫ ∞

−∞

[
û(jω)

τ∆̂u(jω)

]∗
Π(jω)

[
û(jω)

τ∆̂u(jω)

]
dω ≥ 0

for all τ ∈ [0, 1];
2 there exists ϵ > 0 such that[

G (jω)
I

]∗
Π(jω)

[
G (jω)

I

]
≤ −ϵI ∀ω ∈ R.
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KYP & IQC

Tailored for absolute stability

Step 1 We characterise ∆ by means of a class of suitable
objects Π(jω), which can be seen as generalised
multipliers, such that the Integral Quadratic
Constraint (IQC)∫ ∞

−∞

[
û(jω)

τ∆̂u(jω)

]∗
Π(jω)

[
û(jω)

τ∆̂u(jω)

]
dω ≥ 0

is satisfied;
Step 2 the IQC Theorem ensures the stability of the Lurye

system if the frequency condition Item 2[
G (jω)

I

]∗
Π(jω)

[
G (jω)

I

]
≤ −ϵI ∀ω ∈ R.

Step 3 with the use of a finite parametrisation of the
multiplier and the KYP Lemma to search over finite
number of parameters
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KYP & IQC

List of IQCs

Small gain systems (with gain γ)

Π(jω) =

[
1 0
0 −1/γ2

]

Passivity

Π(jω) =

[
0 1
1 0

]

Sector-restricted nonlinearities

Π(jω) =

[
0 1
1 −2/k

]

Sector-restricted nonlinearities

Π(jω) =

[
0 (1 − jqω)

(1 + jqω) −2/k

]
Recommended reading: Veenman, Scherer, Köroǧlu, EJC, 2016



Problem statement Classical results KYP & IQC O’Shea-Zames-Falb multipliers Carrasco’s conjecture

O’Shea-Zames-Falb multipliers (CT)

Step 1 - Widest suitable LTI class for slope-restricted
nonlinearities

O’Shea (1967)

The class of O’Shea-Zames-Falb multipliers M is defined by the
convolution operators M whose impulse response is of the form

m(t) = δ(t)−
∞∑
i=1

hiδ(t − ti )− h(t),

where δ is the Dirac delta function, ti ̸= 0 and hi > 0 for all i and
h(t) > 0 for all t, and where

∞∑
i=1

hi +

∫ ∞

−∞
h(t)dt ≤ 1.
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O’Shea-Zames-Falb multipliers (CT)

Step 2 - Stability result

Zames-Falb theorem (1968)

The negative feedback interconnection between a proper LTI stable
system G and a slope-restricted nonlinearity in [0, k] is stable if
there exist M ∈ M and ϵ > 0 such that

Re{M(jω)(1 + kG (jω))} ≥ ϵ ∀ω ∈ R. (1)
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O’Shea-Zames-Falb multipliers (CT)

Step 3 - Searches

Safonov (1987)

m(t) = 1 −
∑
i

hiδ(t − ti )

Non-convex, requires time and/or frequency sweep,
can work very well

Chen and Wen (1995)

m(t) = 1 −
∑
i

hi
t ie−t

i !
σ(t)−

∑
i

h̄i
t iet

i !
σ(−t)

LMI, ill-conditioned for high order
Turner et al. (2009), Carrasco et al. (2014)

Conservative bound the L1 norm - LMI. Causal only
(Turner) or anti-causal only (Carrasco)

Comparisons in:
- Carrasco, Turner, and Heath, European Journal of Control 2016
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O’Shea-Zames-Falb multipliers (DT)

Discrete-time O’Shea-Zames-Falb multipliers

O’Shea & Younis (1967)

The class of O’Shea-Zames-Falb multipliers M is defined by the
convolution operators M whose impulse response m(k) satisfies∑

k |m(k)| ≤ 2m(0) where m(k) < 0 for all k ̸= 0

Step 2 - Stability Theorem (J. C. Willems & Brockett, 1968)

The negative feedback interconnection between a proper LTI stable
system G and a slope-restricted nonlinearity in [0, k] is stable if there
exist M ∈ M and ϵ > 0 such that

Re{M(e jω)(1 + kG (e jω))} ≥ ϵ ∀ω ∈ [0, π].

Step 3 - Searches (Carrasco et al, IEEE TAC, 2020)

The search in Discrete-Time is simple in comparison with
continuous-time counterparts. The canonical basis 1, z−1, z−2, ..., z−n

is used for the parametrisation.
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O’Shea-Zames-Falb multipliers (DT)

Only one horse in town
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Limitations

Limitations of O’Shea-Zames-Falb multipliers in DT

Dual problem (Jönsson, Megretski)

For a given G , minimise k such that it is not possible to find a
suitable O’Shea-Zames-Falb multiplier for 1 + kG .

Original motivation
As we use a subset of multipliers, we want to know the efficiency of
the parametrisation

My conjecture (Carrasco, Turner, Heath, EJC, 2016)

The feedback interconnection between G and any nonlinearity in
the slope in the sector [0, k] if and only if there is a suitable
O’Shea-Zames-Falb for the plant 1 + kG
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Limitations

Graphical representation of the Lurye problem

G + 1
0

G + 1
∞

G + 1
kAS

?

RH∞

G is a stable plant with
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Limitations

Jönsson’s DT counterpart

Theorem (Zhang, Carrasco, Heath, IEEE TAC 2022)

Let G ∈ RH∞ and let β > 1. Given λ1, . . . , λβ−1 ≥ 0 such that∑β−1
r=1 λr > 0; if

β−1∑
r=1

Re
{
λrG (e jωr )

}
≤ min

l∈Z

[
β−1∑
r=1

Re
{
λrG (e jωr )e−jωr l

}]
,

where ωr =
r
βπ for r = 1, ..., β − 1, then there is no

O’Shea–Zames–Falb multiplier M such that

Re
{
M(e jω)G (e jω)

}
> 0, ∀ω ∈ [0, π].
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Limitations

Dual result for DT O’Shea–Zames–Falb multiplier

Numerical Implementation
Let G ∈ RH∞ and let β > 1. For l = 0, 1, · · · , 2β − 1, let us define

u =


λ1
λ2
...

λβ−1

 , vl =


Re{(1 − e−jω1l)G (e jω1)}
Re{(1 − e−jω2l)G (e jω2)}

...
Re{(1 − e−jωβ−1l)G (e jωβ−1)}

 ,

Assume there exists u ⪰ 0 such that |u| > 0 and

u⊤vl ≤ 0 for all l = 0, 1, · · · , 2β − 1.

Then there is no O’Shea–Zames–Falb multiplier M such that

Re
{
M(e jω)G (e jω)

}
> 0, ∀ω ∈ [0, π].
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Limitations

One-frequency condition

Every crossing between the Bode plot and the black lines
indicates the existence of a periodic solution.
For a given system, we find the critical k̄OZF such that the
phase of G + 1/k reaches the magenta crosses (Stern-Brocot
tree).
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Construction

Construction of Counterexamples of the Kalman Conjecture

UnstableStable

kOZF

k̄ωOZFk̄OZF

kN0 ∞
kAS

?

Previous state of the art

UnstableStable

kOZF k̄ = k̄ωOZF
0 ∞kN

k̄ωOZFk̄OZF

?

kAS

Counterexamples KC

Seiler, Carrasco, IEEE CSL 2021
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Construction

Current bottleneck on the necessity

Step 1 - Done
The class of LTV OZF multipliers proposed by Willems and
Brockett (1968) is a perfect characterization of the nonlinearity.

Step 2 - Open
It is possible to write any LTV multiplier as a conic combination of
a basis. Is it possible to apply the lossless S-procedure with infinite
terms?

Step 3 - Done (Also in Kharitenko and Scherer, accepted in
Automatica)

The class of LTV OZF multipliers is “phase-equivalent” to LTI OZF
multipliers.

(Su, Seiler, Carrasco, Khong, in press, Automatica)
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Construction

Kharitenko and Scherer, under review

Arbitrary dimension
By using duality in the linear programming problem, the conjecture
holds for some dimension, e.g. N = 2
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Construction

Questions
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