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Abstract

The self-organising map (SOM) has been successfully employed as a nonparametric method for dimensionality reduction and data

visualisation. However, for visualisation the SOM requires a colouring scheme to imprint the distances between neurons so that the clustering

and boundaries can be seen. Even though the distributions of the data and structures of the clusters are not faithfully portrayed on the map.

Recently an extended SOM, called the visualisation-induced SOM (ViSOM) has been proposed to directly preserve the distance information

on the map, along with the topology. The ViSOM constrains the lateral contraction forces between neurons and hence regularises the inter-

neuron distances so that distances between neurons in the data space are in proportion to those in the map space. This paper shows that it

produces a smooth and graded mesh in the data space and captures the nonlinear manifold of the data. The relationships between the ViSOM

and the principal curve/surface are analysed. The ViSOM represents a discrete principal curve or surface and is a natural algorithm for

obtaining principal curves/surfaces. Guidelines for applying the ViSOM constraint and setting the resolution parameter are also provided,

together with experimental results and comparisons with the SOM, Sammon mapping and principal curve methods. q 2002 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

The demand for a meaningful understanding and

visualisation of nonlinear multivariate data has never been

higher, as operational data and experimental results are

being accumulated at astonishing rates in many organis-

ations. Searching for a suitable data projection method has

always been an integral objective of multivariate data

analysis and pattern recognition. Such a method should

enable us to observe and detect underlying data distri-

butions, patterns and structures. Good data analysis tools

and methods will not only enable an in-depth view of the

data but also reveal the underlying functions. A great deal of

effort has been devoted to this subject and a number of

useful methods have been proposed and consequently

applied to various applications.

Classic projection methods include the linear principal

component analysis (PCA) and the multidimensional

scaling (MDS). The PCA projects the data onto its principal

directions (usually the first or the first two, or any two

‘interesting’ components). The principal directions are

represented by the principal, orthogonal eigenvectors of

the covariance matrix of the data. It is the optimal linear

projection in the sense of minimum mean-square-error

between the original data points and the projected ones on

the principal subspace. Traditional methods for solving

eigenvector problem involve numerical methods. Though

fairly efficient and robust, they are not usually adaptive and

often require the presentation of the entire data set. Several

Hebbian-based learning algorithms and neural networks

have been proposed for performing PCA such as, the

subspace network (Oja, 1989), the generalised Hebbian

algorithm (Sanger, 1991), and Rubner and Tavan’s network

(1989). But the PCA’s linearity has limited its power for

practical data, as it cannot capture nonlinear relationships

defined by higher than second order statistics. If the input

dimension is much higher than two, the projection onto a

linear plane will provide limited visualisation power.

Extension to nonlinear PCA could tackle better, in principle,

practical problems. However, there is no single and unique

solution to nonlinear PCA (Malthouse, 1998). Various

methods have been proposed, for example autoassociative

networks (Kramer, 1991), generalised PCA (Karhunen &

Joutsensalo, 1995), kernel PCA (Schölkopf, Smola, &

Müller, 1998), and principal curves and surfaces (Hastie &

Stuetzle, 1989; LeBlanc & Tibshirani, 1994). Other

mapping methods include the recently proposed local,

geometric based grouping and averaging (Tenenbaum, de

Silva, & Langford, 2000) and local linear embedding

(Roweis & Saul, 2000).

MDS tries to project data points onto a two-dimensional

(2D) sheet by preserving as close as possible the inter-point
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metrics. It is generally nonlinear and can reveal the overall

structure of the data, but cannot provide the underlying

mapping function. Sammon (1969) mapping is a widely

known example of MDS. The objective of Sammon

mapping is to minimise the differences between inter-

point distances in the original space and those in the

projected plane. The projection of data from an invisible

high dimensional space to a low perceptible one can reveal

the data structures and cluster tendency. The Sammon

mapping has been shown to be useful for data structure

analysis (e.g. Sammon, 1969; Ripley, 1996). However, like

other MDS methods, the Sammon algorithm is a point-to-

point mapping, which does not provide the explicit mapping

function and cannot accommodate new data points (Sam-

mon, 1969; Mao & Jain, 1995). For any additional data, the

projection has to be re-calculated from scratch based on all

data points. This proves difficult or even impossible for

many practical applications where data arrives sequentially,

the quantity of data is large, and/or memory space for the

data is limited.

Neural networks present another approach to nonlinear

data analysis. They are biologically inspired learning and

mapping methods and can learn complex nonlinear

relationships of variables from sample data. Mao and Jain

(1995) have given an overview on this subject. Kohonen’s

self-organising map (SOM) is an abstract mathematical

model of the mapping between nerve sensory and cerebral

cortex (Kohonen, 1982, 1995). As the map is often arranged

in a low dimensional grid and the inputs are often drawn

from a high dimensional space, the SOM has been used

as a visualisation tool for dimensionality reduction (e.g.

Ultsch, 1993; Kraaijveld, Mao, & Jain, 1995). One of the

greatest properties of the SOM is its topology preservation,

i.e. close points in the input space are mapped to nearby

neurons in the map space. Such properties can be employed

to visualise the relative or qualitative mutual relationships

among the input. The SOM is also an abstraction process

and it usually uses fewer representatives for an often large

number of data points. Its distribution and convergence

properties show that the SOM is naturally an optimal vector

quantiser (VQ) in minimising the mean-square-error

between reference vectors and data space (Luttrell, 1989,

1994; Yin & Allinson, 1995). The algorithm has found a

wide range of applications in VQ, pattern classification,

clustering, data mining and visualisation, knowledge

discovery and information retrieval (cf. Kohonen, 1995).

However, when the SOM is used for visualisation, the

inter-neuron distances are not directly visible or measurable

on the map. A colouring scheme such as the U-matrix

(Ultsch, 1993; Kraaijveld et al., 1995) has to be applied to

the trained map for marking relative distances between the

neurons according to the difference of their weights referred

to the input space. Even so, the structures of data clusters are

not apparent and often appear distorted. Although the

Sammon mapping has been applied, in a post-processing

step, to a trained SOM as a means of displaying the

distances on the map (Törönen, Kolehmainen, Wong, &

Castrén, 1999), the SOM does not directly apply to MDS,

which aims to reproduce proximity in (Euclidean) distance

on a low visualisation space (Cox & Cox, 1994; Ripley,

1996).

Recently a constrained SOM, termed the visualisation

induced self-organising map (ViSOM), has been proposed

by the author (Yin, 2001, 2002). The ViSOM projects the

high dimensional data in an unsupervised manner as does

the SOM, but constrains the lateral contraction force

between the neurons and hence regularises the inter-neuron

distances with respect to a scaleable parameter that defines

and controls the resolution of the map. It preserves the data

structure as well as the topology as faithfully as possible.

The ViSOM provides a direct visualisation of both the

structure and distribution of the data.

This paper provides a further analysis of the ViSOM, its

implementation relating to applying the constraint and

setting the resolution parameter, and its relationship with

other nonlinear mapping methods. The ViSOM is a

nonlinear projection for data visualisation but of a simple

computational structure. The paper also links it with the

principal curves or surfaces proposed by Hastie and Stuetzle

(1989). The principal curve is a self-consistency smooth

curve passing though the ‘middle’ points of the data. It is

more of a notation than an actual algorithm. Unlike in the

linear PCA case, the nonlinear manifold may not be unique

and its existence depends on constraints and implemen-

tation. The subject has attracted much attention recently.

Several algorithms have been proposed for solving for

principal curves/surfaces. Some are nonparametric, e.g. the

HS algorithm (Hastie & Stuetzle, 1989), while others are

semi-parametric, e.g. the generative topographic mapping

(GTM) (Bishop, Svensén, & Williams, 1998). The paper

reveals that the ViSOM is a natural algorithm for

constructing principal curves and surfaces. In Section 2,

the ViSOM as an extension of the SOM for direct data

visualisation is described, together with detailed explan-

ations and guidelines on its constraint and the resolution

parameters. Section 3 links the ViSOM with the principal

curve algorithm from a kernel regression prospective,

followed by several illustrative examples and experiments

and comparisons with other methods in Section 4.

Conclusions are given in Section 5.

2. ViSOM and data visualisation

Kohone’s SOM is an unsupervised learning algorithm,

which uses a finite grid or lattice of neurons to fill and frame

the input data. Nodes are usually arranged in a 2D

rectangular or hexagonal grid. In the SOM, a neighbourhood

learning is adopted to form topological ordering among the

neurons in the map. The close data points are likely to be

projected to nearby nodes. Thus the map can be used to

show the relative relationships among data points. However,
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the SOM does not directly show the inter-neuron distances

on the map. For visualisation, the SOM requires assistance

from some colouring scheme to imprint the inter-neuron

distances and therefore the clusters and boundaries can be

marked. The colour or grey tone of a node or a region

between nodes is proportional to the mean or median of the

distances between that node and its nearest neighbours.

Such a colouring method has been used in many data

visualisation applications, e.g. WEBSOM (Honkela, Kaski,

Lagus, & Kohonen, 1997) and World Welfare Map (Kaski

& Kohonen, 1996). The colouring methods indeed enhance

the visualisation ability of the SOM. However, the cluster

structures and distribution of the data shown on the map

often are not apparent and appear in distorted and unnatural

forms. Other techniques to mark the inter neuron distances

include calculating magnification factors (Bishop, Svensén,

& Williams, 1998) and interpolation (Yin & Allinson,

1999). The SOM can serve as a visualisation map only in

showing the relative closeness and relationships among data

points and clusters. In many cases, however, a direct and

faithful display of structure shapes and distributions of the

data is more desirable in visualisation applications.

2.1. ViSOM

For the map to capture the data structure naturally and

directly, the distance quantity must be preserved on the map,

along with the topology. Ideally the nodes should be

uniformly and smoothly placed in the nonlinear manifold of

the data space. The distances of any two nearest neighbour-

ing neurons are approximately the same and the distances

between a neuron and its further neighbouring neurons

increase proportionally and regularly according to the

structure of the map grid. So that the positions of the

neurons can be served as grades for measuring the distance

of any mapped points. The map can be seen as a smooth and

graded mesh embedded into the data space, onto which the

data points are mapped and the inter-point distances are

approximately preserved.

The ViSOM uses the same grid structure of neurons as

the SOM. Denoting the input x [ Rn as a n-dimensional

vector, node index as c ðc ¼ ði; jÞ [ V for a 2D map, where

i ¼ 1; 2;…;M and j ¼ 1; 2;…;N for a N £ M map), its

associated weight vector as wc ¼ ½wc1;wc2;…;wcn�
T; at

time step t, the data input is x(t), learning rate is a(t), and the

neighbourhood function is hðv; c; tÞ; where v represents the

winner’s index, then the basic ViSOM algorithm can be

stated as follows (Yin, 2002).

The basic ViSOM algorithm

1. Initialise the map or weights either to the principal

components or to small random values.

2. At time step t, given an input vector x(t), find the winner

v according to,

v ¼ arg min
c[V

kxðtÞ2 wck ð1Þ

3. Update the winner’s weights according to,

wvðt þ 1Þ ¼ wvðtÞ þ aðtÞ½xðtÞ2 wvðtÞ� ð2Þ

4. Update the weights of neighbouring neurons using

wkðt þ 1Þ ¼ wkðtÞ þ aðtÞhðv; k; tÞ

£

�
½xðtÞ2 wvðtÞ� þ ½wvðtÞ2 wkðtÞ�

�
dvk

Dvkl
2 1

�� ð3Þ

5. Refresh the map by randomly choosing a neuron and

using its weight vector as the input for a small percentage

of updating times (e.g. 20% iterations).

6. Repeat steps 2–5 until the map converges.

Here dvk and Dvk are the distances between nodes v and k

in the data space and on the map respectively (nodes are

placed at the units of the map grid). The positive pre-

specified resolution parameter, l, specifies the scale of the

map, i.e. the scaling of the unit distance on the map with

respect to the data space. It can be chosen according to the

variance or maximum scope of the data, and can also be

made adaptive during the training. It represents the desired

inter-neuron distance of two nearest neighbouring nodes

reflected in the data space. The smaller the value of l, the

higher resolution the map can provide; subsequently a larger

map and more neurons are required in order to cover the

entire data space.

A refreshing phase is introduced to ensure the map’s

smooth expansion to those regions where there are few or no

data points. Some nodes may seldom win from the direct

input stimulation. Refreshing keeps these nodes active and

also regularises the inter-neuron distances among these

nodes.

The main difference between the SOM and ViSOM is the

constraint, b U dvk=ðDvklÞ2 1: Without it the ViSOM

becomes the SOM. In the SOM the updating force,

[x(t) 2 wk(t)], can be decomposed into two components,

F kxU xðtÞ2 wkðtÞ ¼ ½xðtÞ 2 wvðtÞ� þ ½wvðtÞ 2 wkðtÞ� U

F vxþF kv; as shown in Fig. 1(a). The first force, F vx,

represents the updating force from the winner v to the input

x(t), and is the same to the updating force used by the winner

in Eq. (2). It adapts the neurons towards the input in a

direction that is orthogonal to the tangent plane around the

winner. While the second force, F kv, is a lateral force

bringing neuron k to the winner v, i.e. a contraction force. It

is this contraction force that brings neurons in the

neighbourhood towards the winner and thus forms a

contraction around the winner at each time step. The

constraint is applied to this contraction force. The ViSOM

regularises this force so that the distances between the nodes

on the map are in proportion to the distances of their weights

in the data space.

It can be seen that if the dvk is larger than Dvkl; i.e. the wk
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is farther away from wv under the specified resolution, the

constraint is positive, so a contraction force remains.

Otherwise, the constraint becomes negative, so an opposite

or expansion force applies. These are shown in Fig. 1(b) and

(c). The aim is to adjust inter-neuron distances on the map in

proportion to those in the data space, i.e. Dvk / dvk: When

the data points are eventually projected on a trained map,

the distance between point i and j on the map is proportional

to that of the original space, subject to the quantisation error

(the distance between a data point and its neural

representive). This has a similar effect to Sammon mapping,

which also aims at achieving this proportionality, Dij / dij;

though here Dij represents the distance of two mapped data

points. When the number of nodes increases, the quantisa-

tion errors reduces, so the ViSOM becomes similar to the

Sammon mapping. However, the Sammon mapping is a

point to point mapping and a batch operation, so cannot

provide a mapping function or accommodate new data

points. Computationally the Sammon mapping is generally

more costly, as it requires calculation of both first and

second order gradients for each data point (Sammon, 1969).

It also requires an L £ L distance matrix, where L is the

number of data point. This becomes disadvantageous or

even impractical for a large data set. For example, for 1000

data points 1,000,000 variables are needed for holding all

the inter-point distances and they are calculated at every

iteration. The ViSOM, however, is an adaptive and effective

method. It is also a principled approach as it can provide the

mapping function. Another difference lies in the way of

defining the scope where distance similarities are preserved.

In the Sammon mapping, because it uses intermediate

normalisation (one local and one global normalisers, see

Biswas, Jain, & Dubes, 1981; Cox & Cox, 1994), it gives an

averaged view of local distributions and global structure of

the data. The ViSOM uses the neighbourhood function to

provide a flexible control over the scope of the constraint.

Large neighbourhood size means a broad constraint that

makes most nodes comply with the distance proportionali-

ties, equivalent to a global view of the data structure. A

small scope provides a local constraint, leading to a detailed

display of local distributions.

2.2. Smooth constraint and resolution parameter

In practice, it is not necessary to follow exactly the basic

version of the algorithm listed in Section 2.1, as long as the

ViSOM constraining principle is obeyed. The constraint can

be introduced gradually for a smooth convergence. Define a

smooth variable j that varies from 1 to 0 gradually with time

during the training course, then one can replace the update

rule Eq. (2) with the following one.

wkðt þ 1Þ ¼ wkðtÞ þ aðtÞhðv; k; tÞðF vxþ½jþ ð1 2 jÞb�F kvÞ

¼ wkðtÞ þ aðtÞhðv; k; tÞ

�

�
½xðtÞ2 wvðtÞ� þ

�
jþ ð1 2 jÞ

�
dvk

Dvkl
2 1

��

� ½wvðtÞ2 wkðtÞ�

�
ð4Þ

At the start of training, when j is close to 1, the ViSOM

behaves almost like a SOM as almost no constraint is

applied. Gradually with j decreasing with time, the

constraint takes effect. Such an application of the constraint

provides a smooth transition from the SOM to ViSOM.

The choice of resolution parameter l depends on the size

of the map and the variance or breadth of the data. It can also

be a subjective figure, i.e. how fine does one want the

representation. For a fixed resolution, a map of sufficient

size has to be used in order to cover the entire data region.

Otherwise, the map will only reveal the centre part of the

data space correctly, and the boundary regions will be

cramped on the edges of the map. If the size of the map is

chosen a priori then the resolution parameter must be set

appropriately. If it is too small, the map is too fine and does

not cover the entire data space. While if it is too large the

map becomes too coarse and over stretched to the outsides

of the data space thus giving a poor resolution. For many

data analysis problems, the maximum scope/span, Spanmax,

or the maximum variance, Varmax, of the data can be

Fig. 1. (a) Decomposition of the SOM updating force, (b) contraction, (c) expansion.
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obtained beforehand then the resolution, l, can be set to

l ¼ 1 , 1:5 £
Spanmax

min{M;N}
ð5aÞ

or

l ¼ 1 , 1:5 £
4 £

ffiffiffiffiffiffiffiffiffi
Varmax

p

min{M;N}
ð5bÞ

As practical data are likely to lie on a nonlinear manifold,

such a measure based on spans or variances only provide a

linear estimate of the stretch. A factor of 1 , 1.5 is to allow

additional stretch or curvature due to the nonlinearity.

Larger factors can be used for stronger nonlinear cases. If no

prior knowledge on data is available, the SOM can be used

for the first few hundreds of iterations, then l can be set to

2 , 5 times of the average inter-neuron distance of the

SOM. The ViSOM then comes into action.

Although the size of the map and the resolution are

usually pre-specified and fixed, they both can be made

adaptive during the training in order for the map to represent

the entire data space effectively. Additional rows or

columns can be either added or deleted for varying the

size of the map as for the growing grid structure (Fritzke,

1995). One way to adapt the resolution is to monitor the

firing activities and quantisation errors of the nodes. If these

quantisation errors or activities along the edges are higher

than those of inner nodes, it means that the map or

resolution is too small. The resolution can be increased

according to the quantisation errors. If the firing activities

(on the data rather than refreshing weights) of all boundary

nodes are low or zero, it means that the map or resolution is

set too large, then the resolution should be decreased

according to the range from the dormant nodes to the edges

of the map.

The key feature of the ViSOM is that the distances

between the neurons on the map (in a neighbourhood)

reflect the corresponding distances in the data space. That is,

the distant measure is preserved on the map. When the map

is trained and data points mapped, the distances between

mapped data points on the map will resemble approximately

those in the original space (subject to the resolution of the

map). This makes visualisation more direct, quantitatively

measurable, and visually appealing. The size or covering

range of the neighbourhood function can also be decreased

from an initially large value to a smaller final one. The final

neighbourhood, however, should not just contain the

winner. The rigidity or curvature of the map is controlled

by the ultimate size of the neighbourhood, sf. The larger of

this size the flatter is the final map in the data space.

3. ViSOM and principal curves/surfaces

The extension from linear PCA to nonlinear PCA has not

been straightforward due to the lack of a unified

mathematical structure, efficient and reliable algorithms,

and in some cases to excessive freedom in selection of

representative basis functions (Malthouse, 1998). Several

methods have been proposed for nonlinear PCA such as, a

five-layer feedforward associative network (Kramer, 1991),

a generalised Hebbian algorithm based method (Karhunen

& Joutsensalo, 1995), and a kernel-based PCA (Schölkopf

et al., 1998). The principal curves and principal surfaces

(Hastie & Stuetzle, 1989; LeBlanc & Tibshirani, 1994) were

primary nonlinear extension of PCA, but a valid algorithm is

required for a good implementation. This section discusses

the relationship between principal curves and the ViSOM.

3.1. Definition of principal curves

The principal curve was first defined by Hastie and

Stuetzle (1989) as a smooth and self-consistency curve,

which does not intersect itself. Denote x as a random vector

in Rn with density p and finite second moment. Let f(·) be a

smooth unit-speed curve in Rn, parametrised by the arc

length r (from one end of the curve) over L [ R, a closed

interval.

For a data point x, its projection index on f is defined as

rf ðxÞ ¼ sup
r[L

r : kx 2 f ðrÞk ¼ inf
q
kx 2 f ðqÞk

� �
ð6Þ

The curve is called self-consistent or a principal curve of r if

f ðrÞ ¼ E½Xlrf ðXÞ ¼ r� ð7Þ

The principal component is a special case of the principal

curves if the distribution is ellipsoidal. Although 1D

principal curves have been mainly studied, extension to

higher dimension, e.g. principal surfaces is feasible in

principle. However, in practice, a good implementation of

principal curves/surfaces relies on an effective and efficient

algorithm.

3.2. Principal curve algorithms

The principal curves/surfaces are more of a concept that

invites practical implementations. The HS algorithm is a

nonparametric method (Hastie & Stuetzle, 1989), which

directly iterates the two steps of the above definition. It is

similar to the LBG VQ algorithm (Linde, Buzo, & Gray,

1980) combined with some smoothing techniques.

HS algorithm:

Initialisation: Choose the first linear principal com-

ponent as the initial curve, f (0)(x).

Projection: Project the data points onto the current curve

and calculate the projections index, i.e. rðtÞðxÞ ¼ rf ðtÞðxÞ:

Expectation: For each index, take the mean of data points

projected onto it as the new curve point, i.e. f ðtþ1ÞðrÞ ¼

E½Xlrf ðtÞðXÞ ¼ r�:

The projection and expectation steps are repeated until a
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convergence criterion is met, e.g. when the change of the

curve between iterations is below a threshold.

For finite data, the density r is often unknown, the

expectation step is replaced by a smoothing method such as

the locally weighted running-line smoother or smoothing

splines. The arc length is simply computed from the line

segments. There are no proofs of convergence of the

algorithm, but no convergence problems have been

reported, though the algorithm is biased in some cases

(Hastie & Stuetzle, 1989). Banfield and Raftery (1992) have

modified the HS algorithm by taking the expectation of the

residual of the projections in order to reduce the bias. Kegl,

Krzyzak, Linder, and Zeger (1998) have proposed an

incremental, e.g. segment by segment, and arc length

constrained method for practical construction of principal

curves.

Tibshirani (1992) has introduced a semi-parametric

model for the principal curve. A mixture model was used

to estimate the noise along the curve; and the expectation

and maximisation (EM) method was employed to estimate

the parameters. Other options for finding the nonlinear

manifold include the GTM (Bishop et al., 1998) and

probabilistic principal surfaces (PPS) (Chang & Ghosh,

1999). These methods model the data by a means of a latent

space. They belong to the semi-parametrised mixture

model, although types and orientations of the local

distributions vary from method to method.

3.3. Discrete principal curves/surfaces

The SOM has also been related to the discrete principal

curve/surface algorithm (Ritter, Martinetz, & Schulten,

1992; Mulier & Cherkassky, 1995; Der, Balzuweit, &

Herrmann, 1996). However, the difference remains in the

projection process as it is known. In the SOM the data are

projected onto the nodes rather than onto the curve (Kegl,

Krzyzak, Linder, & Zeger, 2001). In the following, it is

shown that a difference also exists in the expectation or

smoothing step. The SOM’s neighbourhood smoothing is

governed by the indexes of the neurons, while the principal

curves perform the smoothing entirely in the data space.

First, comparing the kernel smoothing used by the principal

curves, Eq. (8), and the equivalent batch SOM’s kernel

function (Mulier & Cherkassky, 1995), Eq. (9),

Kernel regression : FðrÞ ¼

XL

i¼1

xikðr; riÞ

XL

i¼1

kðr; riÞ

ð8Þ

SOM : wk ¼

XL

i¼1

xihðv; k; iÞ

XL

i¼1

hðv; k; iÞ

ð9Þ

Here the kernel function k(·) and neighbourhood function

h(·) are similar and often chosen from a symmetrical

function family such as Gaussian. L denotes the number of

data points.

Eq. (9) is also valid or at least as a convergence criterion

for the common recursive SOM and ViSOM. The proof is

given in Appendix A.

The kernel regression uses the arc length parameters (r,

ri) or kr2 rik exactly, while the neighbourhood function

uses the node indexes ðk; iÞ or kk 2 ik: Arc lengths reflect the

curve distances between the data points. However, node

indexes are integer numbers denoting the nodes not the

positions of the nodes, so kk 2 ik does not resemble kwk 2

wik: The two smoothing functions, therefore, differ in their

effects despite their similar appearance.

In the ViSOM as the inter-neuron distances on the map

represent those in the data space (subject to the resolution of

the map), the difference of node indexes are in proportion to

the difference of their positions in the data space, i.e. kk 2

ik , kwk 2 wik: The smoothing process in the ViSOM

resembles that of the principal curves, as shown below,

ViSOM : wk ¼

XL

i¼1

xihðv; k; iÞ

XL

i¼1

hðv; k; iÞ

<

XL

i¼1

xihðwv;wk; iÞ

XL

i¼1

hðwv;wk; iÞ

ð10Þ

The ViSOM is a better approximation to the principal

curves/surfaces than the SOM. The SOM and ViSOM are

similar only when the data are uniformly distributed, and/or

when the number of nodes becomes large, in which case

both the SOM and ViSOM will closely approximate the

principal curves/surfaces.

When sufficient number of nodes is used, the resolution

of the ViSOM will be high. The line segment between two

nearest neurons will be small. The projection onto the

nearest segment is little different to the projection to any of

its end nodes, the ViSOM emulates a natural principal curve

algorithm. Another point worth noting is that the SOM is an

entropy (or density) related, thus non-uniform, quantiser,

while the ViSOM is a uniform quantiser. Smoothing for

equally spaced knots becomes simpler (Phillips & Taylor,

1973).

Both the SOM and HS algorithms need a post-adjustment

for the end points of a learnt curve, as such a point has an

unbalanced smoothing due to the lack of data to one side of

the point. The ViSOM has an ability of extending beyond

the end points. Most principal curve algorithms such as HS

algorithm are mainly proposed for solving 1D curves. There

have been few published attempts to extend to higher

dimensions. Semi-parametrised methods such as the GTM

can be directly applied to higher dimensions. However, the

number of model parameters increases with the data

dimensions. Instead, the ViSOM or SOM-based methods
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are much simpler in computational complexity and can be

easily and more readily applied to tackling high dimensional

nonlinear manifolds.

4. Experiments

Several experiments have been conducted and their

results are presented here. The first is to demonstrate the

similarities and differences of the HS algorithm, SOM and

ViSOM in learning a nonlinear principal curve. The

remaining shows the usefulness of the ViSOM in mapping

manifolds and visualising multivariate data and its advant-

ages over other methods.

The first example used a set of 100 data points uniformly

distributed along a half circle of radius, r ¼ 5; with further

additional disturbance of a zero-mean, unit-variance and

uncorrelated Gaussian. Three methods, the HS algorithm,

SOM and ViSOM, produced similar performance, though

the SOM exhibits more bias than the other two, as shown in

Fig. 2. In this experiment, both the SOM and ViSOM used a

40-neuron chain. The resolution parameter, l, of the

ViSOM was set to 0.4, so that the chain can cover entire

data span. The length of the final ViSOM chain, i.e. 40 £

0:4 ¼ 16; matches the total arc length of the half circle,

pr ¼ 15:7: As can be seen unlike the SOM and HS

algorithms, the ViSOM does not suffer from a ‘contraction’

problem at the end points. If the positions of all nodes had

been displayed, it would be seen that the nodes of the

ViSOM are uniformly distributed along the learnt curve;

while the nodes of the SOM and the vertexes of the HS

algorithm are spread uniformly only in the middle part of

the curves but appear squeezed at each end.

The second data set is 1000 3D points, shown in Fig. 3.

Data are distributed along a nonlinear surface (sine wave)

with some disturbances (small normal distributions). A

20 £ 20 ViSOM was used, with a resolution set according to

Eq. (5b) and a data span of 10 obtained from the data (i.e.

l ¼ 1:5 £ 10=20 ¼ 0:75). The smoothing constraint, i.e. Eq.

(4), was applied after the first 1000 iterations of the normal

SOM. The smoothing variable j was set to be 500=ðt 2 500Þ:

The resultant ViSOM grid is shown in Fig. 3. The ViSOM

has captured well the nonlinear manifold.

The next application used the well-known benchmark of

Fisher’s Iris dataset, made of 150 4D vectors from three Iris

categories, each of which has 50 examples (Fisher, 1936). A

100 £ 100 hexagonal ViSOM was applied to the data set

and the result (i.e. the projected data on the map) is shown in

Fig. 4(d). For comparison, a SOM of the same size and

structure has also been applied to map the data and the

result, after further applying the U-matrix colouring

method, is presented in Fig. 4(c). The results of the PCA

and Sammon mapping are shown in Fig. 4(a) and (b),

respectively. The initial states of the Sammon mapping,

SOM and ViSOM were all placed on a plane spanned by the

first two principal components of the data. The final

neighbourhood size, sf, for the ViSOM was set to 4, and

resolution l ¼ 0:075 (the maximum inter-data distance is

7.085). As can be seen, the ViSOM result closely resembles

that of the Sammon mapping.

Fig. 2. Comparison of the HS algorithm, SOM and ViSOM for principal curve.
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Fig. 3. The ViSOM for a 3D data set.

Fig. 4. Mappings of Iris data set: (a) PCA, (b) Sammon mapping, (c) SOM with U-matrix colouring, (d) ViSOM. Map size for both SOM and ViSOM is

100 £ 100, l ¼ 0:075; sf ¼ 4:
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The Sammon method is better than the linear PCA in

revealing fine structural details. The ViSOM produces a

similar display to the Sammon mapping that not only

preserves the inter-cluster structures but also captures the

details of intra-cluster and inter-point distributions. An

important point, however, is that the ViSOM can provide

the projection function, so that any new data points can find

their appropriate places on the map, but this is not the case

for the Sammon map. Moreover, the Sammon mapping is

computationally more intensive, since it requires the first-

and second-order derivatives of the stress function at each

iteration; and it is also sensitive to the initial position. The

standard SOM can show the cluster boundaries with the help

of a colouring scheme, but it is impossible for the SOM to

reveal inter-cluster and intra-cluster distributions.

In multivariate data analysis, tabling is one of the

traditional ways to rank and compare individual members.

All attributes of a member are summed, and a table of all

members in either ascending or descending order of the sum

is often used. Such an example is the league table of UK

universities. Each year, the UK Sunday Times newspaper

collects data ranging from teaching quality, research

achievement and entry-level, to employment rate and

dropout rate for each university in the UK. For the

September 2000 version, seven factors were considered

for the 99 higher education institutions. The top quarter of

the 2000 league table is shown in Table 1. Weighting has

been taken into account in the data by the newspaper. For

example, weightings for teaching, research and A-level

entrance points are 2.5, 2.0 and 2.5, respectively. Other

factors have a weighting of 1.0. The Sammon mapping and

ViSOM have been applied to this data set. The results

provide an alternative ‘see wood for the trees’ view to a

simple ranking.

Universities in the UK fall into two basic types, those

whose foundations predate or those after the UK Govern-

ment’s decision in 1992 to convert all polytechnics into

fully accredited universities. These are generally referred to

as the ‘pre-92’ and ‘post-92’ universities. Both results,

shown in Figs. 5 and 6, indicate that there are two large

distinctive clusters and a clear gap between them. All pre-92

universities appear in the upper cluster, although some have

dropped to the lower half of the table. For example, Salford

University, an old university, is listed 64th in the league

table. A few, which stand out of the ‘pack’, are the ‘Golden

Triangle’ of world-class institutions such as Cambridge

University, Oxford University, London School of

Economics and Political Science (LSE) and Imperial

College. Most post-92 or ‘new’ universities are in the

lower stretched cluster. The similarities between the

universities can be directly quantified according to the

distances between them. Such a direct and global view of

cluster form and division cannot be revealed in the tabling

method, nor by the usual SOM algorithm.

Table 1

Top quarter of the 2000 ranking of UK universities (source: The Sunday Times, 18 September 2000). F1–F7 are teaching quality, research quality, A-level

points, employment, First/2:1s awarded student–staff ratio and dropout rate, respectively

Ranking University F1 F2 F3 F4 F5 F6 F7 Total

1 Cambridge 241 182 247 97 88 100 50 1005

2 Oxford 214 175 244 97 81 100 30 941

3 LSE 200 175 233 97 68 100 50 923

4 Imperial 203 154 232 98 67 100 10 864

5 York 206 143 208 94 63 76 60 850

6 UCL 172 152 210 95 71 100 30 830

7 St Andrews 139 131 194 96 73 91 100 824

8 Warwick 153 155 215 97 69 86 20 795

9 Bath 132 142 211 97 66 83 60 791

9 Nottingham 176 125 218 96 74 72 30 791

11 Bristol 145 131 218 96 75 94 20 779

11 Durham 163 132 207 91 64 72 50 779

11 Edinburg 106 145 218 96 74 100 40 779

14 Lancaster 156 144 186 95 62 63 50 756

15 UMIST 135 144 188 97 58 100 30 752

16 Birmingham 146 127 204 96 67 87 20 747

17 Loughborough 162 115 177 95 57 66 60 732

18 Southampton 143 124 180 93 55 71 50 716

19 King’s College 135 126 204 96 63 100 210 714

20 Newcastle 134 117 193 97 60 87 20 708

21 Manchester 125 134 198 96 66 98 210 707

22 Leeds 122 127 199 97 61 74 20 700

23 Sheffield 143 125 213 97 61 72 220 691

24 East Anglia 125 127 176 96 63 60 40 687

24 Leicester 125 120 183 94 52 93 20 687
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For the ViSOM, a 50 £ 50 map was used, with l ¼ 8

ðSpanmax ¼ 380:1Þ; sf ¼ 10: The results produced by the

two methods are very similar, although some local

distributions differ slightly. The ViSOM is a principled

approach as it provides a (discrete) mapping function. It

projects and visualises the data onto the obtained nonlinear

manifold. This has advantages over the point-to-point

Sammon mapping. If a data point (a University in this

particular example) was initially missed in the survey, then

it can be added to the map by simply projecting it on the

trained ViSOM map. The ViSOM can be implemented in

parallel, while the Sammon mapping is basically a batch and

numerical method.

5. Conclusions

In this paper, the recently proposed variant of the SOM,

namely the ViSOM, is analysed for multivariate data

visualisation and nonlinear manifold projections of high

dimensional data. It has been compared with Sammon

mapping and formally related to principal curves/surfaces-

the principal description of the nonlinear manifold. The

ViSOM is similar in structure to the SOM, but constrains the

lateral contraction force within the updating neighbourhood.

As a result, the map preserves the inter-neuron distances as

well as the topology as faithfully as possible. The ViSOM

produces a smooth and evenly graded mesh through the data

points and enables a quantitative, direct and visually

appealing measure of inter-point distances. The ViSOM

has been shown to have a similar capability to the Sammon

mapping in preserving the distributions on the map and can

be considered as a principled or functional approach to

MDS. The ViSOM is a natural algorithm for finding the

principal curve/surface. Its distance preserving property

makes the effect of the neighbourhood function equivalent

to the kernel smoothing of principal curves/surfaces.

Guidelines have also been given to the practical implemen-

tation of the ViSOM, and original ViSOM algorithm has

been enhanced. Various examples and applications confirm

the potential and usefulness of the ViSOM for multivariate

data visualisation and nonlinear principal projections.
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Appendix A

A.1. Weight convergence of the recursive SOM

Recalling the SOM updating rule, wkðt þ 1Þ ¼ wkðtÞ þ

ahðv; k; tÞ½xðtÞ2 wkðtÞ�: If we re-arrange it as,

wkðt þ 1Þ ¼ wkðtÞ þ að0 2 hðv; k; tÞ½wkðtÞ2 xðtÞ�Þ

This can be considered as equivalent to a Robbins–Monro

stochastic gradient method (Robbins & Monro, 1951), from

which, in reverse order, one can observe that the term,

hðv; k; tÞ½wkðtÞ2 xðtÞ� U yk; is the instantaneous gradient

for wk(t), and the true gradient, which is the mean of {yk(t)},

i.e.
Ð

ykðtÞdt or discrete form
PT

t¼1 ykðtÞ; equals to zero. That

is,

XT
t¼1

ykðtÞ ¼
XT
t¼1

hðv; k; tÞ½wkðtÞ2 xðtÞ� U 0

XT
t¼1

hðv; k; tÞwkðtÞ ¼
XT
t¼1

hðv; k; tÞxðtÞ

With wk(t) converging to wk, the earlier equation can be

written as,

wk !

XT
t¼1

hðv; k; tÞxðtÞ

XT
t¼1

hðv; k; tÞ

; k [ V ðA1Þ

And hence it follows Eq. (9).

A.2. Weight convergence of the recursive ViSOM

With the equal distance constraint, the nodes become

regularised or evenly placed and the lateral force becomes

small or negligible. Then the ViSOM updating rule, Eq. (3),

tends to, wkðt þ 1Þ < wkðtÞ þ ahðv; k; tÞ½xðtÞ2 wvðtÞ�: As

above, we can re-arrange it as,

wkðt þ 1Þ ¼ wkðtÞ þ að0 2 hðv; k; tÞ½wvðtÞ2 xðtÞ�Þ

From the earlier proof, we can see that this adaptation leads

Fig. 6. ViSOM of the 2000 league table of the UK universities.
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to,

wv !

XT
t¼1

hðv; k; tÞxðtÞ

XT
t¼1

hðv; k; tÞ

; v [ V ðA2Þ
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