Click to skip over navigation
 


University of Manchester

School of Materials

 

Dr. Ian Kinloch's Publications

Please email me if you wish a reprint to be sent to you.

Refereed Journal Articles

2010

    49. Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites, AA. White, I.A. Kinloch, A.H. Windle and S.M. Best, J. R. Soc. Interface, 7, S529-S539, 2010
    48. Formation mechanism of peapod-derived double-walled carbon nanotubes, F. Ding, Z. Xu, B.I. Yakobson, R.J. Young, I.A. Kinloch, S. Cui, L. Deng, P. Puech, and M. Monthioux, Phys. Rev. B 82, 041403(R), 2010
    47. Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite, L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, K. S. Novoselov, Advanced Materials, DOI: 10.1002/adma.200904264, 2010
    46. Conductive Peptide Nanotube Networks via Enzyme Triggered Self-Assembly, H.Xu, A.K. Das, M. Horie, M.S. Shaik, A.M. Smith, Y. Luo, X. Lu, R. Collins, S.Y. Liem, A. Song, P.L.A. Popelier, M.L. Turner, P. Xiao, I.A. Kinloch, R.V. Ulijn, Nanoscale, 2, 967-975, 2010
    45. Are Carbon Nanotubes Viable Materials for the Electrochemical Storage of Hydrogen?, J.B. Martin, I.A. Kinloch, R.A.W. Dryfe, J. Phys. Chem C, 114 (10), 4693-4703, 2010
    44. Ordering in a Droplet of an Aqueous Suspension of Single-Wall Carbon Nanotubes on a Solid Substrate, S. Zhang, Q. Li, I.A. Kinloch, A.H. Windle, Langmuir, 26(3), 2107-2112, 2010

2009

    43. A Study of the Dynamic Interaction of Surfactants with Graphite and Carbon Nanotubes using Fmoc-Amino Acids as a Model System,, Y. Li, B.G. Cousins, R.V. Ulijn, I.A. Kinloch, Langmuir, 25(19), 11760-11767, 2009
    42. Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy, N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Lui, K. Suenaga, J.P. Rourke, S.J. York and J. Sloan, ACS Nano 3(9), 2547-2556, 2009
    41. The Effect of Stress Transfer within Double-Walled Carbon Nanotubes upon their Ability to Reinforce Composites , S. Cui, I.A. Kinloch, R.J. Young, L. Noé and M. Monthioux, Advanced Materials, 21(35), 3591- , 2009, DOI: 10.1002/adma.200803683
    40. Efficient diffusion barrier layers for the catalytic growth of carbon nanotubes on copper substrates , J. Garcia-Cespedes, S. Thomasson, K.B.K. Teo, I.A. Kinloch, W.I. Milne, E. Pascual and E. Bertran, Carbon, 47(3): 613-621, 2009
    39. Enzymatically Activated Peptide-based Surfactants for Carbon Nanotubes, Brian G. Cousins, Apurba K. Das, Raman Sharma, Yanning Li, Jonathan P. McNamara, Ian H. Hillier, Ian A. Kinloch and Rein V. Ulijn, Small, 5(5): 587-590 2009

2008

    38. Effect of nitrogen doping on Raman spectra of multi-walled carbon nanotubes L.G. Bulusheva, A.V. Okotrub, I.A. Kinloch, I.P. Asanov, A.G. Kurenya,A.G. Kudashov, X. Chen, H. Song, Physica Status Solidi B, 245(10): 1971-1974 2008
    37. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning S.J. Zhang, K.K.K. Krzysztof, I.A. Kinloch, A.H. Windle, Small, 4(8): 1217-1222 2008
    36. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos like pathogenicity in a pilot study , C.A. Poland, R. Duffin, I. Kinloch, A. Maynard, W.A.H. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee, K. Donaldson, Nature Nanotechnology, 3(7): 423-428 2008
    35. The Role of Sulphur in the Synthesis of Carbon Nanotubes by Chemical Vapour Deposition at High Temperatures , M. Motta, A. Moisala, I.A. Kinloch and A.H. Windle, J. Nanosci. Nanotechnol. 8: 2442-2449 2008
    34. Crystal Structure and Growth Mechanism of Unusually Long Fullerene (C60) Nanowires , Junfeng Geng, Wuzong Zhou, Paul Skelton, Wenbo Yue, Ian A. Kinloch, Alan H. Windle and Brian F. G. Johnson, Journal of the American Chemical Society, 130: 2527-2534 2008

2007

    33. High Performance Fibres from 'Dog Bone' Carbon Nanotubes , M. Motta, A. Moisala, I.A. Kinloch and A.H. Windle, Advanced Materials, 19(21): 3721-3726 2007
    32. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis , D.M. Brown, I.A. Kinloch, U. Bangert, A.H. Windle, D.M. Walter, G.S. Walker, C.A. Scotchford, K. Donaldson and V. Stone, Carbon, 45 (9): 1743-1756 2007
    31. The Effect of Aggregation on the Electrical Conductivity of Spin-Coated Polymer/Carbon Nanotube Composite Films , Ronald H. Schmidt, Ian A. Kinloch, Andrew N. Burgess and Alan H. Windle, Langmuir, 23: 5707-5712, DOI: la062794m 2007
    30. The parameter space for the direct spinning of fibres and films of carbon nanotubes , M. Motta, I. Kinloch, A. Moisala, V. Premnath, M. Pick and A. Windle, Physica E, 37 (1-2): 40-43 2007
    29. Anatase nanotubes as support for platinum nanocrystals, D. Eder, M.S. Motta, Kinloch IA and Windle AH, Physica E, 37 (1-2): 245-249 2007
    28. Hydroxyapatite-Carbon Nanotube Composites for Biomedical Applications: A Review, A. White, S. Best and I.A. Kinloch, Int. J. Appl. Ceram. Technol., 4 (1): 1-13 2007

2006

    27. Self-organization of carbon nanotubes in evaporating droplets, Q. Li, Y.T.T. Zhu, I.A. Kinloch and A.H. Windle, Journal of Physical Chemistry B, 110(28): 13926-13930 2006
    26. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites, A. Moisala, Q. Li, I.A. Kinloch and A.H. Windle, Composites Science And Technology 66(10): 1285-1288, 2006
    25. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle and K. Schulte, Polymer 47(6): 2036-2045 2006
    24. Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes, S.J. Zhang, I.A. Kinloch and A.H. Windle, Nano Letters 6(3): 568-572 2006
    23. Pure rutile nanotubes, D. Eder, I.A. Kinloch and A.H. Windle, Chemical Communications 13: 1448-1450 2006
    22. Enhanced self-assembly, of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes, Q.W. Li, B.Q. Sun, I.A. Kinloch, D. Zhi, H. Sirringhaus and A.H. Windle, Chemistry of Materials 18(1): 164-168 2006

2005

    21. Production of carbon nanoribers in high yields using a sodium chloride support, J.G. Geng, I.A. Kinloch, C. Singh, V.B. Golovko, B.F.G. Johnson, M.S.P. Shaffer, Y.L. Li and A.H. Windle, Journal Of Physical Chemistry B 109(35): 16665-16670 2005
    20. Mechanical properties of continuously spun fibers of carbon nanotubes, M. Motta, Y.L. Li, I. Kinloch and A. Windle, Nano Letters 5(8): 1529-1533 2005
    19. Discrete dispersion of single-walled carbon nanotubes, Q.W. Li, I.A. Kinloch and A.H. Windle, Chemical Communications (26): 3283-3285 2005
    18. Orientational effect of the texture of a carbon-nanotube film on CK alpha radiation intensity, A.V. Okotrub, S.B. Dabagov, A.G. Kudashov, A.V. Gusel'nikov, I. Kinloch, A.H. Windle, A.L. Chuvilin and L.G. Bulusheva, JETP Letters 81(1): 34-38 2005 Originally published in Russian in Pis'ma v Zhurnal Eksperimental'noi I Teoreticheskoi Fiziki, 81(1), 2005, pp. 37-42

2004

    17. Growth of single-walled carbon nanotubes by the rapid heating of a supported catalyst, Y.L. Li, I.A. Kinloch, M.S.P. Shaffer, C. Singh, J.F. Geng, B.F.G. Johnson and A.H. Windle, Chemistry Of Materials 16(26): 5637-5643 2004
    16. Prospects for nanotube and nanofibre composites, M.S.P. Shaffer and I.A. Kinloch, Composites Science And Technology 64(15): 2281-2282 2004
    15. Novel Mg2SiO4 structures, R.L.D. Whitby, K.S. Brigatti, I.A. Kinloch, D.P. Randall and T. Maekawa, Chemical Communications (21): 2396-2397 2004
    14. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Y.L. Li, I.A. Kinloch and A.H. Windle, Science 304 (5668): 276-278 2004
    13. Synthesis of single-walled carbon nanotubes by a fluidized-bed method, Y.L. Li, I.A. Kinloch, M.S.P. Shaffer, J.F. Geng, B. Johnson and A.H. Windle, Chemical Physics Letters 384 (1-3):98-102 2004
    12. High-throughput screening for carbon nanotube production, I.A. Kinloch, M.S.P. Shaffer, Y.M. Lam and A.H. Windle, Carbon 42(1): 101-110 2004

2003

    11. Nematic liquid crystallinity of multiwall carbon nanotubes, W.H. Song, I.A. Kinloch, A.H. Windle, Science 302(5649): 1363-1363 2003
    10. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer and A.H. Windle, Polymer 44(19): 5893-5899 2003
    9. Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl, I.A. Kinloch, G.Z. Chen, J. Howes, C. Boothroyd, C. Singh, D.J. FrayJ and A.H. Windle, Carbon 41(6): 1127-1141 2003
    8. Towards the production of large-scale aligned carbon nanotubes, C. Singh, M.S.P. Shaffer, K.K.K. Koziol, I.A. Kinloch and A.H. Windle, Chemical Physics Letters 372(5-6): 860-865 2003

2002

    7. A rheological study of concentrated aqueous nanotube dispersions, I.A. Kinloch, S.A. Roberts and A.H. Windle, Polymer 43(26): 7483-7491 2002
    6. Production of aligned carbon nanotubes by the CVD injection method, C. Singh, M. Shaffer, I. Kinloch and A.H. Windle A, Physica B-Condensed Matter 323(1-4): 339-340 2002
    5. A feasibility study of scaling-up the electrolytic production of carbon nanotubes in molten salts, A.T. Dimitrov, G.Z. Chen, I.A. Kinloch and D.J. Fray, Electrochimica Acta 48 (1): 91-102 2002
    4. Synthesis and characterization of carbon nanofibers produced by the floating catalyst method, C. Singh, T. Quested, C.B. Boothroyd, P. Thomas, I.A. Kinloch, A.I. Abou-Kandil and A.H. Windle, Journal Of Physical Chemistry B 106 (42): 10915-10922 2002

2000

    3. Mixed-phase WxMoyCzS2 nanotubes, W.K. Hsu, Y.Q. Zhu, C.B. Boothroyd, I.A. Kinloch, S. Trasobares, H. Terrones, N. Grobert, M. Terrones, R. Escudero, G.Z. Chen, C. Colliex, A.H. Windle, D.J. Fray, H.W. Kroto HW and D.R.M. Walton, Chemistry Of Materials 12(12): 3541 2000
    2. Morphology, structure and growth of WS2 nanotubes, Y.Q. Zhu, W.K. Hsu, H. Terrones, N. Grobert, B.H. Chang, M. Terrones, B.Q. Wei, H.W. Kroto, D.R.M. Walton, C.B. Boothroyd, I. Kinloch, G.Z. Chen, A.H. Windle and D.J. Fray, Journal Of Materials Chemistry 10(11): 2570-2577 2000

1998

    1. Electrochemical investigation of the formation of carbon nanotubes in molten salts , G.Z. Chen, I. Kinloch, M.S.P. Shaffer, D.J. Fray and A.H. Windle, High Temperature Material Processes 2(4): 459-469 1998

Book Chapters

    2. Nanoparticle Toxicology and Ecotoxicology; The role of oxidative stress, Vicki Stone, Ian Kinloch, Martin Clift, Teresa Fernandes, Alex Ford, Nick Christofi, Alex Griffiths and Ken Donaldson, Nanotoxicology - Interactions of Nanomaterials with Biological Systems, Ed. Y. Zhao and H.S. Nalwa, American Scientific Publishers, ISBN 1-58883-088-8 2006
    1. Nanoparticle Interactions with Biological Systems and Subsequent Activation of Intracellular Signalling Mechanisms, V. Stone and I. Kinloch, Nanotoxicology: Characterization, Dosing and Health Effects, Ed. N.A. Monteiro-Riviere and C.L. Tran, CRC Press, ISBN 1420045148 2007

Editorships

    4. Nanotubes, Nanowires, Nanobelts and Nanocoils—Promise, Expectations and Status Ed. MRS Proceedings Volume 1142, in press
    3. Composite Science and Technology. CNTNET07 Special Edition , Ed. I.A. Kinloch and A.H. Windle, 69 (10) 2009
    2. Nanowires and Carbon Nanotubes - Science and Applications, MRS Fall 06 Sypmosium proceedings, Ed. P. Bandaru, M. Endo, I.A. Kinloch, A.M. Rao (Mater. Res. Soc. Symp. Proc. 963E, Warrendale, PA, 2007)
    1. European Workshop on Nanocomposites Edition of Composite Science and Technology, Ed. by I.A. Kinloch and M.S.P. Shaffer, 64(15) 2004

Conference proceedings

    4. Preparation and properties of carbon nanotube-reinforced hydroxyapatite, A.A. White, A.H. Windle, I.A. Kinloch and S.M. Best, Conference proceedings of 20th International Symposium on Ceramics in Medicine. Published in Key Engineering Materials, 361-363 (Parts 1 and 2), 419-422 2008
    3. An electrolytic method to convert graphite to carbon nanotubes, G.Z. Chen, I. Kinloch, M.S.P. Shaffer, D.J. Fray and A.H. Windle, , Mater. Sci. and Industrial Technol., Ed. China Association of Science and Technology, China Science and Technology Publisher, Beijing, 1998, 238, ISBN 7-5046-2522-1. (in Chinese)
    2. Electrochemical investigation of the formation of carbon nanotubes in molten salts, G.Z. Chen, I Kinloch, M.S.P. Shaffer, D.J. Fray and A.H. Windle, Advances in Molten Salts - From Structural Aspects to Waste Processing, Ed. M. Gaune-Escard, Begell House, Inc., Porquerolles Island, France, 97-107 1998
    1. The use of adhesive bonding to repair CFRP composites , M.N. Chambrides, R. Hardouin, A.J. Kinloch, I.A. Kinloch and F.L. Matthews, ‘Structural Adhesives in Engineering V' Fifth International Conference, Bristol, 1998, ISBN 1-86125-066-5, The Institute of Materials, London.

Patent applications

    8. Preparing titanium oxide nanostructure having rutile phase, D. Eder, I.A. Kinloch and A.H. Windle, WO2007028972-A1
    7. Purification of nanoparticles e.g. carbon nanotubes, by causing/allowing phase separation of first suspension into liquid crystalline suspension of purified nanoparticles and second suspension, and separating liquid crystalline suspension, S. Zhang, I.A. Kinloch and A.H. Windle, WO2006109059-A1
    6. Production of agglomerate involves reacting gaseous reactants within reaction zone of reactor to form product particles, agglomerating product particles into agglomerate, and applying force to agglomerate, Y. Li, I.A. Kinloch, S. Cash and A.H. Windle, US2005006801-A1; WO2005007926-A2; EP1673489-A2; KR2007020164-A; JP2007536434-W; US7323157-B2
    5. Production of carbon nanoparticles, e.g. nanotubes or nanofibers, comprises adding catalyst or thermally decomposable catalyst precursor to heated reactor, maintaining fluidized bed of particles in reactor, and forming carbon nanoparticles, M. Shaffer M, I. Kinloch, A.H. Windle, J. Geng, B.F.G. Johnson, C. Singh and Y. Li, US2005063891-A1
    4. Synthesis of carbon nanomaterials, such as fullerenic nanostructures, involves heating catalyst (precursor) with carbon source, which catalyzes formation of carbon nanomaterial from source, or reacts so form catalyst of such capability, M.S.P. Shaffer, A.H. Windle, I. Kinloch and S. Cash, WO2004007361-A2; AU2003280968-A1; AU2003280968-A8
    3. Production of aligned carbon nanotubes and/or nanofibers comprises providing finely divided substrate particles having smooth faces and catalyst material on surface and carbon-containing gas at reaction temperature and pressure, I. Kinloch, C. Singh, M.S.P. Shaffer, K.K.K. Koziol and A.H. Windle, WO2004043858-A1; AU2003283573-A1; EP1560790-A1; JP2006506304-W; US2006133982-A1
    2. Production of nanoscale carbon material, e.g. multi-walled carbon nanotubes, involves reacting carrier gas having supported catalyst formed in situ, with gas comprising carbon-containing gas at high temperature, M. Shaffer, I. Kinloch and A.H. Windle, WO200292506-A; WO200292506-A1; EP1390294-A1; AU2002257922-A1; JP2004525853-W; US2004234444-A1; EP1390294-B1; US7135159-B2; DE60215489-E; JP3930810-B2; DE60215489-T2
    1. Continuous production of nanotubes useful for mechanical reinforcement, by introducing metal catalyst or metal catalyst precursor, directing quenching gas into plasma, and adding nanotube forming materials, M. Shaffer, I. Kinloch, S. Cash, I. McKinnon, A.H. Windle, I. Mackinnon and A. Windle, WO2003062146-A; WO2003062146-A1; AU2003202067-A1; EP1513767-A1; JP2005515146-W; US2005118090-A1