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Abstract: A Bayesian self-organising map (BSOM) is proposed for learning mixtures of Gaussian
distributions. It is derived naturally from minimising the Kullback–Leibler divergence between the
data density and the neural model. The inferred posterior probabilities of the neurons replace the
common Euclidean distance winning rule and define explicitly the neighbourhood function.
Learning can be retained in a small but fixed neighbourhood of the winner. The BSOM in turn
provides an insight into the role of neighbourhood functions used in the common SOM. A formal
comparison between the BSOM and the expectation-maximisation (EM) algorithm is also
presented, together with experimental results.
1 Introduction

In pattern recognition, an accurate estimation of environ-
mental distribution is essential. A single parametric form is
often too limited to be useful in modelling practical data
densities, whilst nonparametric methods, such as Parzen’s
windows, generally require a large data set and a number of
pre-set parameters [1]. Mixture distributions offer a more
flexible approach to density estimation, in which the joint
distribution is modelled as a mixture of some parametric
forms such as Gaussians (e.g. [2]). They provide a trade-off
between simple and limited parametric approaches and
computational intensive nonparametric approaches, and
are also called semi-parametric approaches [3, 4]. In
some cases, there is a need to identify individual condi-
tional distributions, for which both single parametric and
nonparametric approaches are incapable. A number of
methods exist to solve Gaussian mixtures from sample
data. The general maximum likelihood method is an
empirical approach [5]. The EM method [6] has proven
itself a powerful method in solving many learning
problems based on the maximum likelihood principle. It
has been applied to Gaussian mixtures [7, 8]. However, its
first-order slow convergence and sensitivities to initial
states hamper its practical application, especially when
mixture components are not well separated and=or
sample size is small [7, 9].

The Kohonen self-organising map (SOM) is a biologi-
cally inspired unsupervised learning algorithm and has
found a wide range of applications for clustering, vector
quantisation and data visualisation [10, 11]. It uses a low
dimensional array of neurons to capture and represent input
data drawn from often a high dimensional space and forms
a mapping with topological preserving properties. Its
neighbourhood learning helps to form the topological
ordering in the map and to escape from local minima
during learning. Although it is a probability-related
mapping, it does not exactly model the input data density
[12]. The SOM will eventually minimise the mean-square-
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error between the input space and the map [13]. For density
estimation, a distortion measure between the environmen-
tal density and probability representative of the network is
more suitable than the mean square distortion [14, 15]. In
this paper, a Bayesian self-organising map (BSOM) is
proposed as an extension to the SOM for solving Gaussian
mixture densities. A brief result has been given in [16]. It
can be derived naturally from minimising the Kullback–
Leibler metric. Recently a latent variable model, namely
the generative topographic mapping (GTM), has been
proposed as an alternative to the SOM for density model-
ling and data visualisation [17]. It uses spherical Gaussians
of an equal variance to model the density. These nodes,
arranged in a low-dimensional lattice, are mapped into the
manifold of the data by a piecewise linear eigenvector
method, and their parameters are estimated using the EM
algorithms. The relation between the BSOM and the SOM
and GTM will be discussed, together with performance
analysis and comparison with the EM algorithm.

2 Mixture distributions and Bayesian self-
organising map

2.1 Gaussian mixture distributions

The mixture distribution model has been employed for
pattern recognition and clustering problems. In a mixture
model, each data point, x, of a d-dimensional input space,
O2Rd, is implicitly generated by one of K distinct sources,
o1 , o2 , . . . , oK , each of which has a prior probability P(oi)
or Pi . For each source, data are distributed according to a
prescribed component-conditional probability density. Then
the joint-probability density of the data can be written as

pðx jYÞ ¼
PK
i¼1

pðx joi; yiÞPðoiÞ ð1Þ

where p(x joi , yi) is the ith component’s conditional
density, and yi are the sufficient statistics, or parameters,
for the ith conditional density, i¼ 1, 2, . . . , K. Y¼ (y1 ,
y2 , . . . , yK)T, P(oi) is the prior probability of the ith
component and is also called the mixing priors,
P(oi)� 0, i¼ 1, 2, . . . , K, and SP(oi)¼ 1. For a Gaussian
mixture, the conditional density has the multivariate Gaus-
sian form

pðx joi; yiÞ ¼
1

ð2pÞd=2 Si

�� ��1=2 exp ÿ
1

2
ðxÿmiÞ

TSÿ1
i ðxÿmiÞ

� �
ð2Þ
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where yi¼ {mi , Si} are the mean vector and covariance
matrix of the ith Gaussian, respectively.

Gaussian mixtures can be used to approximate density
functions for pattern classification. Many practical densi-
ties can be decomposed into Gaussians. The mixture
models have been used as the basic structure for many
learning algorithms such as radial basis function (RBF)
and probabilistic neural networks. However, most
approaches, including the GTM, employ homoscedastic
mixtures, in which all component distributions have a
single variance that is often assumed symmetric. The
BSOM, however, uses heteroscedastic and asymmetric
Gaussian components.

2.2 Maximum likelihood estimation and
expectation-maximisation (EM) algorithm

In most applications, only the number of components
and the form of their conditional densities are known
or can be assumed; other parameters have to be learnt
from a set of N unlabelled independent observations,
X¼ {x(1), x(2), . . . , x(N)}. In these cases, maximising
the joint-likelihood (ML) of all observed sample points,
p(X jY)¼

Q
n¼ 1
N p(x(n) jY), will lead to a singular solu-

tion. When constrained to the largest finite maximum and
Gaussian components, it results in the following implicit
solutions for these parameters [5]:

m̂mi ¼

PN
n¼1

P̂P½oi jxðnÞ; ŷyi�xðnÞPN
n¼1

P̂P½oi jxðnÞ; ŷyi�

ð3Þ

ŜiSi ¼

PN
n¼1

P̂P½oi jxðnÞ; ŷyi�½xðnÞ ÿ m̂mi�½xðnÞ ÿ m̂mi�
T

PN
n¼1

P̂P½oi jxðnÞ; ŷyi�

ð4Þ

P̂PðoiÞ ¼
1

N

PN
n¼1

P̂P½oi jxðnÞ; ŷyi� ð5Þ

where

P̂P½oi jxðnÞ; ŷyi� ¼
p½xðnÞ joi; ŷyi�P̂PðoiÞPK

j¼1

p½xðnÞ joj; ŷyj�P̂PðojÞ

ð6Þ

represents the estimated posterior probability of the ith
Gaussian given the input x(n).

Duda and Hart [5] suggested intuitively an iterative
estimation scheme, which has the exact form of eqns.
3–6 but with current estimates on the right side of the
equations and new estimates obtained from the left. This
scheme is direct, simple and can be a suitable approach for
many problems. However, good initial estimates are impor-
tant for obtaining satisfactory final results, and all the input
data are needed for each iteration.

This algorithm was later justified by applying the EM
algorithm to the problem [7, 8]. The EM algorithm is an
iterative ML procedure for parameter estimation for incom-
plete data or missing data situations [8]. It converges
monotonically to a local maximum of the likelihood func-
tion. By using the EM procedure, the marginal or incom-
plete-data likelihood is obtained by averaging the
complete-data likelihood with respect to the missing
variables using the current parameter estimates—E-step,
i.e. Q[Y jY(k)]¼EZ{ln p(Y jY) jX, Y(k)}, where EZ repre-
sents the expectation against Z, and Y, X and Z are the
complete, observed and missing data sets, respectively.
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Then the new parameter estimates are obtained by maxi-
mising this marginal likelihood with respect to each model
parameter—M-step, i.e. Y(kþ 1)

¼ arg maxY {Q[Y jY(k)]}.
Despite this algorithm having been re-expressed in

adaptive forms by Traven [3] and Tarassenko and Roberts
[18], it is a batch operation in nature and a deterministic
optimisation procedure, and thus is likely to suffer from
slow convergence and is sensitive to initial states.

2.3 Kullback–Leibler information

The Kullback–Leibler information metric [19] measures
the divergence or ‘distance’ between the estimated and true
environmental densities, and is defined as

I ¼ ÿ

ð
log

p̂pðxÞ

pðxÞ

� �
pðxÞdx ð7Þ

It is also referred to as ‘relative entropy’ [4, 20]. It is an
expectation of the negative log-likelihood in the limit of an
infinite number of data points, subtracting a bias, which is
known as the entropy of the data. It measures the average
amount of information remaining in each data point by the
estimator. It is always a positive number, and will be zero if
and only if the estimated density equals the true one.

The sample likelihood, used by the ML and EM
methods, is an approximation to the Kullback–Leibler
measure. These two will be equal when the size of the
sample tends to infinity and the input is an ergodic process.
The Kullback–Leibler is arguably a more suitable measure
for density estimation and unsupervised learning [14, 15].
It is a natural integration of the accumulative log like-
lihood.

2.4 Bayesian self-organising map

When the density is modelled as a Gaussian mixture, then
the partial derivatives of the information I, with respect to
unknown model parameters, m̂i , Ŝi and P̂(oi), can be
obtained as follows:

@I

@m̂mi

¼ ÿ

ð
1

pðx jŶYÞ

@pðx jŶYÞ
@m̂mi

pðxÞdx

¼ ÿ
1

ŜSi

ð
pðx joi; ŷyiÞP̂PðoiÞ

pðx jŶYÞ
ðxÿ m̂miÞpðxÞdx ð8Þ

@I

@ŜSi

¼ ÿ
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1

pðx jŶYÞ

@pðx jŶYÞ

@ŜSi

pðxÞdx

¼ ÿ
1

2ŜSi

ð
pðx joi; ŷyiÞP̂PðoiÞ

pðx jŶYÞ

(
� ðxÿ m̂miÞðxÿ m̂miÞ

T
ÿ ŜSi

h i
pðxÞdx

o
ŜSÿ1
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pðx jŶYÞ

@pðx jŶYÞ

@P̂PðoiÞ
pðxÞdx

þ l
@

@P̂PðoiÞ

PK
j¼1

P̂PðojÞ ÿ 1

" #
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1

P̂PðoiÞ

ð
pðx joi; ŷyiÞP̂PðoiÞ

pðx jŶYÞ
ÿ lP̂PðoiÞ

" #
pðxÞdx
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where in eqn. 10 the method of Lagrange multipliers is
introduced to ensure the constraint of a valid overall
probability, i.e.

P
i¼ 1
K P̂(oi)¼ 1.
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By letting eqns. 8–10 tend to zero, we could obtain a set
of equations for finding the optimal model parameters.
However, as the true environmental density is not known,
these integrals (i.e. the exact gradients) are not obtainable.
So these equations are not directly solvable. Thus a
recursive stochastic approximation method, e.g. the
Robbins–Monro method [21], has to be used to find
these parameters. We wish to find the root of the following
integral of random variable Y:

M ðxÞ � EfY ðxÞg ¼

ð
ypðy jxÞdy ¼ r ð11Þ

where the p( y jx) is the unknown density function for y
under x and r is a given constant.

The Robbins–Monro method estimates the root x¼ y by
using an iterative procedure based on successive observa-
tions {y1 , y2 , . . . } on Y at input levels {x1 , x2 , . . . }, i.e.

ynþ1 ¼ yn þ anðrÿ ynÞ ð12Þ

where {an} is the learning rate, which is monotonically
decreasing and must satisfy certain convergence condi-
tions, i.e. (i) 0< an< 1; (ii) San!1; (iii) San

2<1. The
SOM algorithm has identical convergence conditions to
those of this method.

If M(x) is a gradient function, while {y1 , y2 , . . . } are the
instantaneous gradients, eqn. 12 means that the instanta-
neous gradients are used as the mean gradient in the
optimisation. This is the so-called stochastic gradient
method. It does not minimise or maximise the objective
function monotonically, but the mean of the objective
function will decrease or increase monotonically. Regard-
ing the eqns. 8–10, since the true gradients are not
solvable, the instantaneous gradients, i.e. the integrands,
can be used to find a solution for mean vectors, variances
and priors using the method of eqn. 12 and letting the
Lagrange multipliers be one in eqn. 10. The following
updating equations are then obtained:

m̂miðnþ 1Þ ¼ m̂miðnÞ þ aðnÞP̂P½oi jxðnÞ; ŷyi�½xðnÞ ÿ m̂miðnÞ�;

i 2 Zv ð13Þ

ŜSiðnþ 1Þ ¼ ŜSiðnÞ þ aðnÞP̂P½oi jxðnÞ; ŷyi�f½xðnÞ ÿ m̂miðnÞ�

� ½xðnÞ ÿ m̂miðnÞ�
T
ÿ ŜSiðnÞg; i 2 Zv ð14Þ

P̂Piðnþ 1Þ ¼ P̂PiðnÞ þ aðnÞfP̂P½oi jxðnÞ; ŷyi� ÿ P̂PiðnÞg ð15Þ

where Zv is a neighbourhood of the winner v.
The above learning algorithm is similar in form to the

SOM. The posterior probabilities, P̂[oi jx(n), ŷi], which are
greater than zero and smaller than one, act as the neigh-
bourhood functions. At each iteration, like the SOM, the
above adaptation has been restricted to a small neighbour-
hood of the winner, v, which is chosen according to the
highest posterior probability, i.e. eqn. 6. This is due to the
locality of Gaussians. Only the nodes that are close to
the input or to the winner will have effective posteriors.
The neighbourhood size Zv can be loosely chosen as long
as it covers the influential area of the posteriors and need
not shrink.

Both the form of the neighbourhood functions and the
winning metric have been replaced by an on-line learnt
posterior probability in the BSOM. In the SOM, the
adaptation extents are pre-specified by an empirical neigh-
bourhood function. While in the BSOM, it is adaptively
proportional to the estimated posterior probability of the
winning neuron and its neighbours, i.e. the learning is
constrained by this posterior factor. This constraint can be
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understood as a simplest form of Bayesian inference to a
neuron’s winning and learning opportunity from the input.
At the beginning, each neuron should be assigned with the
same mixing priors if no knowledge about the data is
available and distributions are assumed uniform—this
corresponds to non-informative priors [22]. Full Bayesian
inference for all parameters is feasible, and then the joint
distribution would integrate over all priors’ distributions (if
they can be known or assumed). Such a scheme would
require intensive computation. Here we only apply the
simplest inference to the neuron’s winning and neighbour-
hood adaptation mechanisms.

Though similar updating formulas have been reported
before for Gaussian mixtures, e.g. [23], the above deriva-
tion has formally linked the SOM with a density model and
revealed the meaning of the neighbourhood function.
Besides, the BSOM updates only the neighbourhood,
thus has much lighter computational cost than those
updating all nodes as is in [23], and has a better conver-
gence in terms of speed and robustness. The learning rate
used in the BSOM is similar to that used in the SOM or
general stochastic approximation. It has a more relaxed
form, unlike those used in [23], which are proportional to
the inverse of time.

3 Comparison of convergence rates of the EM
and BSOM

Both BSOM and SOM are examples of stochastic gradient
methods, which generally outperform the deterministic
gradient method in terms of better solvability and
improved convergence. Kosko has shown that stochastic
gradient methods converge exponentially to centroids [24].
This section considers the relative convergence speeds of
the BSOM and EM algorithms. The analogy is similar to
that between the SOM and the k-means algorithm. Despite
the fact that they all operate within the first-order conver-
gent domain, their convergence rates differ, in some cases
widely. There are two basic differences between the BSOM
and EM algorithms. One is that in the BSOM the update is
limited to a small region of the map due to topological
ordering (by using the neighbourhood function) and the
locality of conditional densities. So the BSOM generally
has lower computational cost than the EM algorithm,
especially when the number of nodes is large. The
second difference is that the BSOM is a stochastic gradient
descent method, whilst the EM algorithm is a strict
gradient descent=ascent for each batch iteration. This
gives the former an advantage over the latter in escaping
from ‘shallow’ local minima, and hence there is an
increased opportunity in finding the global, or near-
global, minimum. The batch EM algorithm does not use
the learning rate. However, when it is written in adaptive
form, its effective learning rate is generally much smaller,
while the learning rates in the BSOM (and SOM) are often
higher. They are both first-order inverse time series. An
index [13] developed for monitoring the convergent speed
of the SOM can be used to show the difference of these two
algorithms. It can be called the relative convergence index,
and is defined as

gðnÞ �
Pn
k¼1

xkðnÞ ¼ 1ÿ
Yn

k¼1

½1ÿ aðkÞhðkÞ� ð16Þ

where xk(n)¼ a(k)h(k)
Q

l¼ kþ 1, k< n
n [17 a(l)h(l)], a(k) is

the learning rate and h(k) is the neighbourhood function.
The faster this index approaches unity, the sooner the
neurons will converge to near their final positions [13].
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For the batch EM algorithm, eqns. 3–5, or its adaptive
forms (see [3]), its effective learning rates are

b0ðnÞ ¼
1Pn

k¼1

P½oi jxðkÞ�

ÿ!
n!1 1

nPi

That is, the denominator tends to the product of the
iteration steps, n and the prior probability, Pi , of each
class, while as the prior probabilities tend to constants, the
learning rates of the EM algorithm are proportional to the
inverse of the learning time, i.e. 1=n, or exactly 1=(nPi). In
the BSOM, eqns. 13–15, a more flexible learning rate a is
used, such as the form a0=(1þ n=t), where a0 (0< a0< 1)
is the initial learning rate and t is a constant and t� 1. a is
usually much larger than 1=(nPi), and it is easy to demon-
strate that the relative convergent index g(n) of the BSOM
is generally faster than that of the EM algorithm in reach-
ing unity. Thus the BSOM converges to near the final result
quicker than the EM algorithm.

Another index, which is defined as
P

k¼ 1
n xk

2(n) and has
been used to monitor the fluctuation of the convergence
[13], indicates that the BSOM has slightly higher fluctua-
tions than the EM algorithm. This means that the conver-
gence in the EM algorithm is slow but smooth, whilst in
the BSOM it is faster but more erratic in the early stages
IEE Proc.-Vis. Image Signal Process., Vol. 148, No. 4, August 2001
(because of the stochastic gradient nature). This can be
observed in the learning curves of both algorithms in the
next section. A fast changing learning curve is better than
smooth but slow ones as it can accelerate learning to the
final stage. In practice, a trade-off can be made between
fast and smooth convergence by using different learning
rates at different stages.

As the EM algorithm is a deterministic method, its final
result heavily depends on initial states. Choosing a good
initial solution is a necessary prior step for the EM method.
The BSOM has a better ability of escaping local minima
due to its stochastic gradient descent=ascent nature. The
on-line version of the EM algorithm can also employ a
stochastic gradient, if it uses generalised learning rates
rather than 1=n, as long as it satisfies the convergence
conditions of the stochastic approximation method. The
stochastic version of the EM algorithm then becomes
similar and comparable to the BSOM algorithm. However,
the latter uses a neighbourhood conscience learning, which
effectively limits the updating to a small local area of the
winner. The EM may be applied to update only those nodes
whose posteriors have significant values. But, since these
nodes are not naturally bounded in a neighbourhood, an
exhaustive search for these nodes would be required at
each iteration.
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Table 1: True parameters and their estimates by the BSOM and EM algorithm after 20 epochs

P1 P2 P3 m1 m2 m3 S1 S2 S3

Preset 0.345 0.32 0.335
2.5 ÿ1.8 ÿ0.5 4.0 ÿ0.9 3.5 0.75 2.0 0.2

1.0 2.2 ÿ0.5 ÿ0.9 0.3 0.75 0.3 0.2 0.3

BSOM 0.368 0.320 0.312
2.52 ÿ1.78 ÿ0.40 4.37 ÿ0.98 3.46 0.75 2.13 0.24

1.04 2.22 ÿ0.48 ÿ0.98 0.32 0.75 0.29 0.24 0.33

EM 0.361 0.300 0.339
2.23 ÿ1.70 ÿ0.41 5.47 ÿ1.32 3.69 0.74 2.14 0.26

1.12 2.19 ÿ0.49 ÿ1.32 0.42 0.74 0.34 0.26 0.31
4 Experiments and results

4.1 Clustering

The BSOM can be used for clustering or unsupervised
classification. The following example uses similar data to
that in [8]. There are in total 1000 points generated from
three Gaussian sources. The data scatters are shown in
Fig. 1a and the true parameters for these three Gaussians
are given in Table 1 (denoted by Preset). Both BSOM and
EM algorithms have been applied to this example. In the
BSOM algorithm, three nodes were used. The initial means
were set randomly around [0, 0], initial priors were set
equal to 1=3, and initial variance matrices were set equally
to a diagonal matrix with diagonal values comparable to
the raw sample variance, e.g. diag[8, 8]. In such a small
net, the neighbourhood covers all nodes. The BSOM
converges rapidly to these three clusters after few learning
epochs (for each epoch, 1000 points were randomly drawn
from the data set). The EM algorithm for these slightly
overlapping clusters can also converge to the correct
clusters. Typical results of both algorithms after 20
epochs are listed in Table 1. The learning rates in the
BSOM were set as a(n)¼ a0=(1þ n=t) with a0¼ 0.5 and
0.1 for m and for S and P, respectively, and t¼ 100. The
learning curves for the mean vectors during the first 20
epochs are shown in Fig. 1b–d.

As can be seen, the convergence speeds of the two
methods differ markedly. The BSOM algorithm converges
faster, while the EM algorithm has a smooth but slow
convergence. This confirms the analysis of the previous
section. The only caution that needs to be voiced with the
BSOM algorithm is that the learning rates for the covar-
iance matrices and priors should be kept small to avoid the
covariance matrices becoming non-positive definite or
priors becoming negative during the dramatic early learn-
ing stages. It has been found that exact values for these
rates are not critical. The algorithm converges to the
correct results for a large range of the learning rates.
During many independent trials of the two algorithms
under the same initial conditions, none of BSOM trials
diverged from the correct results but some (about a quarter)
of the EM trials became trapped in local minima.

4.2 Spectrum profile estimation

Some function profiles such as spectra can be considered
as density histograms. If a spectrum consists of many
components, then the BSOM can be used to estimate the
component profiles of the spectrum. Resampling the
observed spectrum will provide distribution data for train-
ing. The X-ray diffraction patterns of crystalline complex
organic molecules (e.g. proteins) consist of a large number
of Bragg diffraction spots. These patterns represent the
intensity Fourier transform of the molecular structure
(actually the electron density maps), and crystallographers
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need to determine the precise position of each spot together
with its magnitude (i.e. integrated spot intensity). The
patterns exhibit relatively high background noise together
with spot spreading (due to shortcomings in the experi-
ments or limitations in the detection processes), which
results in overlapping spots. The automatic analysis of
these patterns is not a trivial task and a variety of signal
estimation methods have been employed (cf. [25]).

A part of such a pattern image is shown in Fig. 2, which
is 8-bit greyscale and of size 88� 71 pixels. For the BSOM
to learn the profiles of these diffraction spots, the image
(diffraction intensity function) has to be resampled to
provide distribution data. A set of training data (in total
10 647 points) was obtained by double sampling this
image. Fig. 3a shows the histograms of the training data.
A 400-neuron BSOM, arranged in a 20� 20 grid, was used
to learn this density. In this case, the number of spots
(peaks or components) in a pattern (a mixture) will not
generally be known a priori. Initially, the neurons were
regularly placed inside the data space, i.e. [1, 88]� [1, 71]
rectangular grid. The initial variances were assigned
equally to a diagonal matrix with the diagonal values
equal to a fraction of the grid size, and the initial mixing
priors were assigned equally to 1=400. The grid was pre-
ordered to save unnecessary computational cost as this is a
mapping with the same dimension.

After a few learning cycles, the BSOM allocated the
spots to the Gaussian kernels and decomposed the over-
lapping ones. Individual neurons and their parameters
provide centre (mean vectors) and width (covariance
matrices) information for relevant spots. The total intensity
of each peak is readily obtainable and is simply related to
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Fig. 2 X-ray diffraction image
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its mixing weight. The result of the estimation after five
epochs is shown in Fig. 3b. The number of active nodes,
i.e. surviving ones, is much less than the initial guess of
400. The BSOM has dynamically fitted to the correct
mixture number and suppressed others. As the updating
at each input was limited to a small area (3� 3, the winner
and its first order neighbourhood, in this example), the
BSOM required a much lighter computational effort than
updating the entire network at each input (as the EM
algorithm would require). This becomes particularly
advantageous when the number of nodes is large. In this
example, the EM algorithm of the same size would require
approximately 400=(3� 3)¼ 44.4 times more computing
effort of the BSOM.

5 Conclusions and discussion

A Bayesian SOM, based on the criterion of minimising the
relative entropy, stochastic approximation methods and the
SOM principle, is proposed for solving Gaussian mixture
densities in an unsupervised manner. The BSOM has been
shown, by both formal analysis and experimental results, to
be superior to the EM algorithm for the estimation of
Gaussian mixtures in terms of robustness, convergence
speed and computational cost.

The BSOM has transferred the SOM from a minimum
mean-square-error based vector quantiser to an entropy-
based density estimator. The empirical neighbourhood
function used in the SOM can be explicitly defined and
quantified dynamically according to the learnt posteriors in
the BSOM. When the variance matrices tend to zero, the
posteriors, acting as the neighbourhood functions, tend to
the Kronecker delta and the BSOM degrades to the final
stage of classic SOM. The SOM can be seen as a simplified
mixture of Gaussian approximators, in which only mean
vectors are being learnt. Equal mixing priors and variances
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and implied to all nodes. The mixing range is controlled by
the neighbourhood size. The neighbourhood function
imposes an underlying mixture prototype to the data
structure. When Gaussian neighbourhood functions are
used in the SOM, as is often the case, the SOM implies
a Gaussian mixture to the data density. Larger initial
neighbourhood ranges mean little prior information about
the data, flatter component distributions and larger over-
lapping among them. Shrinking the neighbourhood
provides an adjustment to the inference and sharpens the
component distributions as gradually components are
learnt from the data. Although the shrinking procedure
chosen may sometimes produce good mapping results in
practice, it is entirely empirical. The BSOM’s covergence
results, eqns. 3 and 4, are similar to kernel regression
concepts [26]. This can be used to infer the role of the
neighbourhood function of the SOM as a (predefined)
kernel smoother at each winning node on its neighbours
(such an interpretation has also been proposed recently in a
different context [27]).

The similarity between the BSOM and GTM is that both
can solve Gaussian mixture densities. There are some
differences. The GTM uses spherical Gaussians with
identical variance, whilst the BSOM poses no such restric-
tions. The GTM exercises the EM algorithm, whilst the
BSOM is a stochastic approximation. Finally, the GTM
employs a low dimensional latent space; this is useful for
visualising high dimensional data, whilst the BSOM,
mainly proposed for density estimation, places a grid of
nodes of the same dimension as the input. The GTM’s
latent space method, however, can be introduced into the
BSOM to extend its applications. Using a single variance
as in the GTM can further simplify the BSOM for general
density modelling when a sufficiently large number of
nodes are used. However, in some cases (as in the above
examples), when the individual profiles are different and
their details are desired, only the BSOM will provide a
solution.
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