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[Using bootstrap local fitting to overcome

parametric regression problems]

A
common task in applying signal-processing methods to biological systems is
estimating a transducer function. The particular system being analyzed may
range from the very small, such as a retinal photoreceptor producing a voltage
response on being stimulated with a flash of light, to the large and complex,
such as a human patient pressing a switch on hearing a test tone through head-

phones. Achieving a good estimate of the transducer function from a set of data may be an
important first step in understanding the underlying biological processes as well as in helping
to describe the system more generally in terms of its critical components.

In some applications, the form of the transducer function is already known, and estimating
it may involve the optimization of just a few parameters to achieve a fit of a model curve to the
experimental data. In many other applications, however, there is no standard model. This may
be because the underlying process is poorly understood or the function itself represents several
simpler processes interacting with each other in a complicated way.

The problem of estimating a transducer function when its form is unknown can be
addressed in several ways. To help set the context of the bootstrap nonparametric approach to
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this problem, it is useful to review two classical parametric
approaches, one based on linear regression [9] and the other on
a certain class of nonlinear functions [14].

Figure 1 shows the results of recordings from an auditory
nerve fiber of the guinea pig. The data were provided by N.P.
Cooper from unpublished measurements summarized in [15].
The response rate y in spikes per second evoked by a sound
stimulus is plotted as a function of the relative sound-pressure
level x in decibels. The symbols are the experimental data, and
the continuous and dotted lines are quadratic
y = β0 + β1 x + β2 x2 and cubic y = β0 + β1 x + β2 x2 + β3 x3

polynomial regression fits, respectively. Both fits have evident
biases, i.e., regions where the data points are all systematically
below or above the curve.

In general, the estimated transducer function is assumed to
be monotonic, so the response increases as the level of the stim-
ulus increases, and bounded, so the response does not go below
nor above a certain level (because of limitations on the range of
the stimuli, these bounds may not always be apparent). It is evi-
dent in Figure 1 that, at small x, both regression curves take on
negative values, although the data are always positive, and, at
large x, the cubic fit actually turns down. Choosing a higher
degree of polynomial would improve the fit, but it is not obvious
how high the degree should be.

These properties of monotonicity and boundedness are cap-
tured by functions such as the Gaussian cumulative distribu-
tion function �(x) = (2π)−1/2 ∫ x

−∞ exp(−u2/2)du . The
continuous curve in Figure 2 shows the function
y = y0 �(β0 + β1 x), where the coefficients y0, β0, and β1 have
been adjusted for best fit. Although the fitted curve is now posi-
tive at small x, the fit remains biased here and at medium to
large x. Other sigmoidal functions might be tested to see

whether they improve the fit, but again it is not obvious how
these choices should be made.

Local nonparametric fitting provides a powerful alternative
approach in which fitting is performed locally over small neigh-
borhoods defined along the stimulus range [4], [12]. But the
size of these neighborhoods, the bandwidth, is critical. A band-
width that is too large gives a very smooth estimate of the func-
tion (similar to a parametric estimate), which suffers from large
bias. Conversely, a bandwidth that is too small gives an estimate
that follows the data very closely but has large variance, as the
fit includes noise or other random variation in the data. The aim
here is to show how the bootstrap resampling method [10] can
provide an automatic and accurate method of estimating an
optimal bandwidth for local fitting. Some other relevant applica-
tions of the bootstrap have been described elsewhere [30].

The organization of this article is as follows. First, the esti-
mation problem is formalized for continuous response vari-
ables, and then the local least-squares approach to fitting is
developed. Next, the central role of the bandwidth in balanc-
ing bias and variance is made explicit, and the bootstrap
method for selecting this bandwidth is introduced. Two par-
ticular bootstrap methods are then formulated: one where the
distribution of responses at each stimulus level is unknown
and the other where it is known to be a particular member of
the exponential family of distributions. This family includes
the Gaussian distribution, the Poisson distribution (describ-
ing, e.g., the number or frequency of events at each level), and
the binomial distribution (describing, e.g., the number of suc-
cesses in a given number of trials at each level). For this fami-
ly, fitting based on local least squares is replaced by fitting
based on local log likelihood. Methods for calculating the
goodness of fit, such as the deviance, and for estimating confi-

[FIG1] Response rate of an auditory nerve fiber of the guinea
pig as a function of sound-pressure level. The symbols are
from unpublished source data summarized in [5]. The
continuous and dotted lines show quadratic and cubic
polynomial fits, respectively. Notice the large bias at low
sound-pressure levels.
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[FIG2]  Response rate of an auditory nerve fiber of the guinea pig
as a function of sound-pressure level. The symbols are from
unpublished source data summarized in [5]. The continuous line
shows a best-fitting Gaussian cumulative distribution function.
Notice the bias at low and medium to high sound-pressure
levels.
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dence intervals for the transducer function are briefly consid-
ered, along with approaches to securing the monotonicity of
the function.

Bootstrap local fitting is then applied to a range of biologi-
cal data, including the photoreceptor voltage response in the
turtle retina, feedback current
response in the goldfish retina, audi-
tory-nerve spike rate in the guinea
pig, frequency-of-seeing perform-
ance in a human patient with glau-
coma, and a psychometric function
for a normal human observer per-
forming an image-discrimination
task. In all these applications, the
bootstrap method delivers an opti-
mal or close-to-optimal estimate of the bandwidth. Finally, a
potential weakness of the method and some alternative ways of
selecting the bandwidth are considered in the conclusion to
this article.

THE FITTING PROBLEM
The fitting problem may be formalized in the following way.
Suppose that the data consist of N stimulus levels x1, . . . , xN at
which responses y1, . . . , yN are recorded. These responses are
assumed, for the moment, to have continuous rather than dis-
crete values but contaminated by additive noise, so their
dependence on the stimulus level may be represented by

yi = T(xi) + εi, 1 � i � N , (1)

where T is the unknown transducer function and the εi repre-
sent noise, i.e., random errors in the observations or variability
from sources not included in the xi. These errors are assumed
to be independent with zero mean and the same finite variance.
They are often taken to be normally distributed, but this
assumption is unnecessary, and no specific distribution is
assumed here. No constraint is placed on the form of T at this
stage, except that is should be smooth (monotonicity and
boundedness are considered later).

In the approach to fitting based on polynomial regression
[9], the function T is estimated by a polynomial ŷ of degree k,
say, in the xi,

ŷi = β0 + β1 xi + · · · + βkxk
i , 1 � i � N ,

where k < N − 1 and, in general, k � N. The coefficients β j

may be estimated by minimizing the sum of squares

N∑

i =1

(
yi −

(
β0 + β1 xi + · · · + βkxk

i

)) 2
. (2)

As already noted, the problem with polynomial regression is
that it can introduce large biases in the fit. In addition, individ-
ual observations may have a strong influence on remote parts of
the curve, the degree of the polynomial cannot be controlled

continuously, and the high degree necessary for a good fit may
lead to large variability in the estimated coefficients [12]. Local
polynomial regression avoids most of these problems.

LOCAL POLYNOMIAL REGRESSION
The principle of local polynomial
regression has already been outlined.
For any selected stimulus level x0, the
regression is applied to a fraction of
the data around x0, the fitted value at
x0 is then calculated, the procedure is
repeated at the next selected level, and
so on. In more detail, assume that the
transducer function T can be ade-
quately approximated locally by a

Taylor expansion, e.g., by a quadratic function of x; i.e., for each
selected x0, values of T at points x near x0 are given by

T(x) ≈ α0 + α1(x − x0) + 1
2
α2(x − x0)

2,

where the coefficients α j are related to the derivatives of the
function T and need to be estimated, and |x − x0| is less than
some typical distance, the bandwidth h(x0), which generally
depends on x0. Notice that α0 = T(x0) here.

For each x0 , estimates α̂ j of the coefficients α j can be
obtained by minimizing the locally weighted sum of squares,
where the weight function wh at x0 reflects the bandwidth
h(x0), i.e.,

N∑

i =1

wh(x0)(xi − x0)

(

yi −
(
β0 + β1(xi − x0)

+ β2(xi − x0)
2
)
)2

, (3)

where, as before, N is the number of stimulus levels (or, more
generally, number of observations, if the experiment is repeated
at one or more levels). The solution β̂ j = α̂ j/ j! and the local
regression estimate T̂(x0) of T(x0) is then simply the estimate
β̂0 at the selected level x0.

The weight function is usually expressed in terms of a kernel
K , so wh(x0)(xi − x0) = K((xi − x0)/ h(x0)) . For data where
the levels are widely spaced, it is useful if the kernel has
unbounded support, as with, e.g., a Gaussian function,
K(u) = (2π)−1/2 exp(−u2/2). A Gaussian kernel is used in all
the examples of this article.

The foregoing leaves several issues unresolved. Fortunately,
there is general agreement [28] that the precise shape of the
weight function is not important and that the degree of polyno-
mial usually need not be more than two. In fact, with transducer
functions, there is an advantage in fixing the degree at one for
the control of monotonicity. The degree of the polynomial is one
in all the examples of this article. As emphasized earlier, howev-
er, the choice of bandwidth h is central. There are many ways of

IN SOME APPLICATIONS, THE
FORM OF THE TRANSDUCER

FUNCTION IS ALREADY KNOWN.
IN MANY OTHER APPLICATIONS,

HOWEVER, THERE IS NO
STANDARD MODEL.
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estimating a suitable h, but the bootstrap offers a particularly
appealing method [13], [19].

BOOTSTRAP BANDWIDTH SELECTION
The goal is to obtain an optimal value of the bandwidth h that
minimizes the difference between the local regression estimate
T̂h(x) based on the data set (x1, y1), . . . , (xN, yN) and the true
value T(x), evaluated over the domain of definition of x. To indi-
cate its importance, the dependence of the estimate T̂h(x) on h
is made explicit, and it is sufficient here to assume that h is con-
stant with x. The difference between T̂h and T may be quantified
by various measures, in particular, by the mean integrated
squared error (MISE), as a function of h, i.e.,

MISE(h) = E
∫ (

T̂h(x) − T(x)
)2

dx, (4)

where E is the expectation (the mean value that would have
been obtained if the experiment had been repeated infinitely
many times). The right-hand side of (4) may be reexpressed as
the integral of the sum of a variance term and a bias-squared
term, E((T̂h(x) − ET̂h(x)) 2) + (ET̂h(x) − T(x)) 2 . The other
terms in the integrand vanish. Minimizing the difference in (4)
is therefore intuitive, as this results in an estimate that is nei-
ther too noisy nor too biased.

The true value T(x) in (4) is, of course, unknown. A simple
application of the bootstrap method would entail replacing the
values of the data that would have been obtained by repeating
the experiment many times by values of the data obtained by
resampling from the given data set [10]. More specifically, the
procedure would be as follows. Sample with replacement from
the data set (x1, y1), . . . , (xN, yN) a large number of times,
say B times in all, and, for each bootstrap sample, indexed by
b = 1, . . . , B, construct a bootstrap estimate T̂ ∗b

h (x) of T(x) at
bandwidth h (the asterisk signifies that the estimate is a boot-
strap estimate). Next, apply the bootstrap principle [10], and
replace the unknown function T(x) in (4) by the estimate
T̂h(x) and replace T̂h(x) in (4) by its bootstrap version T̂ ∗b

h (x).
The different ways in which these bootstrap samples may be
generated are considered later. The bootstrap estimate of the
MISE is then

M̂ISE(h) = B−1
B∑

b=1

∫ (
T̂ ∗b

h (x) − T̂h(x)
)2

dx, (5)

where averaging over the B bootstrap replications has taken the
place of the expectation in (4). The bootstrap bandwidth ĥ is
then defined as the minimizer of this estimate of the mean inte-
grated square error in (5).

Unfortunately, there is a problem with the formulation of the
right-hand side of (5). When, as before, it is reexpressed as the
integral of the sum of a variance term and a bias-squared term,
the bias-squared term (E∗ T̂ ∗b

h (x) − T̂h(x)) 2 also vanishes.
Notice that the expectation E∗ is taken with respect to the
empirical distribution, which assigns a probability 1/N to each

data point (xi, yi), where N is the number of points. This simple
application of the bootstrap would therefore fail as the bias cer-
tainly increases with sufficiently large h.

To avoid this problem, the sample estimate T̂h(x) in (5) is
replaced by an estimate T̂h0

(x) based on a pilot bandwidth h0.
This pilot bandwidth needs to be larger than the optimal band-
width for estimating the transducer function in order to obtain
a good approximation of the bias contribution to the MISE [19].
The bootstrap bandwidth ĥ is then defined [13] as the minimizer
of the revised estimate of the mean integrated square error; i.e.,

M̂ISE(h) = B−1
B∑

b=1

∫ (
T̂ ∗b

h (x) − T̂h0
(x)

) 2
dx . (6)

This still leaves the problem of estimating the pilot bandwidth
h0, but there are several methods available [12], [18], and the
hope is that the bootstrap bandwidth ĥ will not depend too
strongly on h0 [10]. The plug-in method [11], which uses esti-
mates of unknown quantities in a formula for the asymptotically
optimal bandwidth, provides an effective pilot bandwidth after
multiplying by a factor 1.5 N 0.1, as suggested in [19]. This is the
method used in all the examples of this article, and it resulted in
good fits to the data.

The estimate M̂ISE(h) is evaluated for bandwidths h drawn
from an interval assumed to contain the optimal bandwidth. A
plausible lower limit for this interval is the smallest distance
between the stimulus levels, and a plausible upper limit is a
multiple of the distance between the lowest and highest stimu-
lus levels. 

For the bootstrap local-fitting method to be put into prac-
tice, a decision has to be made about the mechanism of resam-
pling. This decision depends on how much information about
the distribution of responses at each stimulus level is available.

THE WILD BOOTSTRAP
In the initial description of the stimulus-response function in
(1), it was assumed that, although their distribution was
unknown, the errors εi had the same variance. But, in many
applications, the assumption of constant variance does not hold.
Even so, providing that the variance does not change too rapidly
with stimulus level, it can be treated as being approximately
constant over each neighborhood with little effect on local
regression.

Constant variance is, however, important if the optimal
bandwidth is estimated by a bootstrap based on resampling the
estimated errors or residuals over all stimulus levels, i.e., resam-
pling ε̂i = yi − T̂(xi) with i = 1, . . . , N.

One way to preserve this resampling approach with noncon-
stant error variance is to estimate the variance locally (see, e.g.,
[16]) and use the result to obtain normalized residuals. Another
way is to use the wild bootstrap [15], [20]. In this method, the
bootstrap samples are generated from a minimalist discrete two-
point distribution that attempts to reconstruct the unknown
distribution of each residual (although any distribution satisfy-
ing the moment assumptions in the following Step 4 will do). It
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therefore varies as the variance does with stimulus level.
In more detail, the steps involved are as follows:
Step 1) Start with a deliberately large pilot bandwidth h0.
Step 2) Obtain an estimate T̂h0 of the transducer function
from the data at this bandwidth h0.
Step 3) Obtain the residuals ε̂i = yi − T̂h0

(xi) at
i = 1, . . . , N.
Step 4) Generate B bootstrap residuals ε ∗b

i , b = 1, . . . , B,
from a two-point distribution with mean 0, variance ε̂ 2

i , and
third moment ε̂ 3

i , at each i = 1, . . . , N.
Step 5) Add the bootstrap residuals ε ∗b

i , b = 1, . . . , B to the
pilot estimate T̂h0

(xi) to form the corresponding bootstrap
observations y∗b

i , at each i = 1, . . . , N.
Step 6) For each bootstrap sample (y∗b

1 , . . . , y∗b
N ) ,

b = 1, . . . , B, find estimates T̂ ∗b
h of the function over an inter-

val of bandwidths h assumed to contain the optimal value.
For details of the algorithm for generating appropriate sam-

ples in Step 4, see [20]. The method described previously is now
applied to estimate the MISE defined by (6), the minimizer of
which is the wild bootstrap bandwidth ĥwild.

Figure 3 shows an application of this method to microelec-
trode recordings from a single cone photoreceptor in the turtle
retina [1]. The mean peak voltage response evoked by a stimulus
light flash of wavelength 644 nm is plotted as a function of the
logarithm of the flash intensity. The symbols are the experimen-
tal data (replotted from [1, Figure 8]). This example provides a
useful test, as there is a known parametric model of the trans-

ducer function based on photoreceptor responses in the fish
[26]. The continuous curve is a local polynomial regression with
bandwidth ĥwild = 0.131 selected by the wild bootstrap method.
The dotted curve shows the model function, a hyperbolic tan-
gent function y = y0(1 + tanh(β1(x − x0))), where the coeffi-
cients x0, y0, and β1 have been adjusted for best fit. The two
curves are almost identical.

The continuous curve in Figure 4 shows how the wild boot-
strap bandwidth ĥwild was obtained from the estimated MISE.
The logarithm of the estimated MISE is plotted against the loga-
rithm of the bandwidth h. There is a minimum at ln h = −2.03;
i.e., h = 0.131. The dotted curve is for a different bootstrap
method, the GLM bootstrap, described later. The minimum is at
the same location ln h = −2.03; i.e., h = 0.131. This example is
considered further in “Turtle Photoreceptor Voltage Response.”

As a second example but without a model function, Figure 5
shows an application of bootstrap local fitting to signals record-
ed from the goldfish retina. The symbols are the feedback cur-
rent from a horizontal cell as a function of the intensity of a
light stimulus of wavelength 550 nm [23]. The continuous
curve is a local polynomial regression with bandwidth
ĥwild = 0.190 selected by the wild bootstrap method. The dot-
ted curve is the local fit obtained with the GLM bootstrap
described later. This example is considered further in “Goldfish
Horizontal-Cell Feedback Current.”

In some applications, the form of the distribution of the
responses at each stimulus level is known in principle. Although
the wild bootstrap may still be applied, the nonparametric fit-
ting approach and the bootstrap estimate of the optimal band-
width can both be improved by taking advantage of the
additional information about the distribution. The following
section provides a general framework.

[FIG4]  Estimate of the MISE as function of the bandwidth h
for the data in Figure 3. The continuous curve is for the wild
bootstrap, and the dotted curve is for the bootstrap with a
Gaussian general linear model. The common location of the
minima is indicated by an arrow.
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[FIG3]  Voltage response of a red-sensitive cone
photoreceptor of the turtle retina as a function of the
logarithm of the stimulus light intensity. The symbols are
replotted from [1, Figure 8]. The continuous curve is a local
polynomial regression with wild bootstrap bandwidth
ĥwild = 0.131 and is identical to a local fit by a Gaussian
general linear model with identity link function and the same
bootstrap bandwidth ĥGLM = 0.131. The dotted curve is a
global fit by a model hyperbolic tangent function [26]. The
locally and globally fitted curves are almost identical.
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GENERALIZED LINEAR MODELS
Generalized linear models (GLMs) are an extension of classical lin-
ear models in which the component describing the distribution of
observations is a member of the exponential family. This family, as
mentioned in the beginning of this article, includes the Gaussian,
Poisson, and binomial distributions. For any member of this fami-
ly, the conditional density f(y|x) of y given x is defined [25] by

f(y|x) = exp
[

θ(x)y − b(θ(x))
a(φ)

+ c(y, φ)

]

for functions a, b, and c, and canonical parameter θ and disper-
sion parameter φ. The expectation E(y|x) = b ′(θ(x)) and the
variance Var(y|x) = b ′′(θ(x))a(φ), where the primes denote dif-
ferentiation with respect to θ [25]. The variance is the product
of two functions: b ′′(θ(x)), which depends on the canonical
parameter θ(x) and therefore only on the mean m(x), and a(φ),
which is independent of θ(x) and depends only on φ (in this
context, it is convenient to use the notation m(x) for E(y|x)).
By assumption, m(x) coincides with the value T(x) of the trans-
ducer function at x.

A property of GLMs is that the mean m(x), after transforma-
tion by a link function g, is modeled linearly. For each distribu-
tion in this exponential family, the link function for which
g(m(x)) = θ(x) is the canonical link function. This function
has some interesting statistical properties (see [25] for details),
but there is no guarantee that θ(x) is a simple function of x,
such as a polynomial, although the variance is usually more sta-
ble over x after such a transformation.

For a Gaussian distribution with constant variance,

f(y|x) = 1√
2πσ 2

exp

(

− (y − m(x)) 2

2σ 2

)

.

The dispersion parameter φ = σ 2 and the canonical link func-
tion is the identity, g(y) = y. For a Poisson distribution,

f(y|x) = e−λ(x) λ(x)y

y !
,

where y = 0, 1, 2, . . . , and λ(x) > 0. The canonical link func-
tion g(y) = ln(y) and the canonical parameter θ(x) = ln λ(x).
Finally, for a binomial distribution,

f(y|x) = n !
y !(n − y)!

p(x)y(1 − p(x))n−y ,

where y = 0, 1, . . . , n, with n depending, in general, on x,
and 0 � p(x) � 1. The canonical link function
g(y) = ln (y/(n − y)), which is known as the logistic transfor-
mation. The canonical parameter θ(x) = ln (p(x)/(1 − p(x))).
Examples are given later.

For GLMs, maximum likelihood rather than least squares is
used in the fitting procedure. In fact, it is easier to work with
the logarithm of the likelihood, which then takes the form

N∑

i =1

[
θ(xi)yi − b(θ(xi))

a(φ)
+ c(yi, φ)

]

, (7)

where, as noted earlier, θ(x) and m(x) are related by
θ(x) = (b ′)−1(m(x)). As with least squares, the transformed
mean g(m(x)) may be estimated by a polynomial of degree k,
say, in the xi,

g(m(xi)) = β0 + β1 xi + · · · + βkxk
i , 1 � i � N ,

where k < N − 1. The coefficients β j can then be estimated by
maximizing the log likelihood. For the Gaussian family, maxi-
mizing likelihood is equivalent to minimizing least squares [25].

The problems of polynomial regression with maximum likeli-
hood are similar to those of polynomial regression with least
squares. The fit may suffer from large biases, it can be strongly
influenced by individual observations, the degree of the polyno-
mial cannot be controlled continuously, and there may be large
variability in the estimated coefficients. Additionally, the choice
of what constitutes an appropriate link function so the mean
becomes a polynomial in the stimulus levels is not always obvi-
ous. A wrongly chosen link function may result in a poor fit and
misleading inferences [6].

In the local approach to fitting by least squares, the sum of
squares (2) was replaced by its locally weighted version (3).
Analogously, in the local approach to fitting by maximum likeli-
hood, the log likelihood (7) is replaced by its locally weighted
version, which, at each x0, takes the form

N∑

i =1

wh(x0)(xi − x0)

[
θ(xi)yi − b(θ(xi))

a(φ)
+ c(yi, φ)

]

,

where θ(x) = (b′)−1(m(x)). The transformed mean g(m(x)) is
assumed to be adequately approximated locally by a Taylor

[FIG5]  Feedback current from a horizontal cell of the goldfish
retina as a function of light intensity. The symbols are replotted
from [23, Figure 8]. The continuous curve is a local polynomial
regression with wild bootstrap bandwidth ĥwild = 0.190. The
dotted curve is a local fit by a Gaussian general linear model with
identity link function and corresponding bootstrap bandwidth
ĥGLM = 0.177. The two curves are almost identical.
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expansion, e.g., a quadratic function of x; i.e., for each x0, values
of g(m(x)) at points x near x0 are given by

g(m(x)) ≈ α0 + α1(x − x0) + 1
2
α2(x − x0)

2 .

The estimate of m(x0) is then g−1(β̂0), where β j = α j/ j! for
each j, as before.

Local maximum-likelihood fitting resolves most of the prob-
lems with global fitting. Most importantly, the choice of link
function has a very small effect on the fit. But issues similar to
those identified with local least-squares fitting arise in local
maximum-likelihood fitting, and the choice of the bandwidth
remains critical. The bootstrap again provides an attractive way
to find a suitable bandwidth.

BOOTSTRAP BANDWIDTH SELECTION IN LOCAL
MAXIMUM-LIKELIHOOD FITTING
The goal, as with local least-squares fitting, is to find an optimal value of
the bandwidth h that minimizes the difference between the estimate
m̂h(x) = T̂h(x) and the true value m(x) = T(x), evaluated over the
domain of definition of x. This difference
may again be quantified by the MISE but
evaluated here for the transformed val-
ues, i.e., for g(m(x)) and β̂0 at each x. As
indicated earlier, by fitting the trans-
formed mean g(m(x)), the variance is
more likely to be stable over x.

If the density f(y|x) were known
exactly, samples could be generated and
used to estimate the MISE as in (4).
But, in practice, the parameters of the
distribution, in particular, the mean m(x), need to be estimated. As
before, the sample estimate m̂h0 is based on a pilot bandwidth h0.
Resampling with GLMs is parallel to resampling with the discrete
two-point distribution used in the wild bootstrap, except that the
samples are drawn from f(y|x).

In more detail, the steps are as follows:
Step 1) Start with a deliberately large pilot bandwidth h0.
Step 2) Obtain an estimate m̂h0 of the mean from the data at
this bandwidth h0.
Step 3) Generate B bootstrap observations y∗b

i , b = 1, . . . , B,
from the distribution with density f(y|xi) whose mean
m̂h0

(xi) was estimated in Step 2.
Step 4) For each bootstrap sample (y∗b

1 , . . . , y ∗b
N ) ,

b = 1, . . . , B, find estimates m̂∗b
h of the mean over an inter-

val of bandwidths h assumed to contain the optimal value.
The method described previously is now applied again to

estimate the MISE defined by (6), the minimizer of which is the
GLM bootstrap bandwidth ĥGLM.

Applications of this method are described in “Examples.”

GOODNESS OF FIT
To assess the adequacy of the estimated transducer function in
accounting for the data, it is helpful to have a measure of good-

ness of fit. In global least-squares fitting, a commonly used meas-
ure is the residual sum of squares, which, for Gaussian errors, has
a χ2 distribution. The equivalent measure for GLMs is the
deviance D (see [25] for details). Thus, for a Gaussian distribution,

D =
N∑

i =1

(yi − m̂(xi))
2.

For a Poisson distribution,

D = 2
N∑

i =1

yi ln
(

yi

m̂(xi)

)

− (yi − m̂(xi)) ,

where yi = 0, 1, 2, . . . . Finally, for a binomial distribution,

D = 2
N∑

i =1

yi ln
(

yi

m̂(xi)

)

+ (ni − yi) ln
(

ni − yi

ni − m̂(xi)

)

,

where yi = 0, 1, . . . , ni [25]. All three are used in “Examples.”
If the model is correct, then the deviance divided by the dis-

persion parameter is distributed approximately as χ2 with resid-
ual degrees of freedom (DoF) given
by the number of data points N
minus the number of estimated coef-
ficients; i.e., DoF = N − k − 1 [25].
For the normal distribution with
unknown dispersion, the variance
has to be estimated.

In local fitting, the deviance may
be also used as a measure of good-
ness of fit. But the concept of DoF is
more complex and there are several

definitions based on the so-called hat matrix H, which relates
the observations to the estimates, i.e., Hyi = ŷi [22], [24]. One
simple definition, which is an extension of the definition of DoF
for parametric models, is the trace of the hat matrix tr(H). For a
global polynomial regression of degree k, the trace
tr(H) = k + 1. For a local polynomial regression, the trace will
generally be noninteger. 

The approximate distribution of the deviance for a non-
Gaussian distribution has to be used with caution. The result is
only asymptotic [25], and, with finite samples, it is unclear how
good the approximation is. For discussion of measures of good-
ness of fit and definitions of DoF, see [21], [22], and [24].

CONFIDENCE INTERVALS
One of the advantages of the bootstrap method is the ready
estimation of simultaneous confidence intervals. For suitably
chosen statistics, intervals obtained by this method may con-
verge more quickly than intervals obtained from asymptotic
theory [8].

Resampling schemes similar to those described for the wild
bootstrap and the GLM bootstrap can be used to obtain confi-
dence intervals for the estimated transducer function. Steps 1–5
(for the wild bootstrap) and Steps 1–3 (for the GLM bootstrap)

LOCAL FITTING WITH BOOTSTRAP
BANDWIDTH SELECTION

PROVIDES A POWERFUL METHOD
FOR ESTIMATING A TRANSDUCER

FUNCTION FROM A SET OF
BIOLOGICAL DATA.
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are executed, but now the bootstrap bandwidth ĥ is used in
place of the pilot bandwidth h0.

The simplest estimates of confidence intervals may then be
derived from the empirical centiles of the bootstrap samples.
More advanced methods may be applied to obtain better approx-
imations and faster rates of convergence. For discussion of dif-
ferent bootstrap confidence intervals, see, e.g., [8].

MONOTONICITY AND BOUNDEDNESS
As observed elsewhere [2], there are two approaches to the
requirement of monotonicity in the fitted function. One
approach is to assume that any good nonparametric estimator
will reflect the monotonicity of the data, so monotonicity con-
straints need not be introduced. An alternative approach is to
incorporate a monotonicity constraint directly into the fitting
procedure. This may be done in several ways (see [7] and refer-
ences therein).

The approach adopted in this article is the former: to allow
the fit to indicate the monotonicity. With local fitting based on a
polynomial of degree one, it is possible to impose monotonicity
on a nonmonotonic estimate by progressively increasing the
bandwidth from its nominal optimal value. An independent test
of the monotonicity of the data is described in  [2] and [17].

A similar argument might be applied to assumptions about
the boundedness of the fitted function, but here the risk of vio-
lations in an unconstrained fit are more serious. With binomial
and Poisson data, the response variables can never fall below
zero, and with binomial data, the number of successes can never
exceed the number of trials. Using the corresponding link func-
tions in local fitting avoids excursions into physically unrealiz-
able parts of the response range.

EXAMPLES

TURTLE PHOTORECEPTOR VOLTAGE RESPONSE
As noted earlier, the experimental data in Figure 3, showing the
photoreceptor voltage response to a light stimulus in the turtle
retina, are well fitted by a parametric model (dotted curve), a
hyperbolic tangent function for which the deviance D = 1.34 on
16 residual DoF. A nonparametric estimate [16] of the dispersion
parameter φ gives an estimated scaled deviance D/φ = 5.29,
which is still small compared with the residual DoF. Local poly-
nomial regression, with a wild bootstrap bandwidth
ĥwild = 0.131, produced an almost identical result (continuous
curve). Remember that here and in the subsequent examples the
polynomial is of degree one. For comparison, local fitting was
also performed with a Gaussian GLM and canonical identity link
function. The corresponding bootstrap bandwidth was the same
as with the wild bootstrap, i.e., ĥGLM = 0.131. For each local fit,
the deviance D = 0.541 on 8.78 residual DoF. The estimated
scaled deviance D/φ = 2.13, which is still small.

GOLDFISH HORIZONTAL-CELL FEEDBACK CURRENT
As also noted earlier, the experimental data in Figure 5, showing
the feedback current response to a light stimulus in the goldfish
retina, are well fitted by local polynomial regression (continuous
curve). The wild bootstrap bandwidth ĥwild = 0.190, for which
the deviance D = 2.21 on 1.51 residual DoF. The estimated
scaled deviance D/φ = 1.13, which is small. For comparison,
the dotted curve was obtained by local fitting with a Gaussian
GLM and identity link function. The corresponding bootstrap
bandwidth ĥGLM = 0.177, for which the deviance D = 1.45 on
1.25 residual DoF. The estimated scaled deviance D/φ = 0.743,
which is also small. The two curves are almost identical.

GUINEA PIG AUDITORY SPIKE FREQUENCY
Figure 6 shows the response rate in spikes per second from an
auditory nerve fiber of the guinea pig taken from unpublished
source data summarized in [5]. The data were used earlier to
illustrate global parametric fitting. The distribution of responses
at each level is known to be approximately Poisson, although
there are also fractal components. The quadratic and cubic
regressions gave a poor fit (Figure 1), with deviance D = 206 on
26 residual DoF for the cubic regression. The estimated scaled
deviance D/φ = 257, which is large. Although the Gaussian
cumulative distribution function (Figure 2) gave a somewhat
improved fit with deviance D = 105 on 27 residual DoF, the esti-
mated scaled deviance D/φ = 131, which is still large.

The continuous curve in Figure 6 was obtained by local fit-
ting with a Poisson GLM and canonical log link function. The
corresponding bootstrap bandwidth ĥGLM = 6.02, for which the
deviance D = 24.8 on 23.1 residual DoF. The estimated scaled
deviance D/φ = 31.1, which is not too large. The curve fits the
data closely. In the original experimental study [5], freehand
curves were drawn through similar data.

[FIG6]  Response rate of an auditory nerve fiber of the guinea pig
as a function of sound-pressure level. The symbols are from
unpublished source data summarized in [5] and the continuous
curve is a local fit by a Poisson GLM with canonical log link function
and corresponding bootstrap bandwidth ĥGLM = 6.02. This fit is
much better than the global parametric fits of Figures 1 and 2.
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FREQUENCY-OF-SEEING PERFORMANCE IN GLAUCOMA
Figure 7 shows frequency-of-seeing data for a human patient
with glaucoma [3]. A flash of light was presented a fixed number
of times at a particular location on the retina, and the patient
reported whether the flash was seen as its intensity was varied.
The symbols are the proportion of positive responses in five tri-
als at each stimulus level (replotted from [3, Figure 5, bottom]).
Frequency-of-seeing data are customarily fitted globally by a
parametric model [14], a binomial GLM with a probit link func-
tion, i.e., the inverse �−1 of the Gaussian cumulative distribu-
tion function. This model provides a useful reference, and the fit
here, shown by the dotted curve, is good, with deviance
D = 17.1 on 15 residual DoF (the dispersion parameter for the
binomial distribution φ = 1). A local fit by a binomial GLM with
canonical logistic link function is shown by the continuous
curve. The corresponding bootstrap bandwidth ĥGLM = 9.02, for
which the deviance D = 16.4 on 14.7 residual DoF. The fit is
also good, but it is a little less symmetric. Notice that the DoF
for the local fit is 2.26, slightly more than the two DoF of the
global parametric fit. The link functions for the global and local
models are different, but this has little effect here.

HUMAN TWO-ALTERNATIVE FORCED-CHOICE 
PATTERN DISCRIMINATION
Figure 8 shows performance by a normal human observer dis-
criminating between images of natural colored scenes and
approximations to those images synthesized with varying levels
of fidelity [27]. The symbols are the proportion of correct
responses out of 200 trials as a function of the number of com-
ponents in the approximation in reverse order (replotted from
unpublished source data summarized in [27]). Because each
trial was a two-alternative forced-choice task, chance perform-

ance level is 50%. Global fitting by a binomial GLM with the
commonly used link functions is poor. Thus, for a logistic link
function, shown by the dashed curve, the deviance D = 33.1 on
six residual DoF, and for a probit link function, shown by the
dotted curve, the deviance D = 30.4 also on six residual DoF.
Local fitting by a binomial GLM with canonical logistic link
function, shown by the continuous curve, is better. The corre-
sponding bootstrap bandwidth ĥGLM = 1.07. The fitted curve
follows the data more closely at x = 6, 7, 8, and has slightly
more of an inflexion at x = 3. Even so, the fit is not completely
satisfactory. The deviance D = 15.2 on 4.31 residual DoF.

CONCLUSIONS
Local fitting with bootstrap bandwidth selection provides an
effective method for estimating a transducer function from a set
of biological data, overcoming many of the problems with para-
metric regression. As the examples showed, where a valid para-
metric model was already known, as with the turtle
photoreceptor response and patient frequency-of-seeing per-
formance, local fitting gave an almost identical result. Where a
valid parametric model was unknown, local fitting generally
provided an excellent description of the data. Even when the
response was a complicated function of stimulus level, as with
human discrimination of image approximations, local fitting
produced a good description that preserved monotonicity.
Moreover, where local fits using the wild bootstrap and the GLM
bootstrap were both obtained, the results were both identical
(Figure 3) or almost identical (Figure 5).

[FIG8]  Human performance in discriminating between images
and their approximations as a function of the number of
components in the approximation. The symbols are replotted
from unpublished source data summarized in [27]. The
continuous curve is a local fit by a binomial GLM with canonical
logistic link function and corresponding bootstrap bandwidth
ĥGLM = 1.07. The dashed curve is a global fit by a binomial GLM
with logistic link function, and the dotted curve is the same but
with the closely related probit link function, each with chance
response level 0.5. Both global fits are poorer than the local fit.
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[FIG7]  Frequency of seeing by a glaucoma patient as function of
stimulus light intensity. The symbols are replotted from [3, Figure
5, bottom]. The continuous curve is a local fit by a binomial GLM
with canonical logistic link function and corresponding bootstrap
bandwidth ĥGLM = 9.02. The dotted curve is a global fit by a
binomial GLM with probit link function.
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The goodness of the bootstrap estimate of the optimal band-
width used in these local fits depends necessarily on the pilot
bandwidth estimate but, in principle, not strongly. A severely
over-smoothed pilot estimate will probably result in a larger-
than-optimal bootstrap bandwidth and, conversely, for an under-
smoothed pilot estimate.

The bootstrap is not the only method available for estimating
bandwidths. Another possibility is cross-validation, which esti-
mates the optimal bandwidth by minimizing the difference
between the data and the local fits obtained with successive data
points omitted [22], [24]. Although bandwidth selection by boot-
strap compares favorably with that by cross-validation, under
some conditions, the bootstrap may produce estimates that are
slightly too large, but this may be preferable to producing esti-
mates that are too small, as cross-validation sometimes does
[29]. The plug-in method, used here to obtain the pilot band-
width, can also be used directly to estimate the optimal band-
width, but its calculation can be complicated and it does rely on
asymptotic results, which might not hold for small data sets. As
with any automatic method, it is important to assess the results
of the fit. Graphical methods are a useful aid to this end, at least
in low dimensions [22].

In summary, given the often limited knowledge of the bio-
logical processes underlying a transducer function, bootstrap
local fitting of stimulus-response data seems remarkably effec-
tive. It can provide an accurate estimate of the function, pre-
serving the expected critical features, its monotonicity, and,
where known, its asymptotic behavior at small and large stimu-
lus levels. Confidence intervals for the fitted function can also
be readily estimated. Implementation of the local-fitting and
bootstrap routines is straightforward, and computational over-
heads need not limit its practical application.
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