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ABSTRACT 
There is no standard method for classifying eye fixations. Thresholds for speed, acceleration, duration, and 
stability of point of gaze have each been employed to demarcate data, but they have no commonly accepted 
values. Here, some general distributional properties of eye movements were used to construct a simple 
method for classifying fixations, without parametric assumptions or expert judgment. The method was 
primarily speed-based, but the required optimum speed threshold was derived automatically from individual 
data for each observer and stimulus with the aid of Tibshirani, Walther, and Hastie’s ‘gap statistic’. An 
optimum duration threshold, also derived automatically from individual data, was used to eliminate the 
effects of instrumental noise. The method was tested on data recorded from a video eye-tracker sampling at 
250 frames a second while experimental observers viewed static natural scenes in over 30,000 one-second 
trials. The resulting classifications were compared with those by three independent expert visual classifiers, 
with 88–94% agreement, and also against two existing parametric methods. Robustness to instrumental noise 
and sampling rate were verified in separate simulations. The method was applied to the recorded data to 
illustrate the variation of mean fixation duration and saccade amplitude across observers and scenes. 
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1 INTRODUCTION 
It has long been known that the natural movement of an observer’s gaze over a scene is discontinuous, 

with distinct locations being fixated sequentially, presumably reflecting their potential value to the observer 
(Yarbus, 1967). During such fixations, the eye is relatively stable, but between fixations it undergoes very 
rapid movements—saccades—which often have speeds of over 700 deg s−1 (Carpenter, 1988). Since little 
information is collected during saccades (Thilo et al., 2004) and it is the fixations themselves that are of 
principal interest in scene analysis, it is customary to summarize recordings of the point of gaze (PoG) by 
extracting just the fixations and discarding the remainder of the data. 
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Figure 1. A typical eye-movement trace. The vertical scale bar at the top right indicates 1 deg visual angle and the inset 
at the bottom left shows a magnified version of the lower section of the trace. The scene image has been darkened 
locally to show the trace more clearly. 

 
Unfortunately, classifying fixations in practice can be difficult, and there is no standard method. Part 

of the difficulty lies in the fact that even during a fixation the eye continues to make small movements. These 
fixational eye movements include tremor, a small rapid movement of the eye with an amplitude between 
about 5 and 60 arcsec; also microsaccades, which are short involuntary eye movements with an amplitude 
between about 1 and 120 arcmin; and drift, which is a slow eye movement with an amplitude between about 
1.2 and 30 arcmin (Martinez-Conde, Macknik, & Hubel, 2004). A typical eye-movement trace over one of 
the images used in this study is shown in Fig. 1. Although there are three candidate fixational areas, the eye 
clearly continued to move within each, and the demarcation of fixations and saccades within and between 
these areas is not easy to determine automatically, without additional assumptions.  

Existing approaches to classifying fixations include methods based on gaze stability (or, in a 
complementary sense, dispersion or displacement) and on gaze speed (Salvucci & Goldberg, 2000). A 
stability-based method defines a sequence of eye movements as a fixation if the PoG remains within a circle 
of given radius (the stability threshold) for a given duration (the duration threshold) (e.g. van der Linde et al., 
2009); analogously, a speed-based method defines a sequence of eye movements as a fixation if eye speed 
remains below a given value (the speed threshold) (e.g. Kienzle et al., 2009). The two methods may be 
combined by incorporating both stability and speed thresholds, sometimes also with an acceleration 
threshold (e.g. Tatler, 2007).  

The absence of a standard method for classifying fixations presents a problem, as does the absence of 
commonly accepted threshold values for speed, acceleration, duration, and stability. It is known that different 
choices of algorithms and their input parameters can lead to systematic differences in reported fixations, and 
consequently markedly different interpretations of gaze data (Shic, Scassellati, & Chawarska, 2008). 

The uncertainty about appropriate parameter values is not surprising since the spatiotemporal 
characteristics of eye movements may vary across observers, stimuli, and tasks (Andrews & Coppola, 1999). 
Appealing to biologically plausible values, which are themselves subject to debate, does not resolve the 
problem, nor does the hand-tuning of thresholds based on visual inspection of PoG data, a procedure which 
assumes experimenter independence and expertise. In addition to these factors, the problem is complicated 
by the fact that different eye-tracking systems may themselves generate different levels of instrumental 
noise, which may, for example, come from errors in image sampling and processing by a video eye-tracker, 
from movement of the observer’s head relative to the eye-tracker, and from environmental vibration. A more 
objective method for classifying PoG data would therefore be desirable, especially if it were nonparametric 
and accommodated both individual variation and noise variation in a natural way.  

There have been previous attempts to develop data-driven approaches to classifying fixations, but 
none has succeeded in being completely nonparametric. A method proposed by Blignaut (2009) introduced a 
range of values for the optimum spatial threshold, but the associated temporal threshold was derived from 
previous studies and was fixed at 100 ms. A method described by Santella and DeCarlo (2004) used a 
clustering technique preceded by a so-called mean-shift procedure that required the use of a kernel function, 
typically a Gaussian function, but the parameters controlling its scale had to be selected by the user. A 
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method proposed by Engbert and Kliegl (2003) needed little user input, but it depended on a speed threshold 
being derived from the data by a method that, although data-driven, required a choice of multiplier of the 
estimated noise levels. The method was later extended by Nyström and Holmqvist (2010), but it retained a 
parametric dependence. Two other speed-based methods, one proposed by van der Lans, Wedel, and Pieters 
(2011), another by Behrens, MacKeben, and Schröder-Preikschat (2010), which additionally used 
acceleration data, required, respectively, a choice of minimum fixation duration and a choice of low-pass 
filter to smooth the speed profile.  

The aim of the present work was to exploit some of the more general distributional properties of eye 
movements to construct a simple, completely nonparametric method of classifying fixations. The method 
was primarily speed-based, but, by contrast with existing methods, the optimum speed threshold for 
classifying saccades— and therefore fixations—was derived automatically from the data for each observer 
and stimulus individually. The derivation was founded on Tibshirani, Walther, and Hastie’s (2001) ‘gap 
statistic’ for identifying the optimum number of clusters in a set of data. Because speed-based methods can 
generate what appear to be unphysiologically short fixations (Nyström & Holmqvist, 2010), usually 
attributed to instrumental noise, the proposed nonparametric method was extended to include an optimum 
duration threshold—also derived automatically from the data—as part of the classification. The complete 
method was tested on data recorded with a video eye-tracker sampling at 250 frames a second from seven 
experimental observers performing a target-detection task in each of 20 natural scenes. Since a key feature of 
the proposed method was its adaptability to instrumental noise, its classification accuracy with increasing 
levels of added noise was verified in a separate simulation. The method was then applied to the recorded data 
to reveal how fixation durations and saccade amplitudes varied across observers and scenes, a variation that 
with some approaches might have been difficult to detect.   

2 EXPERIMENTAL DATA  
The data for analysis were obtained as part of a larger experiment examining the effects of scene 

structure on target detection and on eye movements in natural scenes (Amano et al., 2012). Only relevant 
detail is reproduced here.   

2.1 Apparatus 

Observers’ PoG was recorded with an infra-red monocular video eye-tracker (High Speed Video 
Eyetracker Toolbox Mk 2, Cambridge Research Systems Ltd, Kent, UK), sampling at 250 frames a second, 
connected to a computer which stored and analyzed the output signals. Head movement was minimized with 
a forehead rest and a chinrest. Images were displayed on a 20-in. RGB CRT color monitor (GDM-F520, 
Sony Corp., Tokyo, Japan) controlled by a graphics workstation (Fuel V12, Silicon Graphics Inc., Mountain 
View, CA). The spatial resolution of the display was 1600 × 1200 pixels; the intensity resolution on each 
RGB gun was 10 bits; and the refresh rate was approximately 60 Hz. The display subtended approximately 
17 × 13 deg at a viewing distance of 1 m.  

2.2 Stimuli 
In all, 20 static images of natural scenes, taken from Foster et al. (2006), were used in the experiment. 

They represented urban and rural settings, from near and far views. The target was a spectrally neutral 
shaded sphere subtending approximately 0.3 deg of visual angle at the viewing distance of 1 m and was 
matched in average luminance to its local surround (approximately 1 deg). In each trial, the target appeared 
with probability 0.5, and over successive trials, once in each of 130 possible locations, which were 
distributed uniformly over the scene. Repeated presentations were used to test for scene-specific effects 
(Amano et al., 2012; Kaspar & König, 2011). The mean luminance of the display was 3.6 cd m−2 (range 0–
61.4 cd m−2).  
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Figure 2. Distribution of local maxima in point-of-gaze speeds. The light-gray histogram shows the frequency of local 
speed maxima exceeding a variable threshold that ranged between the lowest and highest recorded local speed maxima 
(bin width ~2.5 deg s−1). The dashed line shows the frequency of local speed maxima exceeding threshold under the null 
distribution, according to which maxima are uniformly distributed. A dotted curve traces the gap between the two, but it 
is largely hidden by the solid curve, which shows the loess smooth of the gap statistic (Tibshirani et al., 2001). The 
vertical line marks the optimum speed threshold vopt. Data were based on 223 trials by one observer viewing one scene. 

2.3 Observers 

Seven observers, three male and four female, aged 21–31 years, took part in the experiment. All had 
normal color vision and normal binocular visual acuity. All except one of the observers (author MM) were 
unaware of the purpose of the experiment. The experimental procedure was approved by the University of 
Manchester Committee on the Ethics of Research on Human Beings, which operated in accord with the 
principles of the Declaration of Helsinki.  

2.4 Procedure 
In each trial, an image with or without the target was presented for 1 s, and the observer then indicated 

by clicking a mouse button whether or not the target was there. Trials were performed in blocks of 260, all 
containing the same scene, but divided into four sub-blocks of 65 trials separated by a short break. Each sub-
block lasted 5–10 min and not more than one block was performed in each experimental session of 
approximately 1 h.  

Calibration data for the eye-tracker were collected at the start, middle, and end of each sub-block, as 
follows. Twenty calibration targets, arranged in a 5 × 4 grid, were presented on the screen at known 
positions. Observers were asked to click a mouse button as they fixated each target, and the corresponding 
PoG signals were recorded by the eye-tracker. Three sequences of 20 measured (x, y) gaze positions were 
obtained in each sub-block: ((x1,1, y1,1), …, (x1,20, y1,20)), ((x2,1, y2,1), …, (x2,20, y2,20)), and ((x3,1, y3,1), …, (x3,20, 
y3,20)). If for any of the three sequences a valid gaze-position signal for a target was unavailable owing to a 
loss in tracking, it was replaced by the corresponding gaze-position signal from another sequence (at least 
one replacement was necessary in 55% of sub-blocks). To transform to screen coordinates all the 
experimental gaze-position signals obtained between the first and second calibration measurements, the 
sequences ((x1,1, y1,1), …, (x1,20, y1,20)) and ((x2,1, y2,1), …, (x2,20, y2,20)) were averaged pointwise and fitted to 
the target positions, expressed in screen coordinates, by a linear (affine) transformation to give least-squares 
error. An analogous procedure was used to transform to screen coordinates all the experimental gaze-position 
signals obtained between the second and third calibration measurements.  

For each of these calibration transformations, the RMS difference between the calibration targets and 
the positions of the observer’s gaze on the screen provided an estimate of the calibration error (yielding two 
such error estimates for each subblock). The mean value of the calibration error over observers and scenes 
was 0.26 deg and individual estimates did not exceed 0.51 deg. Similar levels of accuracy have been reported 
by Le Meur, Le Callet, and Barba (2007) and Kienzle et al. (2006). In total, data were collected from 5200 
trials for each of the seven observers. The classification method was applied only to data from the 86% of 
trials in which there was no loss in tracking.  
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3 CLASSIFICATION METHOD 
The rationale for the proposed method of classification was that the eye reaches much higher speeds 

during saccades than during fixational eye movements—such as microsaccades and tremor— and that there 
are far fewer peaks in speed due to saccades than to fixational eye movements. These two properties of the 
data made possible the derivation of an optimum speed threshold that best separated the speed distributions 
of saccades and of fixational eye movements and instrumental noise. An optimum duration threshold was 
then derived that best separated the duration distributions of fixational eye movements and of instrumental 
noise.  

3.1 Classification of saccades 
Let pi = (xi, yi) be the PoG in screen coordinates for the ith video frame Fi. The PoG speed vi for Fi was 

defined as the Euclidean distance |pi+1 − pi−1| = [(xi+1 − xi−1)2 + (yi+1 − yi−1)2]1/2 between the PoGs in the 
immediately preceding and following frames divided by the corresponding difference in time |ti+1 − ti−1|; that 
is, vi = |pi+1 − pi−1|/|ti+1 − ti−1|. This estimate is equivalent to averaging estimates based on the preceding and 
following successive differences. 

A local maximum vmax in PoG speed was defined as a PoG speed that was greater than that in the 
immediately preceding and following frames. Some of these local maxima were due to saccades whereas 
others were due to fixational eye movements and instrumental noise. To find the optimum speed threshold 
for separating them, a variable speed threshold was introduced that was allowed to range between the lowest 
and highest recorded local speed maxima in the data set in 250 equal steps. The number of steps used was 
chosen to reflect the constraints imposed by the temporal resolution of the eye-tracker.  

The light-gray histogram in Fig. 2 shows, for one observer viewing one scene over one block of 223 
trials, the frequency of local maxima in PoG speed exceeding a variable speed threshold that ranged between 
the lowest and highest recorded local maxima (in this block 37 trials were excluded because of lost tracking). 
Local maxima exceeding high values of the threshold were attributed to saccades and those not exceeding 
low values of the threshold mainly to fixational eye movements. The much greater number of the latter was 
reflected in Fig. 2 by the sharp peak in the number exceeding threshold values near zero. The location of the 
elbow in the histogram was assumed to provide the speed threshold vopt that optimally separated the 
distribution of saccades from the distribution of fixational eye movements and instrumental noise, that is, 
where the probability of misclassification was the least and the same for each.  

To locate the elbow, the histogram was compared with a null distribution of local speed maxima. This 
null distribution (Tibshirani, Walther, & Hastie, 2001) had the property that values were uniformly 
distributed between the lowest and highest recorded local speed maxima. The dashed line in Fig. 2 shows for 
this null distribution the frequency of local speed maxima exceeding threshold as a function of threshold 
(since values were distributed uniformly, this frequency declined linearly). The gap between the frequency of 
local speed maxima exceeding threshold and the frequency of null-distribution local speed maxima 
exceeding threshold is actually traced by a dotted curve in Fig. 2, but it is largely hidden by the solid curve, 
which is explained shortly. The maximum in this gap statistic defined the location of the elbow and therefore 
the optimum speed vopt for classifying saccades.  

The precise location of the maximum in the gap statistic was estimated from the data by applying a 
locally weighted quadratic regression (loess) (Cleveland, 1979; Fan & Gijbels, 1996) to smooth the gap 
statistic. The closeness of the fit was determined by a bandwidth h which controlled the size of the local 
neighborhood and consequently the proportion of data included in each local fit (Fan & Gijbels, 1996). In 
general, if the bandwidth is too large, the loess fit is likely to be biased, and with it the location of the 
maximum; if the bandwidth is too small, the loess fit is likely to incorporate random fluctuations in the data, 
and therefore produce multiple local maxima. Accordingly, the optimum bandwidth hopt was defined as the 
smallest value of h for which the number of local maxima in the smoothed curve was one.1 To accommodate 
the high gradient at low speed thresholds, speeds were log-transformed before the fit was made.  

The solid curve in Fig. 2 shows the loess smooth of the gap statistic and the vertical line marks the 
optimum speed threshold vopt. Local speed maxima greater than vopt were classified as being due to saccades; 
all other local maxima were classified as fixational or the result of instrumental noise.  

                                                      
1 This method should be contrasted with those methods based on estimating a bandwidth that makes the observed 
number of maxima the most probable (Silverman, 1986; Foster, 2002). The concern here was with the smallest 
bandwidth that satisfied this constraint.  
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Figure 3. Distribution of non-saccadic durations. The light-gray histogram shows the frequency of fixational durations 
and, at very short durations, instrumental noise events (bin width 4 ms). The solid curve shows the loess smooth of the 
histogram. The vertical line marks the optimum duration threshold dopt. Data were based on the same trials as in Fig. 2. 

3.2 Classification of noise 
 Figure 3 shows for the same set of data as in Fig. 2 the frequency of durations classified as non-

saccadic, that is, for which speed remained continuously less than or equal to the optimum speed threshold 
vopt.  

There is a local duration maximum at about 250 ms, a value that is broadly consistent with other 
estimates of fixation duration (e.g. Castelhano, Mack, & Henderson, 2009; Henderson, 2003; Rayner, 2009). 
There is also another local duration maximum, which is also a global maximum, at very short durations (a 
few ms). As indicated earlier, this maximum was taken to be due to instrumental noise events (Nyström & 
Holmqvist, 2010). These unphysiological durations have, in other studies, been eliminated by imposing a 
minimum duration threshold (Nyström & Holmqvist, 2010; Tatler, Baddeley, & Gilchrist, 2005). In keeping 
with the present nonparametric approach, the frequency of durations classified as non-saccadic was assumed 
to reach its minimum at the duration dopt that optimally separated the noise distribution from the distribution 
of fixational eye movements, that is, where the probability of misclassification was the least and the same for 
each.  

The location of the minimum was estimated from the data by again applying a quadratic loess to 
smooth the histogram. As with the speed data, the optimum value hopt of the bandwidth was determined 
nonparametrically. Thus, the optimum hopt was defined as the smallest value of h for which the frequency of 
maxima in the smoothed curve was two. To accommodate the high gradient at low durations, durations were 
also log-transformed before the fit was made.  

The solid curve in Fig. 3 shows the loess smooth of the duration histogram and the vertical line marks 
the optimum duration threshold dopt. Durations greater than dopt were classified as being due to fixations; the 
rest were classified as being due to instrumental noise. 

4 COMPARISON WITH EXPERT VISUAL CLASSIFICATIONS 
To test its classification performance, the proposed method was applied to the sets of data described in 

Section 2. Estimates of the optimum speed threshold vopt and optimum duration threshold dopt were estimated 
independently and automatically for each observer viewing each image over each block of 260 trials 
(excluding, as noted earlier, trials with any lost tracking). The method could just as well have been applied to 
trials pooled over observers, scenes, or blocks. The light-gray histograms in Fig. 4 show the distribution of 
optimum speed and duration thresholds for the 20 scenes and seven observers tested.  
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Figure 4. Distribution of optimum thresholds. The light-gray histograms show the frequency of optimum speed 
thresholds vopt (upper panel, bin width 2 deg s−1) and optimum duration thresholds dopt (lower panel, bin width 15 ms). 
Data were based on 140 blocks of 31,409 trials by seven observers viewing 20 scenes. The dark-gray histograms show 
the corresponding frequencies for blocks from which subsamples of 3–21 trials were taken for expert classification.  

 
A subsample of the resulting fixation classifications was compared with visual classifications made 

independently by three expert classifiers, RA, GRB, and EG.2 Twenty-one PoG traces were selected at 
random from the 31,409 available (three traces from each observer, with each trace containing 251 frames 
over 1 s). All 21 traces were then classified by RA, and, owing to time constraints, three by GRB and 18 by 
EG. The agreement between classifications by the proposed method and those by the three expert classifiers 
was summarized by the proportion of frames with common classification. The total number of frames 
available from the 21 traces was 5271. Results are shown in Table 1, with classification accuracy ranging 
from 88% to 94% (first row of entries). An example of a trace with fixations classified by the proposed 
method and by one of the expert classifiers is shown in Fig. 5.  

 
Table 1 
Agreement (%) between fixation classifications by each experimental method and by three expert classifiers across 21 
sample traces. RA classified all 21 traces (5271 frames); GRB classified three traces (753 frames); and EG classified 18 
traces (4518 frames).  

 Expert visual classifier 

Experimental method RA GRB  EG  

Proposed nonparametric speed-based method  94 88 94 
van der Linde et al. (2009) parametric stability-based method 92 85 95 
Vig et al. (2009) parametric speed-based method 96 85 95 

 

                                                      
2 The three classifiers were Dr. R. Ackerley (Sahlgrenska Hospital and Institute for Neuroscience & Physiology, 
University of Gothenburg, Sweden), Professor G. R. Barnes (Faculty of Life Sciences, University of Manchester, UK), 
and Dr. E. Gowen (Faculty of Life Sciences, University of Manchester, UK). The lengths of their individual experience 
in the design, analysis, and interpretation of eye-movement experiments were, respectively, five, 40, and 11 years. 
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Figure 5. An example classification of a typical eye-movement trace, sampling frequency 250 Hz. Vertical and 
horizontal gaze positions are plotted as a function of time from the beginning of the sample. Fixations classified by the 
proposed nonparametric method (upper panel) and by expert classifier EG (lower panel) are indicated by darker curves. 
The classification agreement between these two plots was 95%.  

 
To help set the performance of the proposed method in context, classifications by each of two existing 

parametric methods, the one based on gaze stability, the other on speed, were also compared with the 
classifications by the expert classifiers. The stability-based method was due to van der Linde et al. (2009), in 
which a sequence of PoG positions was defined as fixational if they remained within a circle of radius 1 deg 
for 100 ms. These parameters were taken from recommendations by Applied Science Laboratories (Bedford, 
MA). The speed-based method was due to Vig, Dorr, and Barth (2009), in turn derived from work by Böhme 
et al. (2006), in which a sequence of PoG speeds was defined as saccadic with respect to two speed 
thresholds. Thus, when PoG speed first exceeded the higher threshold of 137.5 deg s−1, saccade detection 
was initiated, and then the onset and offset of the saccade were defined, respectively, as the first samples 
where PoG speed rose above and fell below the lower speed threshold of 17.5 deg s−1. These thresholds 
differed a little from those used by Böhme et al. (2006) as they were hand-tuned to match visually classified 
saccades (Vig, Personal Communication, 23 February 2010). The use of two speed thresholds was intended 
to increase the noise resilience of this method. The periods between saccades were assumed to contain only 
fixations (and possibly noise).  

As with the proposed method, the agreement between classifications by the two parametric methods 
and by the three expert classifiers was summarized by the proportion of frames with common classification. 
Results are again shown in Table 1, with classification accuracy ranging from 85% to 96% (second and third 
rows of entries).  

To provide an estimate of the best performance that could be expected from a fixation–classification 
method, the pairwise agreement between the three expert classifiers was summarized by the proportion of 
commonly classified frames. The mean agreement over the 24 comparisons was 93%. Since expert 
classification provides the best available estimate of a ground truth, this value sets an upper limit on average 
classification accuracy. 



Mould et al., Page 9 
 

Vision Research Author manuscript 

 
Figure 6. Effect of added noise. Optimum speed threshold vopt averaged over all 140 blocks (upper panel) and 
corresponding total number of fixations classified by the proposed nonparametric method (lower panel) are plotted 
against added noise σ in degrees of visual angle. The continuous curves are, respectively, local and global linear 
regressions. For clarity, the vertical bars (upper panel) show ±2 SEM. 

5 ROBUSTNESS TO ADDED NOISE 
One of the advantages of a classification method that derives thresholds automatically from data over a 

method that uses a fixed threshold is its adaptability to different levels of instrumental noise. If data are 
especially noisy, a speed-based classification method may misrepresent noise events as saccades. 
Misclassifications may be reduced by increasing the value of the speed threshold after visual inspection of 
the data, but these adjustments can be uncertain and time consuming, particularly if noise levels vary across 
observers.  

To demonstrate the robustness of the proposed method to increased noise, a simulation was 
undertaken in which different levels of Gaussian noise were added to the recorded data before analysis by the 
proposed method.  Figure 6 shows for each noise level σ, the automatically generated optimum speed 
threshold vopt averaged over all 140 blocks (upper panel). The threshold vopt increased smoothly with 
increasing σ, reaching almost twice its value without added noise. Crucially, the total number of fixations 
classified by the method (lower panel) remained almost constant with σ.    

6 ROBUSTNESS TO SAMPLING RATE 
Another advantage of the proposed method is its adaptability to different sampling rates (Andersson, 

Nyström, & Holmqvist, 2010). To demonstrate this robustness, a simulation was undertaken in which eye-
movement traces were subsampled to reduce the sampling rate from 250 Hz to 125 Hz. The frequency of 
fixations classified by the method using the subsampled data was 99,063, compared with 91,907 classified 
by the method using the data at full resolution, showing that the frequency of fixations remained stable to 
within 8%. A further illustration of the robustness of the method to sampling rate is shown in the trace of 
Fig. 7. Data were subsampled from the eye-movement trace of Fig. 5 with fixations classified by the 
proposed method. Despite the reduction in sampling rate, it can be seen by comparison with the upper panel 
of Fig. 5 that there is little effect on the classification of fixations.  
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Figure 7. An example classification of a typical subsampled eye-movement trace, sampling frequency 125 Hz. Vertical 
and horizontal gaze positions are plotted as a function of time from the beginning of the sample. Fixations classified by 
the proposed nonparametric method are indicated by darker curves (compare with Fig. 5, upper panel). 

7 REVEALING VARIATION IN FIXATION DURATION AND SACCADE 
AMPLITUDE 

The distributional properties of the thresholds used to classify fixations (Fig. 4) should not be confused 
with the distributional properties of the fixations themselves, which may vary with observer, stimulus, and 
task. Thus, differences have been reported in mean fixation duration across different observers and stimuli 
(Harris et al., 1988) and in mean fixation duration and in mean saccade amplitude across different observers 
and stimuli (Andrews & Coppola, 1999). But in the former case classifications were based on visual 
inspection of the PoG traces (Harris et al., 1988) and in the latter on a fixed displacement threshold and 
speed threshold (Andrews & Coppola, 1999).  

A complication in such analyses is that the distributions of fixation durations and of saccade 
amplitudes are generally long-tailed (Harris et al., 1988; Velichkovsky et al., 2000), with correspondingly 
large standard deviations. In this study, SDs of fixation durations and saccade amplitudes averaged over 
observers and scenes were 119 ms and 2.42 deg, respectively. Given these large spreads, is it possible to 
reveal reliable differences in the means of the distributions across individual observers and scenes with the 
proposed method?  

The dot plot of Fig. 8, taken from the analysis of Section 4, shows the ranked values of the mean 
fixation duration (upper panels) and mean saccade amplitude (lower panels) for all 20 scenes and for the 
three observers with the least, the median, and the greatest differences across scenes. The horizontal error 
bars show ±1 SEM. The variations in mean fixation duration and in mean saccade amplitude across 
observers and scenes are evident.  

An analysis of variance confirmed the existence of highly significant effects of observer and scene, 
and their interaction, for both fixation duration (respectively, F(6, 91767) = 454, p < 0.001, 2

pη = 0.029; 
F(19, 91767) = 61.4, p < 0.001, 2

pη  = 0.013; and F(114, 91767) = 31.2, p < 0.001, 2
pη  = 0.037) and saccade 

amplitude (respectively F(6, 60662) = 1053, p < 0.001, 2
pη  = 0.094; F(19, 60662) = 15.3, p < 0.001, 2

pη  = 
0.005; and F(114, 60662) = 21.1, p < 0.001, 2

pη  = 0.038). Although the effect sizes represented by 2
pη  are 

modest, there are important differences across observers and scenes. For three of the 20 scenes, the ratios of 
largest to smallest mean duration and mean amplitude over all seven observers exceeded, respectively, 156% 
and 285%, and for one of the seven observers, the ratios of largest to smallest mean duration and mean 
amplitude over all 20 scenes were, respectively 181% and 252%.  
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Figure 8. Mean fixation durations (upper panels) and saccade amplitudes (lower panels) for each of three observers 
with the least, median, and greatest differences across 20 natural scenes. The same abscissae have been used to aid 
comparisons. Horizontal error bars indicate ±1 SEM where sufficiently large. The SDs of fixation durations and saccade 
amplitudes averaged over all observers and scenes were 119 ms and 2.42 deg, respectively. 

8 CONCLUSIONS 
The advantage of a nonparametric data-driven method for classifying eye fixations—and saccades—is 

that it automatically adapts itself to individual differences and to the effects of scene content and task. Unlike 
other methods, it requires no subjective hand-tuning of thresholds and therefore no intervention by an 
independent eye-movement expert. Because it is automatic, it can be applied to large quantities of data, with 
corresponding gains in classification rate and subsequent analysis.  

Although the approach adopted in this study was based on the general distributional properties of eye 
movements, only the existence of extrema in the distributions was assumed, i.e. a maximum or a minimum. 
No particular assumption was made about the model of the distribution or its parameters. Even so, as with 
any data-driven procedure, classification performance necessarily depends on the size of the sample. With 
the samples of 260 one-second trials used in the present analysis, extreme estimates of the optimum speed 
and duration thresholds demarcating fixations were only rarely encountered, as Fig. 4 made clear. Of course, 
reducing sample size is likely to lead to greater uncertainty in these estimates, although the goodness of fit 
illustrated in Fig. 2 suggests that rather smaller samples might still yield good estimates. As the method 
requires that examples of saccades and fixations be present in the data, minimum trial durations should be 
long enough to contain both.  

The proposed method was found to be successful in that it produced fixation classifications that agreed 
with 88–94% of the independent classifications by the three expert classifiers. This level of agreement was 
generally as good as—and for some expert classifications better than—the level with the parametric methods 
due to van der Linde et al. (2009) and to Vig, Dorr, and Barth (2009). Significantly, none of the methods of 
classification agreed perfectly with the expert classifications, but given the level of agreement between 
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expert classifiers, some differences were inevitable. From the simulations with added noise, however, it 
seems that unlike methods with fixed thresholds, classifications by the proposed method should remain 
stable as the level of instrumental noise increases. This would make the method particularly useful when 
applied to eye-movement data obtained from observers who find it difficult to remain steady (for example, 
young children).  

As noted elsewhere (Żychaluk & Foster, 2009), there is a general understanding that a correct 
parametric method will always do better than a nonparametric one. This advantage comes from the fact that 
the parametric model is able to assume more about the data. At present, with uncertainty about the effects on 
fixations of scene content, task, and the variation from individual to individual, as illustrated in Fig. 8, a 
correct parametric model appears not to be possible. A nonparametric approach provides an objective and 
efficient way of accommodating this uncertainty. As demonstrated here, eliminating parametric dependence 
need not degrade classification performance in practice.  

Software for classifying a sequence of PoG coordinates by the proposed nonparametric method is 
available from the authors.  
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