

Automated analysis of nailfold images from handheld devices

University Teaching Hospital

safe • clean • personal

Michael Berks¹, Graham Dinsdale², Elizabeth Marjanovic², Tonia Moore³, Joanne Manning³, Christopher Taylor¹, Andrea Murray², Ariane L Herrick^{2,4}

¹Centre for Imaging Sciences, University of Manchester, ²Division of Musculoskeletal & Dermatological Sciences, University of Manchester, ³Salford Royal Hospital NHS Foundation Trust, ⁴NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester Academic Health Science Centre

Background and objectives

 Nailfold capillaroscopy allows identification amongst patients presenting with Raynaud's

phenomenon of those at high risk of developing systemic sclerosis (SSc): abnormal nailfold capillaries are a key component of the 2013 ACR/EULAR diagnostic criteria for SSc.

- Not all rheumatologists have access to high magnification capillaroscopy.
- Our aim was to demonstrate the feasibility of acquiring and automatically analysing images from low-cost commodity devices (e.g. USB microscope), by comparing areas under ROC curves for two common nailfold metrics (density and mean vessel width)

between 3 microscope systems.

Study design and methods

- Forty participants (20 patients with SSc, 20 healthy controls) were acclimatised in a temperature and humidity-controlled laboratory.
- Participants underwent mosaic imaging of left and right ring finger nailfolds, using 3 microscope systems: (1) high-precision, custombuilt, videocapillaroscopy system (Wellcome system, 'gold standard' for comparison purposes), (2) Optilia hand-held device, and (3)

 \uparrow Figure 1. Mosaic images of the same nailfold with each of 3 microscope systems: (a) Wellcome 'gold standard' system; (b) Optilia hand-held device; and (c) low-cost USB microscope. Green dots are the automatically detected locations of distal vessels, as determined by software.

← Figure 2. ROC curves for (left) density and (right) mean width for each of 3 systems; based on the ability of the combination to correctly distinguish between nailfolds from controls and those from patients with SSc. Areas (A_z) under the ROC curves allow comparison

between systems.

low-cost USB microscope (see Figure 1).

- Images automatically analysed using in-house software, developed primarily for analysing images from the 'gold standard' system [1] [Figure 1 (a)].
- ROC curves (Figure 2) allow comparison between imaging systems.

Conclusion

- Morphology measures extracted from all 3 systems can be used to discriminate controls from patients with SSc.
- Measures from all 3 systems predicted SSc significantly better than chance.
- Further work on analysis software optimisation and measure calibration between systems is now required.

Acknowledgements

Funding source: Confidence in Concept 2015 – The University of Manchester (Grant reference MC_PC_15038).