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Artificial neural networks simulating visual texture
segmentation and target detection in line-element
images

ANDREW J. SCHOFIELD* anp DAVID H. FOSTER]
Department of Communication and Neuroscience, Keele Unwversity, Staffordshire STS 5BG, U.K.

SUMMARY

Measurements were made of human observers’ performance both in segmenting regions of line-elements
and in detecting line-element targets in stimuli containing several orientations. Performance was
modelled by four artificial neural networks constructed from processing units trained to mimic the gross
functionality of certain loosely defined classes of cortical cells. Model 1 contained modules sensitive to
absolute orientation only, and it provided a poor fit to the human-performance data. Model 2 contained
modules sensitive to orientation contrast: the outputs of these modules could be suppressed with fields of
uniformly oriented line-elements. Model 3 contained orientation-contrast-sensitive modules of a different
type: their outputs could be suppressed with fields of randomly oriented line-elements. Models 2 and 3
both successfully processed line-element arrays with orientation heterogeneities, but these models still
provided inadequate fits to the human-performance data. Model 4 contained both types of orientation-
contrast-sensitive modules; this model was able to account for human performance in the segmentation

and detection tasks, both qualitatively and quantitatively.

1. INTRODUCTION

As part of the basic process of detecting and dis-
criminating objects in complex scenes, the image
presented to the eye is visually divided or segmented
into a foreground that is of immediate interest and a
background that is not. The segmentation of regions in
a scene is performed speedily and effortlessly, and has
been attributed to the early stages of visual processing,
often referred to as pre-attentive (Julesz 1962, 1981 a)
or as involving distributed attention (Beck 1972). The
detection of a small object (or target) in a scene — a task
related to image segmentation — has also been assumed
to be determined by preattentive visual processes
(Neisser 1967; Treisman 1977; Javadnia & Ruddock
1988; Foster & Ward 19914). A variety of psycho-
physical studies have shown that images can be
segmented on the basis of variations in luminance,
colour, motion, depth (stereo disparity), and texture
(Julesz 1962, 1980, 19814, b, 1984; Beck 1966, 1972,
1983; Olson & Attneave 1970; Nakayama et al. 1985;
Nothdurft 19854, b, 1991, 1993; Landy & Bergen
1991). The work reported here concentrated on
textures composed of oriented line-elements. The aim
was to compare human performance in texture-
segmentation and line-target-detection tasks with
models of that performance based on artificial neural
networks. (A preliminary report of this work has been
published already; see Schofield & Foster 1993.)

* Present address: Metropolitan Police Forensic Science Labora-
tory, 109 Lambeth Road, London, SE1 7LP, U.K.

1 Present address: Department of Vision Sciences, Aston University,
Aston Triangle, Birmingham B4 7ET, U.K.

Phil. Trans. R. Soc. Lond. B (1995) 350, 401412
Printed in Great Britain

(a) Textures of oriented lines

According to the texton theory of texture seg-
mentation (Julesz 19814, 1984), two or more textures
can be visually discriminated if the underlying pattern
of elements contains different numbers of elementary
cues or ‘textons’, of which three types were proposed:
the orientation of elongated shapes (lines, bars, ellipses),
line crossings, and line terminations. Line crossings and
terminations may give rise to luminance artefacts that
aid segmentation (Nothdurft 1990); when these
artefacts are eliminated, only orientation is left as a
salient cue for image segmentation, a result which is
consistent with the finding that the orientations of the
component parts of texture elements (lines, bars,
ellipses) are generally more important for segmentation
than the relative spatial arrangements of those parts
(see also Beck 1966, 1972; Olson & Attneave 1970;
Foster & Mason 1980). (Relative spatial arrangement
can, of course, be important if texture density is not
constant, and, in isotropic textures, variations in local
spatial-frequency content can provide a cue for
segmentation.) Figure 14 shows an example of a line-
element array containing two regions that are segmen-
table by virtue of the differences in the orientations of
the line-elements making up the two regions.

(b) Orientation contrast

Performance in segmenting textures of oriented line-
elements clearly depends on the difference in
orientations between the two texture regions; that is,
on the ‘orientation gradient’ or ‘orientation contrast’

© 1995 The Royal Society
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Figure 1. Example displays. Top row: texture-segmentation displays with () no orientation heterogeneities; (b)
progressive orientation variations; (¢) random orientation variations; () grouped orientation variations. Bottom
row: target detection displays with (¢) no orientation heterogeneities; (f) progressive orientation variations; (g)
random orientation variations; (£) grouped orientation variations.

(Nothdurft 19854; Landy & Bergen 1991). (To
emphasise the difference between line-element orien-
tation and orientation contrast, the former — defined
implicitly with respect to some reference frame —is
referred to as ‘absolute orientation’.) In practice, both
orientation contrast and absolute orientation are
important in texture-segmentation and line-target-
detection tasks (see, for example, Olson & Attneave
1970; Beck 1973, 1982; Treisman & Souther 1985;
Gurnsey & Browse 1987; Rubenstein & Sagi 1990;
Nothdurft 1991; Foster & Westland 1995); the effects
of absolute orientation are revealed as marked orien-
tational asymmetries in performance (Treisman 1985;
Treisman & Gormican 1988; Foster & Ward 1991a, b;
Marendaz et al. 1991, 1993; Meigen el al. 1994).

It is possible to reduce or eliminate the effects of
absolute orientation in some texture-segmentation
tasks. In figure 14 line-element orientation varies
progressively over the display so that the two regions
contain line-elements at various orientations; more-
over, orientations within the central region also occur
in the background region (see Nothdurft 1991). The
two regions are visually segmentable because the
difference in line-element orientations across the
boundary of the regions is greater than the difference
in line-element orientations across a similar distance
within the regions. Figures 1¢ and ¢ show two more
examples of displays in which the effects of absolute
orientation have been reduced by introducing orien-
tation heterogeneities, here non-progressive changes
in line-element orientation.

(¢) Target detection

Detecting a single target element in a background of
other clements can be regarded as a limiting case of
texture segmentation. Although not all cues serve
segmentation and target detection equally well (Wolfe
1992), it seems that orientation (Treisman & Gormican
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1988) and orientation contrast (Nothdurft 1991, 1993)
do have similar roles in the two kinds of tasks. Figure
le shows a target element defined by virtue of its
unique orientation, and figure 1/ a target element
defined by virtue of its local orientation contrast.
Figures 1g and / show examples of displays in which
the effects of absolute orientation have again been
reduced by introducing non-progressive orientation
heterogeneities.

(d) Neurophysiological data

Many cells in area V1 of primate visual cortex
respond selectively to moving lines (and moving bars
and edges) of appropriate orientation, speed, and
direction of movement. The variations of responses of
cells in area V1 with respect to stimulus orientation
have been well documented (Hubel & Wiesel 1968;
Schiller et al. 1976; Gilbert 1977; De Valois et al. 1982
Dean & Tolhurst 1983). Orientation-selective cells
divide typically into two broad categories: simple cells,
sensitive to both the orientation of lines and their
position within the cell’s receptive field; and complex
cells, sensitive to the orientation of lines but not to their
exact position. Cells that are sensitive to line length
have also been detected; they have been referred to as
end-stopped and can be classified as simple or complex
in the dependence of their responses on stimulus
position (Dreher 1972). The class of complex cells
contains many divisions of which the standard-complex
cell 1s most like simple cells in its behaviour and
location within the cortex (Gilbert 1977). Simple and
standard-complex cells have a range of orientation-
tuning bandwidths from about 15° to 100° (full width
at half height) and a range of preferred orientations.

Multiple-line-clement displays have been used as
stimulli to cellsin area V1 in several studies (Van Essen
et al. 1989; Knierim 1991; Knierim & Van Essen
1992). In those studies, many cells have been found
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whose response to a single line-element was modified
when that line-element was surrounded by other line-
elements lying outside the classically defined receptive
field. These orientation-contrast-sensitive cells have a
variety of response characteristics, three of which are of
interest here. Notice, however, that although cells may
be classified according to these characteristics, the
classification may not represent a natural functional
division (Knierim & Van Essen 1992). Thus all of the
cells responded strongly to patterns of lines with
orientation contrast, but true ‘orientation-contrast’
cells responded strongly to a single line-element at the
preferred orientation and with equal strength to the
same (central) element surrounded by line-elements
oriented orthogonally (orientation-contrast stimuli).
This response was suppressed when the central line-
element was surrounded by line-elements at the same
orientation (uniform-orientation stimuli), or by
randomly oriented line-elements (random-orientation
stimuli). ‘Uniform-suppressed orientation-contrast’
cells responded strongly to single line-elements, to
orientation-contrast stimuli, and to random-
orientation stimuli, but more weakly to uni-
form-orientation stimuli. ‘Random-suppressed
orientation-contrast’ cells responded strongly to single
line-elements, to orientation-contrast stimuli, and
to uniform-orientation stimuli, but more weakly to
random-orientation stimuli. Many cells in each re-
sponse group had no preferred orientation (responding
well to line-elements at all orientations), yet were
sensitive to orientation-contrast stimuli (Knierim &
Van Essen 1992).

Models incorporating true orientation-contrast units
alone do not perform well in texture-segmentation
tasks (Schofield 1993). These simpler models failed to
segment images whenever the orientation hetero-
geneities exceeded the bandwidth of the majority of
orientation-sensitive units (i.e. 15°): this study there-
fore concentrated on random-suppressed and uniform-
suppressed units.

(e) Artificial neural networks

The artificial neural networks (ANNs) used here were
multilayer perceptrons trained under the back-propa-
gation rule (Rumelhart ¢t al. 1986). These networks
consist of several processing elements joined to one
another and to the network inputs by weighted
connections. In response to the presentation of an input
to the network, each processing unit calculates the
weighted sum of its inputs and (in this study) applies
either a sigmoid or a linear output function. Processing
units are arranged in interconnected layers. Processing
starts at the input layer and continues forward through
the network until the output values of the units in the
output layer have been calculated. During training,
the values of the units in the output layer are compared
with a set of desired values and an error signal for each
output unit is calculated. These errors are then back-
propagated to the preceding layers in the network until
error signals have been calculated for all units in the
network. The values of the weights are then updated so
as to reduce the error signals. This procedure is
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repeated so that the training images are each presented
many times. Once training is complete and the network
has learned to produce the desired outputs for each
training image, error back-propagation and weight-
updating cease.

Although networks trained by back-propagation
cannot model the development of biological cells
(Rumelhart et al. 1986; Moorhead et al. 1989), they
have been used successfully to model some aspects of
their function (Lehky & Sejnowski 1988, 1990;
Moorhead et al. 1989). The anns considered here
should be distinguished from those essentially ‘hard-
wired’ neural-network models that, ab nitio, have
processing units and connections with specific neuro-
physiologically relevant properties (e.g. Fogel & Sagi
1989; Malik & Perona 1990; Landy & Bergen 1991;
Westland & Foster 1995).

(f) Plan of experiments

Psychophysical methods were used to measure
human performance in both segmenting line-element
textures and detecting line-element targets in stimuli
containing large orientation heterogeneities. Two of
the experiments replicated previous orientation-con-
trast experiments (Nothdurft 1991, 1993) in which
individual line-elements in the stimuli were subjected
to progressive variations in orientation; the other
experiments used random variations of line-element
orientation to introduce orientation heterogeneities.
These experiments provided the data against which
the performance of each of the models discussed in the
next section was tested.

2. MODELS

(a) Structure

Figure 2 shows the general structure of the models.
Each circle in the figure represents a module com-
prising a complete three-layer perceptron network
(including the input layer). The modular structure
reduced the complexity and training time of the ANNs:
only one module of a given type needed to be trained,
since the rest could be obtained by copying.

The models were designed to deal with line-element
texture images like those of figure 1. Processing took
place in three stages: stage 1 estimated the orientations
of individual line-elements in the input image; stage 2
estimated the degree of orientation contrast at each
location in the input image; and stage 3 classified the
target region in the image as either horizontal or
vertical, or, if the task was target detection, as either
left or right (see figure 1). The individual processing
units of stage 1 and stage 2 were intended to simulate
some of the basic properties of cells in area V1 of visual
cortex (see §14d). Stage 3 converted the output of the
model into a form that could be compared with data
from human observers, but it was not intended to
model the cognitive processes underlying human
decision processes. (A fuller account of the design,
training, and testing of the models can be found in

Schofield 1993.)
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Figure 2. General structure of the models. usoc: uniform-suppressed orientation contrast; Rsoc; random-suppressed

orientation contrast.

(b) Stage 1: orientation-sensitive modules

The input image comprised 100 image sections of
16 x 16 pixels, each section containing a single 2x6
pixel line-clement. Line elements were drawn with an
anti-aliasing technique to reduce the effects of
pixellation on sloping lines. The orientation of cach
line-clement was estimated by one of 100 identical
orientation-sensitive modules, cach comprising 256
inputs (onc for cach pixel), 16 hidden units with
sigmoidal output functions, and 18 output units with
linear output functions. One such module was trained
on images containing single line-elements and the
other modules were generated by copying.

The module was trained on example lines with 12
orientations (15° intervals) positioned randomly within
the input array. Stimuli were presented in random
order. Output units were designed to be insensitive to
the particular position of line-elements within their
receptive fields. They were trained to have a variety of
preferred orientations and orientation bandwidths, like
standard-complex cells. Thus, 12 units were trained to
have 15° bandwidths and preferred orientations at 15°
intervals, four units to have 45° bandwidths and
preferred orientations at 45° intervals, and two units to
have 90° bandwidths and preferred orientations at 90°
intervals: in all, a representative sample of complex-
cell orientation-tuning properties (see Schiller et al.
1976). The response curves of the output units were
bell-shaped. The network was trained to convergence.

The number of hidden units was determined by
trial-and-error; the number eventually obtained (i.e.
16) was about the minimum necessary for the network
as a whole to operate successfully. As the orientation-
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sensitive modules were trained, the hidden units,
without being explicitly trained themselves, developed
characteristics similar to those of simple cells in that
they became tuned for both orientation and position
(see Schofield 1993).

(c) Stage 2: orientation-contrast-sensitive modules

There were two types of orientation-contrast-sen-
sitive modules (represented by the parallel pathways
through stage 2 of figure 2). Each module had a single
output unit, cight hidden units, all with sigmoidal
output functions, and 162 inputs. The uniform-
suppressed  orientation-contrast-sensitive  modules
(usoc in figure 2) were trained to simulate the basic
properties of uniform-suppressed orientation-contrast
cells, and the random-suppressed orientation-contrast-
sensitive modules (rRsoc in figure 2) were trained to
simulate the basic properties of random-suppressed
orientation-contrast cells (see §1d). Altogether there
were 100 identical uniform-suppressed orientation-
contrast-sensitive modules and 100 identical random-
suppressed orientation-contrast-sensitive modules. The
receptive fields of these modules overlapped. One
module of each type was trained and the others were
gencrated by copying.

Training was as follows. Nine line-elements arranged
in a 3x 3 array were pre-processed by nine copies of
the orientation-sensitive module. Line-element orien-
tations were chosen from the range 0°-180° at 5°
intervals. The outputs of these modules were then
passed to one of the two types of orientation-contrast-
sensitive modules. The uniform-suppressed orientation-
contrast-sensitive module was trained to give a high



Networks for segmentation and detection

08}

=] L

& |

204}

00l - |_I
11l ——= 7s~N1 111

I 1l == 72 70 =

1 === N7 4]

Figure 3. Response of the uniform-suppressed orientation-
contrast-sensitive module to various line-element arrays.
Image types are represented by the icons under each bar.
The height of each bar represents the output-unit’s average
response to images of the type represented by the icon.

response to single line-clements at any orientation and
to line-element arrays in which a single line-clement
was surrounded by line-clements orthogonal to it. It
was trained to give a low response to arrays of
uniformly oriented line-clements, to a blank field, and
to arrays containing no central line-element. It was
also trained to give a low response to arrays in which
line-clement orientations were chosen randomly from a
restricted range (420°). It was not given any explicit
training for arrays in which orientations were chosen
randomly from the full range, although after training it
was found to give a moderately high response to such
images. Stimuli were presented in random order, with
all stimulus types equally represented. The network
was trained to convergence. Figure 3 shows the
responses of this output unit to different types of images
represented by the icons below each column.

The random-suppressed orientation-contrast-sensi-
tive module was trained to give a high response to
single line-clements, to line-clement arrays in which a
single line-clement was surrounded by line-elements
orthogonal to it, and to arrays of line-elements with a
small amount of random orientation (see later). It was
trained to give a low response to arrays with completely
random line-element orientations, to a blank field, and
to arrays containing no central line-element. It was not
explicitly trained to give a high response to arrays of
uniformly oriented line-elements, although after train-
ing it was found to do so. Stimuli were presented in

0.8}

= L

& L

2 04}

0.0L [ =
11 ——= 7s~1 1l

I 11 —1= 2\N 1 -

1] === N7 111

Figure 4. Response of the random-suppressed orientation-
contrast-sensitive module to various line-element arrays.
Image types are represented by the icons under each bar.
The height of each bar represents the output-unit’s average
response to images of the type represented by the icon.
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random order, with all stimulus types equally repre-
sented. The network was trained to convergence. The
response of this module to the different types of images
is shown in figure 4.

The responses of the modules (see figures 3 and 4)
are more categorical than the average responses of the
cell types they modelled (Knierim & Van Essen 1992) ;
but they did capture the gross functionality of their
biological counterparts. Notice that the responses
shown in figures 3 and 4 refer to the output units of the
oricntation-contrast-sensitive modules only. The re-
sponses of units in the hidden layers were difficult to
characterize, but they showed a range of orientation-
contrast sensitivities and many were sensitive to
absolute orientation.

(d) Model variants

To test the contributions of the two types of
orientation-contrast-sensitive module to overall per-
formance, the model was assembled in four variants.
Model 1 had no orientation-contrast-sensitive modules
at all, the outputs of the orientation-sensitive modules
being fed directly to stage 3 (the decision network).
Model 2 had orientation-sensitive modules and
uniform-suppressed orientation-contrast-sensitive
modules only. Model 3 had orientation-sensitive
modules and random-suppressed orientation-contrast-
sensitive modules only. Model 4 had orientation-
sensitive modules and both types of orientation-
contrast-sensitive modules. There were no direct
connections between stages 1 and 3 in models 2, 3,
and 4.

(e) Stage 3: decision logic

The decision network comprised two adaptive units
in a single layer. The final output was set high or low
depending on which of the two units had the greater
response. A unique version of the network was
developed for each model. The network was trained to
classify the target regions as either horizontal or
vertical, and the target line-element as either left or
right, depending on the task. Thus one decision unit
was trained to give a high response to a horizontal (or
left) stimulus, the other a high response to a vertical (or
right) stimulus.

The stage 3 variants were trained on the outputs of
stage 2 of the corresponding model (because model 1
did not have any stage 2 modules, its decision network
was trained on the outputs of stage 1). Models 1, 2, and
3 were used only in the texture-segmentation experi-
ments and so it was necessary to develop only one
version of the decision network for each of the models.
Two versions of the final stage were produced for
model 4: one version was trained to segment texture
images like those of figure 1a; the other was trained to
detect target elements in images like those of figure 1e.
During training, the models were presented with
homogencous types of images (each containing only
two line-element orientations) that they were expected
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to process (like those in figures 14, ¢), with individual
line-elements chosen from the range given in (¢). Each
variant of stage 3 was trained to make the best use of
the information provided by the earlier stages. None
was trained explicitly to deal with heterogencous types
of images (cach containing more than two line-clement
orientations) because this could have allowed the
decision stage to circumvent the deficiencies in stages 1
and 2 rather than reflecting their performances
accurately.

(f) Testing
The models were implemented as software
simulations on standard single-processor com-

puters (Sun Microsystems Inc., California, U.S.A.;
SPARCstation family). The images presented to the
models were, apart from being spatially quantized, the
same as those presented to the human observers. The
outputs of the models were recorded and then analysed
also in the same way as for the human observers.
Models 1, 2, and 3 were not used in the target-
detection experiments (experiments 5, 6, and 7)
because they were found to be incapable of modelling
human performance in the texture-segmentation
experiments (experiments 1, 2, and 3). These models
were also excluded from one of the texture-seg-
mentation experiments (experiment 4) for the same
rcason. Model 4 was used in all experiments.

3. PSYCHOPHYSICAL METHODS

There were four texture-segmentation experiments
and three target-detection experiments. The same
procedure was used in each. Observers were presented
with displays similar to those shown in figure 1 and
were required to report either the orientation of the
central texture region (horizontal or vertical) or the
location of the target line-clement (left or right).

Stimuli were drawn on the screen of an X-Y display
oscilloscope (Hewlett-Packard, U.S.A.; Type 1321A,
P4 sulphide phosphor) driven by a vector-graphics gen-
erator (Sigma Electronic Systems, U.K.; QVEC 2150)
and additional digital-to-analogue converters, in turn
controlled by a laboratory computer (see, for example,
Foster & Ward 1991a for details). The angular
subtense of each line-element was about 0.1°, and of
the whole line-element array 5.0° by 5.0°. The display
was viewed binocularly at 170 cm through a view-
tunnel, which produced a uniformly illuminated white
background of luminance 40 cd m™ , on which the
stimuli appeared superimposed. At the beginning of
cach experimental session, the observer, using a neutral
density filter, set the stimulus luminance to tenfold
luminance-increment threshold.

The observer fixated a centrally located cross on the
screen and initiated the trial by pressing a button switch
connected to the computer. The cross disappeared and
the test stimulus then appeared for 100 ms, after which
the observer responded using one of two button
switches connected to the computer. Observers were
encouraged to respond as quickly as was consistent
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with accuracy. There were 49 different stimulus
conditions in each of the seven experiments and
observers contributed at least 40 responses in each
condition. The experiments were conducted in runs of
245 trials in which the ordering of the trials was chosen
at random, subject to the constraint that each condition
was tested five times in total.

There were five observers: one was the first author,
but the others were unaware of the aims of the
experiment and were paid for their time. They were
male, aged 21-27 years, with normal or corrected-to-
normal visual acuity, and negligible astigmatism. At
least two obscrvers participated in cach experiment,
but the first author was the only one to participate in
all of the experiments.

4. EXPERIMENT 1: SEGMENTATION WITH
PROGRESSIVE ORIENTATION
VARIATIONS

(a) Method

The stimuli were similar to those used in previous
orientation-contrast studies (Nothdurft 1991). Displays
consisted of 100 line-clements arranged in a 10x 10
array. For each display a rectangular target region
(6 x 2 line-elements) was defined in the centre of the
display, as illustrated in figure 14, and oriented either
horizontally or wvertically. For each display, the
‘within-region’ orientation increment Ay, ranged over
0°-60° at 10° intervals. With the top left line-element
as origin, the orientation of each line-clement was
determined by adding Af,, to the orientation of the
adjacent line-clement on the left or in the row above.
The orientations of the line-clements within the target
region were subjected to an additional increment A6,
the value of which also ranged over 0°-60° at 10°
intervals. The difference A6,y in orientation between
a line-element in the target region and any adjacent
line-element in the background was therefore given by:

Ay = Aby, + B,

The polarity of the orientation increment was
reversed for line-elements below or to the right of the
central target region so that Af,, remained constant
on all sides of the target region.

For each value of Afy, the percent correct score for
cach value of Al was recorded, thereby defining a
psychometric function. Each of the seven psychometric
functions (one for cach value of Afy;) was transformed
by the inverse of a cumulative Gaussian (probit)
function and a quadratic function fitted to the
transformed data points (a polynomial of order at least
two was needed because orientation is a circular
variable; the polynomial was not replaced by a circular
function, however, because the periodicity of the
underlying detection mechanisms was unknown). The
threshold value of A, for a criterion score of 76 9%,
correct, corresponding in signal-detection theory to a
discrimination index value & of 1.0, was then
determined from each of the fitted curves. Standard
deviations of these threshold values were estimated by
a bootstrap method (Foster & Bischof 1991).



Networks for segmentation and detection

threshold AOTB
(76%) I degree

threshold OT
(76%) / degree

within-region jitter amplitude (GJ) / degree

A. J. Schofield and D. H. Foster 407

)

threshold GT
(76%) / degree

within-region jitter amplitude ((9]) / degree

[ (@)

threshold AGTB
(76%) / degree

within-region increment (AOW) / degree

Figure 5. Results for human observers (continuous lines) and models (broken lines) in texture-segmentation
experiments: (a) experiment 1, progressive orientation variations; (b) experiment 2, random orientation variations;
(¢) experiment 3, grouped orientation variations; (d) experiment 4, progressive orientation variations with jitter.
Threshold difference in orientation between target and background required for a 769, correct score is plotted
against the amplitude of within-region orientation variation. o~ -0 model 1; ¢———¢ model 2; A-~—a model 3;
0—- -0 model 4. ¢#—— RP.M.; 0——0 AJS.;m—mD.E; oA—aGS.; v—vwPT

(b) Results and comment

Figure 5a shows the results. Data from human
observers are shown by continuous lines. Despite the
large overlap in the orientations of the line-elements in
each of the two regions, observers were able to segment
displays in the presence of large orientation hetero-
geneities. As the within-region orientation increment
A0, increased, threshold values of the difference A0,
between target and background orientation increased.
These results are in broad agreement with previous
findings (Nothdurft 1991).

Data from the models are shown by the broken lines.
Threshold values of A, from model 1 (open circles)
and from model 3 (open triangles) were higher than
those from human observers, but threshold values from
both model 2 (open diamonds) and model 4 (open
squares) followed those for human observers reasonably
well.

5. EXPERIMENT 2: SEGMENTATION WITH
RANDOM ORIENTATION VARIATIONS
(a) Method

Because of the way in which line-element orientation
was varied progressively over successive rows of the
line-element arrays in experiment 1, the visual ap-
pearance of these stimuli was that of a ‘flow pattern’.
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It was possible that the disruptions in these patterns by
the target region provided the principal cue to
discrimination performance. To eliminate flow
patterns, line-clement orientation was randomized
with values drawn from a uniform distribution. The
extent of the randomization in each array was defined
by a jitter amplitude 0, that ranged over 0°-60° at 10°
intervals. The orientations of the background line-
elements were chosen randomly from the range — 0, to
+0; at 5° intervals, and the orientations of the target
line-elements randomly from the range 6,—0; to
O+ 0, at 5° intervals. The difference between the
mean orientations of the two regions was 6,, and this
value, like 6}, ranged over 0°-60° at 10° intervals. The
threshold value of 0, for a score of 76 9%, correct was
determined, as before, for each amplitude 65 of within-
region heterogeneity. Figure l¢ shows an example
display.

(b) Results and comment

Figure 55 shows the results. Data from human
observers are shown by continuous lines. Threshold
values of the difference Af,, between mean target and
mean background orientations increased with increas-
ing jitter amplitude 6, but, as in experiment 1,
segmentation was possible even when there was large
overlap in the orientations of the line-elements in the
two regions.
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Data from the models are shown by the broken lines.
Threshold values of A0y from model 1 (open circles)
were too high at large jitter amplitudes; threshold
values from model 3 (open triangles) showed the
opposite effect and were also too high at small jitter
amplitudes. Threshold values from models 2 (open
diamonds) and 4 (open squares) followed those for
human observers well.

6. EXPERIMENT 3: SEGMENTATION WITH
GROUPED ORIENTATION VARIATIONS
(a) Method

According to one general theory of the visual
processing of multi-element displays (Duncan &
Humphreys 1989), linc-clement images with few
orientations should be casier to segment than those
with many orientations, cven if the ranges of orien-
tations present are the same. The suggestion is based on
the hypothesis that “similar’ elements can be grouped
perceptually and can therefore be processed more
efliciently than elements that cannot be grouped
(care has to be taken in defining similarity, as some
apparently similar elements group less well than some
apparently less similar elements: see, for example, Beck
1966, 1974; Treisman 1991). This suggestion was cx-
plored within the present framework using displays of
the kind shown in figure 1d4. As in experiment 2, the
jitter amplitude 0; and mecan target orientation 0,
ranged over 0°-60° at 10° intervals. The orientations of
individual line-clements were then chosen randomly
from the extremes of the possible orientation ranges:
background line-clements could have one of two
orientations —@; or +0,, and line-clements in the
target region cither 0, —0; or 0+ 0;. In this way, the
span of orientations for any stimulus combination was
the same as for the equivalent combination in
experiment 2, but no image contained more than four
orientations.

(b) Results and comment

Figure 5¢ shows the results. Data from human
observers are shown by continuous lines and from the
models by broken lines. Threshold values of the
difference 6, between mean target and mean back-
ground orientations increased only slightly with in-
creasing jitter amplitude 0y, and they were markedly
lower than in experiment 2, suggesting that observers
were able to exploit grouping cffects. (The role of
grouping effects in this experiment has been addressed
elsewhere in an ideal-observer analysis; see Schofield
1993.)

Threshold values of 0, from models 1 (open circles)
and 2 (open diamonds) increased more rapidly with
jitter amplitude Oy, but threshold values from models
3 (open triangles) and 4 (open squares) both followed
those for human observers well, although those for
model 4 were slightly better (especially at small jitter
amplitudes).

From figures 5a—c, it is evident that model 4 was the
only one that accounted well for human performance
in all three experiments. With a combination of the two
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types of orientation-contrast unit, it produced vari-
ations in threshold values similar to those for human
observers with line-element images containing pro-
gressive, random, progressive and random, and
grouped orientation variations.

7. EXPERIMENT 4: SEGMENTATION WITH
PROGRESSIVE ORIENTATION
VARIATIONS AND ADDITIONAL
ORIENTATION JITTER

(a) Method

A different technique was used here to eliminate the
flow patterns in the arrays used in experiment 1: the
displays were the same but an additional orientation
jitter was added to the orientation of each linc-element.
This jitter amplitude was chosen randomly from the
range —30° to +30° and was applied to all images
regardless of the underlying within-region increment
Aly. As in experiment 1, threshold values of Af, were
determined as a function of Afy,. Only model 4 was
tested in this experiment because, as was noted carlier,
it was the only one to capture successfully human
performance in experiments 1, 2 and 3.

(b) Results and comment

Figure 54 shows the results. Data from human
observers are shown by continuous lines and from the
model by broken lines. Threshold values of the
differences A0, between mean target and mean
background orientations were similar for the two and
markedly higher than in experiments 1 and 2,
presumably a consequence of the increased orientation
heterogeneity.

It may be noted that there are local non-smooth
variations in the performance of this and other models,
especially with low jitter amplitudes and orientation
increments. A contributory factor may have been the
varying densities at which orientation was sampled:
15° in training but 5° in testing.

8. EXPERIMENTS 5, 6 AND 7: TARGET
DETECTION

The next sections describe three target-detection
experiments corresponding to experiments 1, 2, and 3.
Because of the inadequate performance of models 1-3
in the texture-segmentation experiments, only model 4
was tested in the target-detection tasks.

(a) Method

In each of these experiments the central texture
region of the previous experiments was replaced by a
single target line-element, which could be placed at
one of two locations cach side of the vertical midline of
the images. The stimuli in experiment 5 were con-
structed in the same way as in experiment 1 ; that is, the
orientation of cach line-clement was determined by
adding a fixed increment Af,, to the orientation of the
adjacent  line-clement.  Unlike  the  texture-
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Figure 6. Results for human observers (continuous lines) and model 4 (broken lines) in target-detection experiments:
(a) experiment 5, progressive orientation variations; (5) experiment 6, random orientation variations; (¢) experiment
7, grouped orientation variations. Threshold difference in orientation between target and background required for
a 76 %, correct score is plotted against the amplitude of within-region orientation variation. e——e A.J.S.; B—n

J.A.; o—— -0 model 4.

segmentation experiment, however, the polarity of the
orientation increment was changed in the region of
both target locations, so that the standard polarity
change (see experiment 1, §4a) could not be used to
identify the target location. The stimuli used in this
experiment were similar to those used in previous
target-detection experiments (Nothdurft 1991, 1993).
Figure 1fshows an example display. As in experiment
1, threshold values of the difference Al between the
orientation of the line-element target and the orien-
tation of any adjacent line-element in the background
were determined as a function of Aly.

The stimuli of experiment 6 were constructed in the
same way as in experiment 2, but no jitter was added
to the target line-element orientation 0,. Figure lg
shows an example display.

The stimuli in experiment 7 were constructed in a
similar way to those in experiment 3. Background line-
element orientations were chosen randomly from the
two orientations —0; and +0;, but no orientation
jitter was added to the target line-element orientation
Oy. Figure 14 shows an example display. Because of this
design, an unplanned cue was generated in displays
with large 0, and low 0,. In those displays, background
line-element orientations were far from the mean
background orientation 0° and the target line-element
orientation 0, was close to the mean background
orientation; target line-element orientation was there-
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fore unique and clearly different from each of the
background orientations.

(b) Results and comment

Figure 6 shows the results of the three target-
detection experiments. Data from human observers are
shown by the continuous lines and from model 4 by
broken lines. Threshold values of the difference
between target and background orientations increased
with each of the independent orientation variables Afy,
and 0}, but observers could still detect the targets even
in the presence of large variations in line-element
orientation. Observers did, however, find the tasks
more difficult than texture segmentation: threshold
values with large A0y, and 0 were in general higher
than the equivalent threshold values in figure 5, most
notably for grouped orientation variations (experi-
ments 3 and 7), indicating the ineffectiveness of
grouping strategies in this kind of target-detection task
(cf. Alkhateeb et al. 1990; Wolfe & Friedman-Hill
1992). The unintentional cue mentioned earlier with
large jitter amplitudes @; in experiment 7 presumably
accounted for the very low threshold values when 0; >
40° (see figure 6¢) obtained for both human observers
and the model. Although the model failed to reach
threshold for jitter amplitudes 0; in the region of 50°,
it still performed well at larger amplitudes.
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9. DISCUSSION

Of the four types of analogue neural networks
considered here, the most successful, namely model 4,
was able to account for human performance in
segmenting line-element regions and detecting line-
clement targets within line-clement arrays containing a
range of orientations. Several distinct types of ANN
module appeared to be necessary for processing these
images, a result which, if relevant to the structure of
biological vision systems, suggests that the existence of
various types of cortical cells, with different line-
element-orientation and orientation-contrast charac-
teristics, is an important factor in determining human
performance in these tasks. Although it might have
been possible to produce a similar performance with
hard-wired models, the choice of parameters for the
oricntation-contrast units would not have been
straightforward. The use of aNNs avoided the need to
define explicitly the connection strengths for these
units.

Model 4 contained one type of orientation-sensitive
module and two types of orientation-contrast-sensitive
modules: those that suppressed responses to arrays of
line-elements of uniform orientation and those that
suppressed responses to arrays of line-clements of
random orientation. By design, the outputs of those
two types of orientation-contrast-sensitive modules
were functionally similar to many of the orientation-
contrast-sensitive cells found in area V1 responding to
arrays of line-elements; and, without being explicitly
trained, the hidden units within the orientation-
sensitive modules preceding the orientation-contrast-
sensitive modules acquired positional and orientational
characteristics similar to those of simple cells.

Model 4 vyiclded thresholds for the difference
between target and background orientations in texture
segmentation and in line-target detection that closely
matched those from human observers, both quali-
tatively and quantitatively. In particular, for texture
segmentation with progressive and random orientation
variations, thresholds increased with increasing orien-
tation variance (see figure 5a, b), but with grouped
orientation variations, thresholds increased more
slowly (see figure 5¢). For line-element detection with
progressive and random orientation variations,
thresholds increased with increasing orientation vari-
ance (see figure 6a, b), at about the same rate as for
texture segmentation, but with grouped orientation
variations, thresholds first increased more rapidly with
increasing orientation variance than in texture seg-
mentation, and then decreased more rapidly still (see
figure 6¢).

In principle, when line-elements can be grouped in
a manner that is compatible with the requirements of
the segmentation or detection task, performance should
be better than when line-elements cannot be grouped.
The present results suggest that this principle may hold
for segmenting visual textures on the basis of line-
element orientation, but not for detecting line-clement
targets in the equivalent backgrounds.

Why were two types of orientation-contrast-sensitive
module necessary? It scems that line-element arrays
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with different types of orientation heterogeneity have
to be processed differently to achieve high texture-
segmentation and high target-detection performance:
images with progressive variations in line-clement
orientation within regions are best processed by
uniform-suppressed modules, whereas images in which
oricntations vary non-progressively but are similar
within regions are best processed by random-
suppressed modules.

The design of model 4 was partly motivated by the
assumed division of cortical orientation-contrast cells
into distinct classes, a division that is, to some extent,
uncertain (Knierim & Van Essen 1992). This un-
certainty might be resolved if neurophysiological data
were available on the responses of observed cell types to
grouped stimuli, such as those used in experiment 3. In
containing two distinct types of orientation-contrast-
sensitive module, model 4 differs from some hard-wired
models of texture segmentation (e.g. Fogel & Sagi
1989; Malik & Perona 1990; Landy & Bergen 1991
Westland & Foster 1995) and from some partially
adaptive models (¢.g. Mesrobian & Skrzypek 1995), all
of which have used orientation-sensitive units, or filters
followed by orientation-contrast units, or orientation-
gradient estimators.

Finally, it should be noted that although model 4
performed the given tasks well, its training with a
specific, albeit large, class of line-clement images may
not have been optimal for other more general tasks,
such as segmenting natural scenes. Moreover, as with
other models of psychophysical performance, the
success of model 4 does not imply its uniqueness: other
neurophysiologically relevant anns might be con-
structed that achieved similar levels of performance in
processing the kinds of line-element images considered
here.

We thank L. M. Doherty, M. G. A. Thomson and 8.
Westland for critical reading of the manuscript. A.J.S. was
supported by a training award from the U.K. MRC.
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