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Classical motivation
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Every actuator is affected by saturation, saturation is a standard
nonlinearity in every control system.



Core history of Control Engineering

The golden decade (1962-1972)
@ Input-Output stability

@ Small Gain Theorem

Passivity Theorem
Circle Criterion
Popov Criterion

Kalman-Yakubovich-Popov lemma

Dissipativity Theory

\,

Stand on the shoulders of giants

Kalman, Yakubovich, Zames, Popov, Falb, (JC&JL) Willems,
Brocket, Desoer, Vidyasagar,...

.




Recent motivation

Zames-Falb multipliers for quadratic programming

WP Heath, AG Wills - ... of the 44th IEEE Conference on Decision ..., 2005 - ieeexplore.ieee.org
In constrained linear model predictive control a quadratic program must be solved on-line at
each control step. If zero is feasible the resultant static nonlinearity is sector bound. We show
that the nonlinearity is also monotone nondecreasing and slope restricted; furthermore it ...
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Zames-falb multipliers for quadratic programming

WP Heath, AG Wills - IEEE Transactions en Automatic Control, 2007 - cheric.org

In constrained linear mode| predictive control, a quadratic program must be selved on-line at
each control step, and this constitutes. a nonlinearity. If zero is a feasible point for this
quadratic program then the resultant nonlinearity is sector bounded. We show that if the ...
2%}

Analysis and design of optimization algorithms via integral quadratic
constraints

L Lessard, B Recht, A Packard - SIAM Journal on Optimization, 2016 - SIAM

This paper develops a new framework to analyze and design iterative optimization
algorithms built on the notion of integral quadratic constraints (1QCs) from robust control
theory. IQCs provide sufficient conditions for the stability of complicated interconnected ...
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Stability analysis using quadratic constraints for systems with neural network
controllers

H Yin, P Seiler, M Arcak - arXiv preprint arXiv:2006.075679, 2020 - arxiv.org

Amethod is presented to analyze the stability of feedback systems with neural network

controllers. Two stability theorems are given to prove asymptotic stability and to compute an
ellipsoidal inner-approximation to the region of attraction. The first theorem addresses linear ...
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Problem statement
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Lurye Problem

Lurye system

n u 1
G
Y2 ¢ uz r
Gis L.T.l

¢ is a nonlinear/uncertain system.

Lurye in memoriam of Dmitry A Altshuller (1961-2017)



Problem statement
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Absolute stability

Stability definitions

Lyapunon stability

For a system x(t) = f(x(t), t), with xo = x(0).

We say that the system is globally asymptotically stable if
lim:— 00 x(t) = 0 for all xp.

A

Input-output stability

Our system is a causal operator, i.e. y = Su.
Stability is defined in terms of the properties of the signal, i.e. S is
stable if y is energy-bounded for any energy bounded u

.




Problem statement
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Absolute stability

Input-Output stability of a feedback system

rn up 1

Y2 uz rn

y1=Guy y» = ¢u
uu=n—y» Ww=n+iny

Definition

The feedback is input-output stable if for any energy bounded pair
of inputs (r1, r2), the pair of outputs (yi, y2) is also energy
bounded.




Problem statement
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Absolute stability

Absolute stability problem

n u 1

Y2 uz r

y1:GU1 y2:¢u2, (bE(D
uu=n-—y» w=n+iny

Problem

Find conditions on G such that the feedback interconnection
between G and any ¢ € ® is stable.




Problem statement
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Absolute stability

Solutions in three-step procedure

Characterise the nonlinear class appropriately by means of a class of
LTI multipliers

Produce a frequency domain condition by using a stability result
subject to the existence of one admissible multiplier

A

Given a system G, develop a procedure to search for the admissible
multiplier

.




Problem statement

Definitions

Sector-restricted nonlinearities




Problem statement

Definitions

Slope-restricted nonlinearities

B(X)

X~

0< d(x1)—d(x2) S k

- X1—X2



Problem statement

Definitions

Lurye problem

Lurye problem

For a given G, find the supremum k such that the feedback
interconnection between G and any sector-restricted (or
slope-resctricted) in the sector [0, k] is stable.

Find the minimum value of k such that Step 3 cannot be fulfilled.

Nyquist gain

The Nyquist gain ky of a stable LTI system G is the supremum of
the set of gains k such that the feedback interconnection between
G and the linear gain 7k is stable for all 7 € [0, 1]




Classical results
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Conjectures

Conjectures in the 50's

Aizerman Conjecture (1949)

The negative feedback interconnection between an LTI stable
system G and any nonlinearity in the sector [0, k] is stable if and
only if the feedback interconnection between G and the linear gain
Tk is stable for all 7 € [0, 1].




Classical results
oe

Conjectures

Conjectures in the 50's

Kalman Conjecture (1957)

The negative feedback interconnection between an LTI stable
system G and any nonlinearity in the slope [0, k] is stable if and
only if the feedback interconnection between G and the linear gain
Tk is stable for all 7 € [0, 1].




Classical results
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Graphical results

Circle Criterion

Circle Criterion

The negative feedback interconnection between an LTI stable
system G and a nonlinearity in the sector [0, k] is stable if there
exists € > 0 such that

Re(1+ kG(jw)) >e¢  Vw e R.




Classical results
0O@0000000000

Graphical results

Circle Criterion

Step 1. Characterization




Classical results
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Graphical results

Circle Criterion

Step 2 (and 3). Use the passivity theorem

There exists € > 0 such that Re(1 + kG(jw)) > € Vw € R.




Classical results
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Graphical results

Circle Criterion

The Circle Criterion hold for any k < ke

Im(G(jw))
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Classical results
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Graphical results

Popov Criterion

Popov Theorem

The negative feedback interconnection between a
strictly proper LTI stable system G and a nonlinearity in the sector
[0, k] is stable if there exists g € R and € > 0 such that

Re((1 + jgw)(1/k + G(jw)) > € Yw € R.




Classical results
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Graphical results

Popov multiplier

Step 1. Characterization

If ¢ is sector restricted, the composition operator gE(l + jqw)~Lis
passive for all g.

Multiplier as a mathematical operator

The object (1 + jqw) is referred to as the Popov multiplier.




Classical results
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Graphical results

Popov Criterion

Step 2. Use the passivity theorem

There exist € > 0 and g such that
Re((1 + jgw)(1 + kG(jw)) > € Yw € R.

rn




Classical results
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Graphical results

Popov Criterion

Popov plot

The Popov plot of a system G is the plot of Re(G(jw)) versus
wim(G(jw)) for all w > 0.

Step 3. Graphical interpretation

The negative feedback interconnection between a strictly proper
LTI stable system G and a nonlinearity in the sector [0, k] is stable
if the Popov plot of G lies to the right of a line passing through the
point (—1/k + €,0) with arbitrary slope.

Where is the multiplier?
The slope of the line is related to g.




Classical results
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Graphical results

Popov Criterion

The Popov Criterion hold for any 0 < k < kpc
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Classical results
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Graphical results

Off-Axis Circle Criterion

Step 1 Development of the class of RL/RC multipliers
preserving the positivity of ¢ (Brockett and
J. L. Willems, 1965);

Step 2 Frequency domain condition on G via Passivity
Theorem subject to the existence of one RL/RC
multiplier;

Step 3 Selection of an RL/RC multiplier for a given G by
restricting attention to multipliers with quasi-constant
phase (Cho and Narendra, 1968);

Step 4 Procedure to find the solution of the Lurye Problem.

Further reading
Absolute Stability, Carrasco and Heath, Wiley EEE Encyclopedia.




Classical results
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Graphical results

Off-Axis Circle Criterion

The Off-Axis Circle Criterion holds for any k < koacc

Nyquist plot
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Classical results
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Graphical results

Discrete-time result

Circle Criterion

Direct translation replacing the jw axis by the unit circle e/,

Popov Criterion

It is not possible to extend the Popov Criterion to the discrete-time
domain.

A

Off-Axis Circle Criterion

It is not possible to extend the Popov Criterion to the discrete-time
domain.

v




KYP & IQC

KYP Lemma

KYP Lemma, Rantzer 1996

Given A R™", B e R™™ and M = MT e R(rtm)x(ntm) ith
det(jwl — A) # 0 for all w € R and (A, B) controllable, the
following two statements are equivalent:

o

{(jw/ —IA)_IB} ’ M [UWI _IA)_lB] <0, YweRU{oo}

@ There exists P = PT € R"™ " such that
ATP+ PA PB
Ch [ BTP 0 }

The corresponding equivalence for strict inequalities holds even if
(A, B) is not controllable.

<0.




KYP & IQC

IQC: One theorem to rule them up

IQC Theorem

The positive feedback interconnection between a stable LTI system

G € RH!X™ and a bounded operator A : £5[0,00) — LJ'[0, c0) is
stable if the feedback between G and 7A is well-posed for all 7 € [0, 1]

and there exists a measurable Hermitian-valued function
M: jR — ¢U+mx(+m) gych that:

@ for any u € £5[0, 00), the integral quadratic constraint holds

L0 o 850

for all 7 € [0, 1];
@ there exists € > 0 such that

[G({w)r () [quq <—el WweR.




KYP & IQC
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KYP & IQC

Tailored for absolute stability

Step 1 We characterise A by means of a class of suitable
objects MN(jw), which can be seen as generalised
multipliers, such that the Integral Quadratic
Constraint (IQC)

/_Z [TZA%LJ ) L ggl)] dw >0

is satisfied;
Step 2 the IQC Theorem ensures the stability of the Lurye
system if the frequency condition Item 2

[G({w)]* ) |G < -et v em

Step 3 with the use of a finite parametrisation of the
multiplier and the KYP Lemma to search over finite
number of parameters



KYP & IQC

List of IQCs

Small gain systems (with gain )
. 1 0
H(Jw) = I:O 71/,}/2:|

. 01
MNijw) = [1 0}

v

. 0 1
=] ol

Sector-restricted nonlinearities

S 0 (1 - jqw)
M) = [(1+jqw) —2/k }

Recommended reading: Veenman, Scherer, Kéroglu, EJC, 2016



O’Shea-Zames-Falb multipliers
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O’Shea-Zames-Falb multipliers (CT)

Step 1 - Widest suitable LTI class for slope-restricted

nonlinearities

O'Shea (1967)

The class of O'Shea-Zames-Falb multipliers M is defined by the
convolution operators M whose impulse response is of the form

m(t) = Zhét—t — h(t),

where 0 is the Dirac delta function, t; # 0 and h; > 0 for all / and
h(t) > 0 for all ¢, and where

Zh +/ h(t)dt < 1.




O’Shea-Zames-Falb multipliers
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O’Shea-Zames-Falb multipliers (CT)

Step 2 - Stability result

Zames-Falb theorem (1968)

The negative feedback interconnection between a proper LTI stable
system G and a slope-restricted nonlinearity in [0, k] is stable if
there exist M € M and € > 0 such that

Re{M(jw)(1 + kG(jw))} > € Yw e R. (1)




O’Shea-Zames-Falb multipliers
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O’Shea-Zames-Falb multipliers (CT)

Step 3 - Searches

Safonov (1987)
)=1-) ho(t

Non-convex, requires time and/or frequency sweep,
can work very well
Chen and Wen (1995)

_1—217 a(t

LMI, |||—cond|t|oned for high order

Turner et al. (2009), Carrasco et al. (2014)
Conservative bound the £1 norm - LMI. Causal only
(Turner) or anti-causal only (Carrasco)

Comparisons in:

- Carrasco, Turner, and Heath, European Journal of Control 2016




O’Shea-Zames-Falb multipliers
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O’Shea-Zames-Falb multipliers (DT)

Discrete-time O’'Shea-Zames-Falb multipliers

O’Shea & Younis (1967)

The class of O'Shea-Zames-Falb multipliers M is defined by the
convolution operators M whose impulse response m(k) satisfies
>k Im(k)| < 2m(0) where m(k) < 0 for all k # 0

Step 2 - Stability Theorem (J. C. Willems & Brockett, 1968)

The negative feedback interconnection between a proper LTI stable
system G and a slope-restricted nonlinearity in [0, k] is stable if there
exist M € M and e > 0 such that

Re{M(*)(1 + kG(e*))} > ¢ Vw € [0, 7].

Step 3 - Searches (Carrasco et al, IEEE TAC, 2020)

The search in Discrete-Time is simple in comparison with
continuous-time counterparts. The canonical basis 1,271, z
is used for the parametrisation.

-2 —n
4




O’Shea-Zames-Falb multipliers
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O’Shea-Zames-Falb multipliers (DT)

Only one horse in town

TABLE I
EXAMPLES
Ex. Plant
36 | GO = 73w
i 2.10.9:.
2 [36] : _1.35; +0.v9L+0.05‘
.95240.9240.05
3 136] F2.8543.57-2.412:+0.7209
4 36] _ 24152 4+0.52-0.52+0.5
) 143 —809gjz‘ +]9.89323—5A67lzz+2,2072—0,5

) — .52+40.

50361 | Gs(z) = T092+0.79:10089

6 [40] | Ge(2) = F555;

_ 134124 ~1.22123+0.62852—0.56182+0.1993
T ew) | G7(2) = 5003575076973~ 1 182£0.6917:-0.1352

Criterion Odd ¢? Ex. | Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7
Circle Criterion [56] N 0.7934 0.1984 0.1379 1.5312 1.0273 0.6510 0.1069
Tsypkin Criterion [57] N 3.8000 0.2427 0.1379 1.6911 1.0273 0.6510 0.1069
Ahmad et. al. (2015), Thm 1 [36] N 12.4309 0.7261 0.3027 2.5904 24475 0.9067 0.1695
Park et al. (2019)[37] N 12.9960 0.7397 0.3054 2.5904 24475 0.9108 0.1695
Causal DT Zames-Falb (Prop. IIL.2.) Y 12.4355 0.7687 0.2341 3.3606 23328 0.9222 0.1966
Anticausal DT Zames-Falb (Prop. TIL6.) | Y 1.4994 04816 0.3058 3.2365 24474 1.0869 0.2365
FIR Zames-Falb (n; =1, n, = 1) N 12.9960 0.7397 0.3054 2.5904 24475 0.9108 0.1695
FIR Zames-Falb (ny =2, nj =2) N 12.9959 0.7397 0.3054 2.5904 2.4475 09115 0.1695
FIR Zames-Falb (n, =3, n, = 3) N 12.9960 0.7397 0.3054 3.2254 2.4475 09115 0.4347
FIR Zames-Falb (n, = 100, n, = 100) N 12.9766 0.7984 0.3100 3.8227 2.4475 09115 0.4921
FIR Zames-Falb (ns = n, = n*) N 13.0283 (7) | 0.8027 (15) | 0.3120 (14) | 3.8240 (5) | 2.4475 (1) | 09115 (2) [ 0.4922 (25)
FIR Zames-Falb (ny =1, n, = 1) Y 12.9959 0.7782 0.3076 3.1350 2.4475 1.0870 0.2366
FIR Zames-Falb (ny =2, n, =2) Y 12.9959 1.1056 03104 3.8240 2.4475 1.0870 0.2940
FIR Zames-Falb (n; =3, n; = 3) Y 13.4822 1.1056 03121 3.8240 2.4475 1.0870 0.4759
FIR Zames-Falb (n; = 100, n, = 100) Y 135101 1.1056 03121 3.8240 2.4475 1.0870 0.5278
FIR Zames-Falb (ny = n, = n") Y 135113 (17) [ 1.1056 (2) | 0.3121 (3) [ 3.8240 (2) | 2.4475 (I) | 1.0870 (1) | 0.5280 (19)
Nyquist Value N/A 36.1000 2.7455 03126 7.9070 2.4475 1.0870 1.1766




Carrasco's conjecture
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Limitations

Limitations of O'Shea-Zames-Falb multipliers in DT

Dual problem (J6nsson, Megretski)

For a given G, minimise k such that it is not possible to find a
suitable O'Shea-Zames-Falb multiplier for 1 + kG.

Original motivation

As we use a subset of multipliers, we want to know the efficiency of

the parametrisation
W

My conjecture (Carrasco, Turner, Heath, EJC, 2016)

The feedback interconnection between G and any nonlinearity in
the slope in the sector [0, k] if and only if there is a suitable
O’'Shea-Zames-Falb for the plant 1 + kG

\,




Carrasco's conjecture
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Limitations

Graphical representation of the Lurye problem

RHoo




Carrasco's conjecture
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Limitations

Jonsson's DT counterpart

Theorem (Zhang, Carrasco, Heath, IEEE TAC 2022)

Let G € RHy and let B > 1. Given Aq,...,Ag_1 > 0 such that
SETIA > 0;f

I1€Z

p—1 B—1
e (1,606} < i | =R {n (o1} .
r=1 r=1

where w, = £m for r =1, ..., 8 — 1, then there is no
O'Shea—Zames—Falb multiplier M such that

Re {M(“)G(e™)} >0, Vw € [0,7].




Carrasco's conjecture
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Limitations

Dual result for DT O'Shea—Zames—Falb multiplier

Numerical Implementation

Let G € RHy and let 5 > 1. For [ =0,1,---,28 — 1, let us define

M Re{(1 - eJea/)G(elon)}
X Re{(1 — e Je2)G(elo2)}
u= . ) V| = . )
Aot Re{(1 — eis-11) G ef-1)}

Assume there exists u = 0 such that |u| > 0 and
ulvy<Oforall /=0,1,---,28—1.

Then there is no O'Shea—Zames—Falb multiplier M such that

Re {M(¢“)G(e)} >0, Vw € [0,7].




Carrasco's conjecture
0000e

Limitations

One-frequency condition

Phase of G, +1/13.028374

4x/5

3n/5

Phase (rad)
o

o ©10 2710 3710 4510 w2 6x/10
Natural Frequency (rad)

77/10 87/10 97/10 g

e Every crossing between the Bode plot and the black lines
indicates the existence of a periodic solution.

e For a given system, we find the critical kozr such that the
phase of G + 1/k reaches the magenta crosses (Stern-Brocot
tree).



Carrasco's conjecture

Construction

Construction of Counterexamples of the Kalman Conjecture

_ Previous state of the art
kozr k6zF
Stable Unstable
e

0 kozr P kn o0
AS

Seiler, Carrasco, IEEE CSL 2021
kozekéze

. Stable HE Unstable . .
Counterexamples KC

0 kozr ;{;;/? = k% ¢ kn




Carrasco's conjecture

Construction

Current bottleneck on the necessity

Step 1 - Done

The class of LTV OZF multipliers proposed by Willems and
Brockett (1968) is a perfect characterization of the nonlinearity.

Step 2 - Open

It is possible to write any LTV multiplier as a conic combination of
a basis. Is it possible to apply the lossless S-procedure with infinite
terms?

.

Step 3 - Done (Also in Kharitenko and Scherer, accepted in

Automatica)

The class of LTV OZF multipliers is “phase-equivalent” to LTI OZF
multipliers.

(Su, Seiler, Carrasco, Khong, in press, Automatica)



Carrasco's conjecture

Construction

Kharitenko and Scherer, under review

Arbitrary dimension

By using duality in the linear programming problem, the conjecture
holds for some dimension, e.g. N =2

n uy = 1

Y2 up r




Carrasco's conjecture

Construction

Questions

rn u n

Y2 up r




