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A line-element target differing sufficiently in orientation from a background of line elements can be visually
detected easily and quickly; orientation thresholds for such detection are lowest when the background ele-
ments are all vertical or all horizontal. A simple quantitative model of this performance was constructed
from three processing stages: (1) linear filtering by two classes of anisotropic filters, (2) nonlinear point
transformation, and (3) estimation of a signal-to-noise ratio based on responses to images with and without
a target. A Monte Carlo optimization procedure (simulated annealing) was used to determine the model
parameter values required for providing an accurate description of psychophysical data on orientation incre-
ment thresholds.
1. INTRODUCTION
There are many possible cues to the visual detection of
a target in a complex background, but in monochromatic,
static, monocularly viewed images one of the most im-
portant is the orientation of lines and edges: providing
that the difference in orientation of target and background
lines is sufficiently large, detection can be achieved speed-
ily and without the need for thought or attention.1–10

The underlying visual mechanisms are assumed to op-
erate in an essentially parallel way over the visual field,
as part of an early (preattentive or distributed-attention)
level of visual processing.2 – 5,11,12

There have been few systematic psychophysical
measurements of the orientation dependence of this
performance. One parametric investigation7 of the de-
tectability of line-element targets in random arrays of
line elements (like those illustrated in Fig. 1) has shown
that performance is anisotropic: the angular difference
between target and background line elements at thresh-
old varies markedly with background orientation. A
first-order theoretical analysis7 of those data led to the
proposal that the early visual processes determining per-
formance in this particular task are dominated by two
classes of orientation-sensitive filters, whose major axes
are near the vertical and the horizontal with respect to
the frontoparallel plane of view.7,10

Based on that analysis, this study sets forth a simple,
quantitative model for line-element-detection perfor-
mance. The model comprised three stages: (1) linear
filtering by two classes of anisotropic filters, (2) nonlinear
point transformation, and (3) estimation of a signal-to-
noise ratio based on responses to images with and without
a target. An optimization procedure—simulated anneal-
ing—was used to determine the values of the parameters
of the model so that it provided an accurate description
of data on orientation increment thresholds. A report of
some preliminary results from this study has been pub-
lished previously.13
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2. PSYCHOPHYSICAL DATA
AND ANALYSIS
The psychophysical data to be fitted were taken from a
previous investigation.7 Relevant details are, briefly, as
follows. Observers viewed achromatic stimulus images
consisting of a random array of 20 line elements generated
on a vector-graphics X –Y display. In half of the images
19 of the line elements—forming the background—had
the same orientation (angle u with respect to the vertical),
and one line element—the target—had a different orien-
tation (angle u 1 Du), as shown in Fig. 1; both u and Du

varied randomly over trials. (In the experiment the line
elements appeared white against a gray background.) In
the other half of the images the line elements all had the
same orientation (angle u), which also varied randomly
over trials. The images were each presented briefly, and
the observer had to decide whether a target was present.
For a given level of detection performance, corresponding
to a fixed criterion level defined by the discrimination in-
dex d0 from signal-detection theory,14 increment threshold
Du was determined as a function of u. Data were pooled
over a group of ten observers. A representative portion
of the data is plotted in Fig. 2 (open circles; d0 ­ 0.2). In-
crement thresholds were smallest when the background
elements were oriented along the vertical and the horizon-
tal. Notice that Du and u were measured in the same di-
rection, and therefore asymmetries in the dependence of
Du on u are not unexpected.3,7,9,10 (The data represent
a moderately coarse sampling of the increment-threshold
function for orientation, and, despite the large number
of observations, the standard deviations associated with
each threshold are sufficiently large that the pattern of
asymmetry is not precisely defined.)

Previous analysis7 of these data yielded estimates of
the orientation-tuning curves of the proposed underlying
filters: their axes were oriented at 24 6 8± and 83 6 6±

with respect to the vertical (positive anticlockwise), and
their half-height half-widths were approximately 30±.
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Fig. 1. Typical stimulus image. The orientation of the back-
ground line elements is 15±; of the target line element, 45±.

Fig. 2. Increment threshold for the detection of a target line
element within a field of background line elements as a function
of orientation of the background elements. Open circles: psy-
chophysical data,7 means 61 standard error of the mean; the
point at 180± is identical to the point at 0±. Solid curve: data
from the optimized model.

These tuning curves very closely matched—in shape,
position, and relative heights—the orientation-tuning
curves of certain vertical and horizontal components ob-
tained in a principal-components analysis15 of an en-
semble of images of natural scenes. In addition, similar
values of orientation-tuning half-widths have been ob-
tained in visual search measurements16 and in single-cell
recordings from primate cortex.17 –19

Although yielding plausible orientation-tuning curves,
the analysis7 was based on some simplifying assump-
tions, including the rapid convergence of a series ex-
pansion of the hypothesized orientation-tuning function
and the small size of the increments Du. More gener-
ally, it was not feasible to apply analytic methods to
the problem of spatially characterizing the underlying
visual filters and their responses to gray-level images.
A more direct approach with numerical methods was
required.
3. MODEL DESIGN
Models of visual texture segmentation have been used to
predict target detection. The tasks are indeed related,6

but texture-segmentation models have generally been
complex, with one,20 for example, being based on convolu-
tion of the image with spatial-frequency- and orientation-
selective (Gabor) filters, smoothing by Gaussian filters,
thresholding, and final edge detection, and another21

being based on convolution of the image with even-
symmetric linear filters, half-wave rectification, a second
nonlinear transformation, and texture-boundary detec-
tion. The present model was intended to be simple and
to apply only to line-element detection; its division into
two image-processing stages was based on a standard
approach22 and, within each stage, the number of free pa-
rameters was minimized subject to the requirement that
the model accounted quantitatively for the psychophysi-
cal data.

4. GENERATION OF TEST IMAGES
Each line element was generated as a gray-level image
(0–255 levels) within a region of size 64 3 64 pixels.
The line element, which had variable orientation, was
positioned at the center of the region, and its dimensions
were fixed at 32 3 4 pixels, with the lengthywidth ratio
being chosen so as to be similar to that of the line elements
used psychophysically, despite its having been generated
by a calligraphic rather than a raster-graphic system.7

Two methods of producing oriented line elements were
considered. The first method used antialiasing to elimi-
nate staircasing that would otherwise be present for all
the line elements at orientations other than the vertical
and the horizontal; it allowed the full gray-level range
to be exploited, and it produced smooth edges. In prac-
tice this method proved unsuitable because the antialias-
ing introduced variability in the energy statistics of the
line elements according to their orientation. The second
method simply generated bit images in which pixels took
on one of only two gray levels, 0 and 255. Although this
method suffered from staircasing, line elements had iden-
tical energy statistics, and the latter was considered to be
the more important factor.

Oriented line elements were thus produced at 5±-orien-
tation intervals. Test images were then composed as a
collage of these 64 3 64 blocks (compare Fig. 1).

5. STAGE 1. LINEAR ORIENTED FILTERS
In the first stage of the model, differences in line-element
orientation were converted into differences in local re-
sponse amplitude. The linear neighborhood filter func-
tions f were given the form of a Gaussian function in one
spatial direction, the preferred direction, multiplied by a
difference-of-Gaussians function in the orthogonal direc-
tion. Thus, in the frontoparallel plane with the usual xy-
coordinate system, if the preferred orientation were along
the x axis, then
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where si, i ­ 1, 2, 3, are the standard deviations (space
constants) of the Gaussian functions. Figure 3 shows the
general form of the filter. The difference-of-Gaussians
function provided balanced excitatory and inhibitory ac-
tivity in the direction orthogonal to the preferred direction
and therefore favored energy distributions oriented along
the preferred direction.

Let ff denote the filter f with a preferred orientation
f. Two classes of filters ff were produced according to
Eq. (1), with preferred orientations f ­ fv, fh near the
vertical and the horizontal, respectively. In principle,
other anisotropic filters could have been used, for ex-
ample, Gabor functions and difference-of-offset-Gaussians
functions, depending on the level of biological plausi-
bility desired and the type of test image used.21,23 In
exploratory simulations poorer predicted responses to
the test images were obtained with difference-of-offset-
Gaussians functions than with difference-of-Gaussians
functions.

The action of a spatially continuous two-dimensional
array of these filters on an image was equivalent to a
two-dimensional convolution p ; that is, if the test image
had intensity isx, yd at sx, yd, then the response rfsx, yd
of each class of filter ff, f ­ fv, fh, at sx, yd was given by

rfsx, yd ­ s ff p idsx, yd . (2)

These responses were processed separately in vertical and
horizontal channels defined by the values of fv, fh. In-
dependent of the value of f, the response rf to a uniform
field was zero.

6. STAGE 2. NONLINEAR POINT
TRANSFORMATION
In the second stage of the model, differences in local re-
sponse amplitude were converted into differences in lo-
cal response energy. The responses rf defined by Eq. (2)
were subjected to a power transformation with exponent
g . 0 and were then given a variable offset k to control
the resting level of activity. Because the qualitative be-
havior of the model was found to be moderately insensi-
tive to the value of g, its value was fixed at 2, thereby
representing a proper conversion of amplitude to energy.
The transformed response r 0

fsx, yd in each channel at each
point sx, yd was therefore given by

r0
fsx, yd ­ jrsx, ydj2 1 k . (3)

7. STAGE 3. SIGNAL-TO-NOISE
CALCULATION
Some method of combining filter responses was necessary.
The region over which integration takes place need not,
however, be the whole image field (for example, within the
one image it should be possible for a region containing a
target to be compared with another region not contain-
ing a target); nor need the integration increase linearly
with the number of elements in the region. The target
and the nontarget images considered here were presented
separately, and responses were therefore integrated over
the whole field. A control simulation showed that reduc-
ing the number of nontarget line elements did not have a
strong effect on the pattern of performance.

The measure of detectability of the line-element target
was based on a signal-to-noise calculation for each of the
vertical and the horizontal channels: the signal was the
total activity over x, y defined by the responses r0

fsx, yd
to a target image containing n 2 1 line elements of ori-
entation u and one line element of orientation u 1 Du;
the noise was the total activity over x, y defined by the
responses r0

fsx, yd to a nontarget image containing n line
elements of orientation u. The largest signal-to-noise ra-
tio over channels f ­ fv, fh was taken to define a ma-
chine discrimination index d0

m. (Strictly speaking, this
index may be only monotonically related to a true d0: the
exponent g of the nonlinear point transformation is not
unique, and, in the absence of a target when performance
should be at a chance level, the index is unity, not zero.
For ease of interpretation the value of d0

m was floored by
subtraction of 1.0, but the adjustment had little effect be-
cause the scale and the zero offset of d0

m were treated as
free variables in the optimization.) Thus

d0
m ­ max

f­fv ,fh

(
sn 2 1dRsu, fd 1 Rsu 1 Du, fd

nRsu, fd

)
2 1.0 .

(4)

The two classes of filters associated with the two channels
had identical spatial-tuning properties and therefore the
same gains.

The form of Eq. (4) implies that discrimination is in-
variant to luminance contrast in the image: the response
of the filters to a uniform field is zero (Section 5), and, be-
cause the offset k in Eq. (3) is a free variable, any scaling
of the intensity isx, yd at each sx, yd by a constant fac-
tor disappears in forming the quotient of the integrated
responses.

Notice that discrimination performance is determined
by the relative responses of filters to target and nontar-
get line elements rather than by their absolute responses.
Thus detection performance for a vertical target among
tilted line elements would be determined by the horizontal
channel, even though the response of this channel to the
target is weaker than the response of the vertical channel.
(It is this property that leads to the asymmetry in the pre-
dicted dependence of Du on u near the vertical and the

Fig. 3. General form of the anisotropic linear filters.
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horizontal.) The dominance of relative responses over
absolute responses has been suggested as an explanation
for the fineness of orientation discrimination in some acu-
ity tasks.24,25

8. FILTER OPTIMIZATION
For a given set of parameter values the model straight-
forwardly yielded an increment-threshold function for ori-
entation, as follows. For each background orientation u,
values of the machine discrimination index d0

m [Eq. (4)]
were computed for progressively increasing values of
the relative orientation Du of the target element. From
the resulting machine psychometric function a threshold
value of Du was calculated at that u value for some
criterion value of d0

m. The converse problem—to deter-
mine the parameter values yielding the given increment-
threshold function—was more difficult. The method of
simulated annealing26 used to solve the problem is an
optimization procedure that typically has been applied
to problems of combinatorial minimization, where there
is an objective function to be minimized and where the
space over which that function is defined is a discrete,
but very large, N-dimensional configuration space. Nor-
mally the number of elements in the configuration space
is factoriallly large and cannot be explored exhaustively.
Although the configuration space was continuous here,
simulated annealing could still be applied.27

Simulated annealing is, formally, a Monte Carlo itera-
tive improvement method. It is analogous to the way in
which a metal is slowly cooled (annealed) so that, given
sufficient time, its atoms settle into the lowest possible en-
ergy state. Some other optimization algorithms, such as
gradient descent, correspond to rapid cooling of the metal.
Exploratory computations undertaken with gradient de-
scent showed, not unexpectedly, that parameter values
were likely to be trapped in regions corresponding to non-
global minima. This problem could have been solved by
multiple applications of the gradient-descent operation,
each time from a different starting point; such an ap-
proach would have eventually yielded a global minimum
but also would have been computationally expensive.
Simulated annealing offered a more efficient method for
covering the parameter space.

As with any optimization procedure, a function quanti-
fying the performance of the model had to be defined first;
here it was simply the difference between the increment-
threshold function provided by the model and that ob-
tained psychophysically. The calculation was as follows.
At each background orientation u ­ 0±, 22.5±, . . . , 157.5±

(corresponding to the eight intervals used to plot the psy-
chophysical data), the machine discrimination index d0

m
[Eq. (4)] was evaluated for relative target orientations
Du ­ 0±, 10±, . . . , 50±. A criterion value of d0

m was se-
lected (at random because the response of the model could
be arbitrarily scaled), and a threshold value of Du was cal-
culated. Let tms jd, ts jd, j ­ 1, 2, . . . , 8, be the machine
and the psychometric increment-threshold values, respec-
tively, at the background values u ­ 0±, 22.5±, . . . , 157.5±.
An error function E was computed as the sum of the
absolute values of the differences between machine and
psychometric increment-threshold values (the latter at
d0 ­ 0.2). Thus,
E ­
8P

j­1
jts jd 2 tms jdj . (5)

In all, there were seven parameter values to be varied:
the preferred orientations fv, fh of the two classes of fil-
ters; the space constants si, i ­ 1, 2, 3, of the filters [see
Eq. (1)]; the response offset k [Eq. (3)]; and the criterion
value of the machine discrimination index d0

m. All the
parameter values other than the preferred orientations
were common to both classes of filters. The degrees of
freedom for the model were therefore one less than for
the psychophysical data (the relative gains of the two fil-
ter classes also could have been varied,7 with the conse-
quent loss of the last degree of freedom). This estimate
of the degrees of freedom may have been unnecessarily
pessimistic because not all the parameters of the model
were fully independent of one another.

At the beginning of the optimization procedure the
preferred orientation of one filter was set to 0± and the
other to 90±; the other parameters were assigned arbi-
trary values within certain broad ranges. To improve
the efficiency of the annealing, a preliminary sequence of
iterations was performed in which parameter ranges were
adjusted to ensure approximately equal sensitivities of
the model to variations in each of the parameter values28;
the ranges of preferred orientations were limited to
f25±, 5±g and f85±, 95±g. Each full annealing sequence
comprised 1000 iterations. As a control on its stability
the annealing was repeated 50 times, with different seeds
for the random-number generator on each occasion.

9. MODEL PERFORMANCE
The optimized model produced an orientation increment-
threshold function that closely matched the psychophysi-
cal data. The result of the annealing that gave the best
fit is shown by the solid curve in Fig. 2; there was no
significant difference between the psychophysical and the
model data: a test with adequate power based on the
chi-squared distribution yielded x2s1d ­ 1.0, P . 0.3.
Table 1 gives summary statistics for the 50 repetitions.
The mean and the standard deviations of the parameters
are shown, but only for the filter characteristics, because
the value of the offset k and the criterion value of d0

m
were only of technical interest. More detailed statistical
analysis of each of the sets of optimized parameter val-
ues for the preferred orientations fv, fh revealed closely
spaced bimodal rather than unimodal distributions, again
indicating the complex nature of the multidimensional
error space.

Table 1. Summary Statistics for a Sample of
50 Repetitions of the Optimization Procedure

Parameter Meana SDb

s1 15.3 3.7
s2 1.76 0.42
s3 22.3 7.67
fv 3.83 1.87
fh 90.6 3.42

aWeighted by the error function E [Eq. (5)]; weighted and unweighted
means were similar.

bSample standard deviation; also weighted by E.
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10. COMMENT
The results of the optimization showed that a simple
three-stage model with two classes of orientation-sensi-
tive filters could account quantitatively for the anisotrop-
ies in the psychophysical line-element-detection data.

The preferred orientations fv and fh of the optimized
filters were, when averaged over the 50 annealings,
3.8 6 1.9± and 90.6 6 3.4±, respectively (Table 1). The
averaged space constants of the optimized filters were
such that responses to image energy distributions ori-
ented orthogonally to the preferred orientations of the
filters were inhibited over extended areas: the ratio
of inhibitory to excitatory space constants was approxi-
mately 13:1 (Table 1). One interpretation of the high
ratio of inhibitory to excitatory space constants is that
the model produces the performance shown in Fig. 2 by
discriminating against nonpreferred line elements rather
than by favoring preferred line elements. (Previously
published estimates13 of the parameter values were de-
rived for a model with no response offset k and were based
on a single annealing. Although these earlier estimates
have some properties in common with the mean values
reported here and produce a good fit to the psychophysical
data, they are significantly different numerically.)

The quantitative performance of the model lends sup-
port to the assumption7,29 that the early visual processes
determining line-element-detection performance are
dominated by two classes of orientation-sensitive filters
with axes near the vertical and the horizontal. Even
so, it is not suggested here or elsewhere7 that these
are the only filter mechanisms involved in preattentive
line-element detection. Results from a study of catego-
rization in the visual search for oriented line elements30

have suggested processes sensitive to at least two ori-
entations (steep, shallow) and two directions (tilted left,
tilted right). Furthermore, a statistical analysis31 of
line-element-detection performance with orientation in-
tervals of 5± rather than 22.5±, as considered here, has
revealed fine variations in orientation thresholds super-
imposed on the broad bimodal performance shown in
Fig. 2. This fine orientation structure is likely to be due
to the action of additional classes of orientation-sensitive
filters, which appear on the basis of psychophysical mea-
surements to make an increasing contribution to detec-
tion as stimulus duration increases.31 In principle, the
model considered here could be extended to include these
additional filter classes.
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