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Estimating Information from Image Colors:
An Application to Digital Cameras

and Natural Scenes
Iván Marı́n-Franch and David H. Foster

Abstract—The colors present in an image of a scene provide information about its constituent elements. But the amount of information

depends on the imaging conditions and on how information is calculated. This work had two aims. The first was to derive explicitly

estimators of the information available and the information retrieved from the color values at each point in images of a scene under

different illuminations. The second was to apply these estimators to simulations of images obtained with five sets of sensors used in

digital cameras and with the cone photoreceptors of the human eye. Estimates were obtained for 50 hyperspectral images of natural

scenes under daylight illuminants with correlated color temperatures 4,000, 6,500, and 25,000 K. Depending on the sensor set, the

mean estimated information available across images with the largest illumination difference varied from 15.5 to 18.0 bits and the mean

estimated information retrieved after optimal linear processing varied from 13.2 to 15.5 bits (each about 85 percent of the

corresponding information available). With the best sensor set, 390 percent more points could be identified per scene than with the

worst. Capturing scene information from image colors depends crucially on the choice of camera sensors.

Index Terms—Color vision, color information, digital color cameras, color processing, information theory, natural scenes, kth-nearest-

neighbor statistics, color constancy

Ç

1 INTRODUCTION

COLOR provides information about the reflecting proper-
ties of surfaces, thereby allowing regions of a scene to be

demarcated and the elements of regions to be distinguished.
Yet how much information about the content of a scene is
captured by the colors of the reflected light? More specifi-
cally, if images of a scene under a particular illumination are
obtained with a digital trichromatic camera, to what extent
can the elements of the scene be identified by their colors,
independent of spatial position?

A priori, it seems unlikely that all the elements in a scene
can be characterized in this way. One problem is that the color
values at each point in an image depend on the spectrum of
the illumination on the scene, so that when the illumination
changes, so generally do the color values. This confounding
effect of illumination can be largely discounted by correcting
color values by so-called von Kries scaling [1], [2], although
not completely. Another problem is that different reflectance
spectra at different points in the scene under the same
illumination can produce the same color values. This is the
phenomenon of metamerism [3] and is a consequence of

the number of degrees of freedom in natural reflectance
spectra being greater than the number of degrees of freedom
in color values, namely, three with a trichromatic camera.

Nevertheless, there remains a strong dependency between
the color values of different images of the same scene under
different illuminations. This dependency can be quantified
with Shannon’s mutual information [4], [5], [6]. The advan-
tages of this measure over other measures of dependency,
such as linear correlation, are well known [7], [8], [9], [10].

Two kinds of mutual information associated with the
images of a scene were used here, namely, the information
available from the color values at each point in the scene
imaged under different illuminations and the information
retrieved in the basic task of matching points across those
images by their color values. The information available is, by
construction [4], [5], [6], founded on a theoretical camera with
an infinite number of pixels. It sets, therefore, an upper
(finite) bound on the information actually available from any
camera with a finite number of pixels, which can yield only a
finite sample of color values. The information available
necessarily depends on factors such as the spectral reflec-
tances of the surfaces in the scene and their relative
abundances, the spectral radiances of the illuminations on
the scene, and the spectral sensitivities of the camera sensors.
The information retrieved depends not only on these factors,
but also on how the sensor signals are processed and then
matched, for example, by von Kries scaling and by nearest-
neighbor matching. The information available is also an
upper bound on the information retrieved.

In previous analyses, estimates of the information
available and information retrieved have been used to
reveal both the efficiency and the limits of color processing
by the human eye in viewing natural scenes under different
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illuminations. In one application [11], it was shown that
coding at the receptors was highly redundant, as expected
given the overlap of the spectral sensitivities of the
medium- and long-wavelength-sensitive cone pigments
[12]. But with optimal linear postreceptoral processing,
redundancy was reduced and efficiency increased so that
the information retrieved from color images of natural
scenes under different daylight illuminants reached almost
90 percent of that achievable by an ideal observer. The
coefficients of the linear transformations describing this
postreceptoral processing are similar to those estimated
independently by behavioral methods [13]. Such calcula-
tions illustrate the importance of estimating both kinds of
mutual information associated with the images of a scene.

One of the two aims of this work was to put on a firmer
basis the derivation and verification of the estimators of the
information available and the information retrieved to
answer the question posed earlier, namely, how much
information about a scene’s content is captured by its colors.
The other aim of the work was to illustrate an application of
these estimators to five sets of sensors used in commercial
digital trichromatic cameras. To provide a reference, the
estimators were also applied to the cone photoreceptors of
the human eye. Conveniently, mutual information can be
interpreted as the logarithm of the mean number of distinct
elements or points that can be identified without error across
images of the scene under different illuminations [11], [14].
The resulting information estimates therefore provided an
answer to the more specific question of the extent to which
the elements of a scene can be identified by their colors,
independent of spatial position.

The organization of this work was as follows. Images of
natural scenes were generated from a set of 50 hyperspectral
images of rural and urban scenes under each of three
daylight illuminants with correlated color temperatures
(CCTs) of 4,000, 6,500, and 25,000 K. Information available
and information retrieved were estimated for images of a
scene under pairs of these illuminants. As a practical matter,
naive estimates of mutual information based on histograms,
here of color values at each point, are known to be susceptible
to bias, and so methods were employed that were asympto-
tically unbiased and reasonably efficient for both kinds of
information estimate. As already implied, by the nature of
these calculations, information estimates did not incorporate
any spatial data. Thus, images were not segmented into
uniform regions in any way, except for the trivial limit
defined by pixel resolution, and any estimate of the number
of identifiable points was assumed to be an upper bound on
the number of identifiable regions. No allowance was made
for noise in the sensors or in postsensor processing. In this
way, the effects of spectral tuning of the sensors could be
most clearly demonstrated.

It was found that for the largest difference in daylight
illuminants—with CCTs of 25,000 and 4,000 K—the mean
estimated information available varied from 15.5 to 18.0 bits,
depending on the set of sensors. These values are equivalent
to 4:7� 104 and 2:7� 105 distinct identifiable points per
scene, an increase of 470 percent from the worst to the best
sensor set. The corresponding estimated information re-
trieved was lower, at 13.2 and 15.5 bits, equivalent to 9:5� 103

and 4:7� 104 distinct identifiable points per scene, an
increase of 390 percent from the worst to the best sensor set.

For the eye, the mean estimated information available and
information retrieved for the same illuminants were 17.1 and
14.7 bits, respectively, equivalent to 1:37� 105 and 2:7� 104

distinct identifiable points per scene, similar to the highest
values recorded with some camera sensors.

To help set these estimates in context, the pointillistic
painting by Georges Seurat “A Sunday Afternoon on the
Island of La Grande Jatte” (1884-1886) would require 16.6 bits
to code the more than 105 “points” on the canvas.

Some implications of present findings, and their limita-
tions, are considered in the Discussion.

2 SENSOR SIGNALS AND IMAGE ENTROPY

Consider a scene illuminated by a spatially uniform global
illuminant with incident spectral radiance eð�Þ at wavelength
�. Suppose that at a point ðx; yÞ in the scene the effective
spectral reflectance [15] is �ð�;x; yÞ so that the reflected
spectral radiance is given by cð�;x; yÞ ¼ eð�Þ�ð�;x; yÞ.1
Suppose that this reflected spectrum is sampled by the
long-, medium-, and short-wavelength-sensitive (conven-
tionally, R, G, and B) sensors of a digital camera (or cone
photoreceptors of the eye) with spectral sensitivities sRð�Þ,
sGð�Þ, and sBð�Þ, respectively. The corresponding triplet of
color values ðr; g; bÞ at ðx; yÞ encodes the spectrum cð�;x; yÞ
thus:

r ¼
Z
sRð�Þcð�;x; yÞ d�;

g ¼
Z
sGð�Þcð�;x; yÞ d�;

b ¼
Z
sBð�Þcð�;x; yÞ d�;

ð1Þ

where the integral is evaluated over the visible wavelength
range. If the point ðx; yÞwithin the scene is chosen randomly,
the color values r, g, and b in (1) may be treated as instances of
continuous random variables [12], R, G, and B, say. The
triplet a ¼ ðr; g; bÞ is an instance of a trivariate continuous
random variable A ¼ ðR;G;BÞ, whose probability density
function (pdf) is f , say. This pdf characterizes the nature of
the unpredictability of the color values for a particular scene,
illuminant, and set of sensors.

A discretized version of the continuous random variableA
can be obtained [6] by partitioning the space in which the
(bounded) variables R, G, and B take their values. Suppose
that the partition has a finite number of bins, D say, indexed
by an integer d with 1 � d � D. Suppose that each bin has
equal edge lengths �r ¼ �g ¼ �b and let �a ¼ �r�g�b. For
each d, let ad be the value of a within the dth bin such that

fðadÞ�a ¼
Z rdþ�rd

rd

Z gdþ�gd

gd

Z bdþ�bd

bd

fðr; g; bÞdrdgdb:
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1. With a spatially uniform global illuminant eð�Þ, the effective spectral
reflectance �ð�; x; yÞ at ðx; yÞ is defined by cð�; x; yÞ=eð�Þ, given that eð�Þ > 0
for all �. This representation confounds variations in spectral reflectance
with the effects of surface orientation, occlusion, and mutual illumination,
but this confound is not critical in this application [15]. The notation in [15]
differs slightly from that used in this work.



Denote by A� ¼ ðR�; G�; B�Þ the discretized version of A
whose probability mass function (pmf) p is given by

pðadÞ ¼ P A� ¼ ad
� �

¼ fðadÞ�a; for d ¼ 1; . . . ; D: ð2Þ

The entropy HðA�Þ of the discrete random variable A� for a
particular scene, illuminant, and set of sensors is then
defined [4], [5], [6] by

HðA�Þ ¼ �
XD
d¼1

pðadÞ log pðadÞ; ð3Þ

where the probabilities pðadÞ are given by (2) and where,
conventionally, 0 log 0 ¼ 0. The entropy HðA�Þ ranges from
zero to logD. If the logarithm is to the base 2, then the
entropy is in bits; if it is the natural logarithm, then the
entropy is in nats.

If all the points in a scene have the same color value so that
the pmf pðadÞ ofA� is zero except at one particular value of d,
e.g., if the scene is a perfectly homogeneous surface so that all
the points have the same effective reflectance spectrum or if
the binning is too coarse (i.e., D is too small) to capture the
differences in effective spectral reflectance between points,
then there is no uncertainty about the color value at any
chosen point andHðA�Þ ¼ 0. Conversely, if all the points in a
scene have different color values, so that the pmf of A� is
uniform, i.e., pðadÞ ¼ 1=D for all d ¼ 1; . . . ; D, then the
uncertainty about the color value of the chosen point is
maximum and HðA�Þ ¼ logD.

3 INFORMATION AVAILABLE AND ITS ESTIMATORS

In general, two different global illuminants, say e1ð�Þ and
e2ð�Þ, illuminating the same scene, one at a time, give rise to
two different continuous random variables, A1 and A2,
respectively, with pdfs f1 and f2 and joint pdf f12, and,
likewise, to two different discrete random variables, A�

1

and A�
2 , with pmfs p1 and p2 and joint pmf p12. As noted

earlier, the random variables A1 and A2 are strongly
dependent on each other and so are A�

1 and A�
2 . The

mutual information between A�
1 and A�

2 can be derived
from their entropies as follows.

For each d1 ¼ 1; . . . ; D, let p2j1ða2d2
ja1d1
Þ be the conditional

probability thatA�
2 ¼ a2d2

for each d2 ¼ 1; . . . ; D. The entropy
HðA�

2 jA�
1 ¼ a1d1

Þ of A�
2 , given A�

1 ¼ a1d1
, is defined [6] by

H
�
A�

2 jA�
1 ¼ a1d1

�
¼

�
XD
d2¼1

p2j1ða2d2
ja1d1
Þ log p2j1ða2d2

ja1d1
Þ:

The conditional entropy HðA�
2 jA�

1 Þ is then defined [4], [5]
as the value of HðA�

2 jA�
1 ¼ a1d1

Þ averaged over all possible
values of A�

1 , that is,

H
�
A�

2 jA�
1

�
¼
XD
d1¼1

p1ða1d1
ÞH
�
A�

2 jA�
1 ¼ a1d1

�
:

The conditional entropy measures the uncertainty about
random variable A�

2 given that the value of A�
1 is known. It

is always lower than HðA�
2 Þ unless the two random

variables are independent, in which case the two quantities
are equal. The difference HðA�

2 Þ �HðA�
2 jA�

1 Þ gives [4], [5]

the mutual information IðA�
1 ;A�

2 Þ between A�
1 and A�

2 . As
the conditional entropy HðA�

2 jA�
1 Þ is simply the difference

between the joint entropy HðA�
1 ; A

�
2 Þ and HðA�

1 Þ, the
mutual information may therefore be written as

I
�
A�

1 ;A�
2

�
¼ H

�
A�

1

�
þH

�
A�

2

�
�H

�
A�

12

�
; ð4Þ

where A�
12 stands for ðA�

1 ; A
�
2 Þ. Explicitly [6],

IðA�
1 ;A�

2 Þ ¼
XD
d1¼1

XD
d2¼1

p12ða1d1
; a2d2

Þ log
p12ða1d1

; a2d2
Þ

p1ða1d1
Þp2ða2d2

Þ :

ð5Þ

Shannon’s channel-coding theorem [4], [5] gives the
mutual information an operational interpretation which
was alluded to earlier. That is, since the maximum number
of points that can be encoded with I bits is 2I , if
I ¼ IðA�

1 ;A�
2 Þ, then 2I is the maximum number of distinct

points that can be identified reliably across two images of a
scene under the two global illuminants e1 and e2 [11].

As bin size �r ¼ �g ¼ �b tends to zero, the entropies
HðA�

1 Þ, HðA�
2 Þ, and HðA�

12Þ each tend to infinity, but not
the mutual information IðA�

1 ;A�
2 Þ, which tends to the limit

[16, Ch. 4], [6, Ch. 9]

IðA1;A2Þ ¼
Z
f12ða1; a2Þ log

f12ða1; a2Þ
f1ða1Þf2ða2Þ

da2da1; ð6Þ

the continuous analog of (5). The value of (6) is invariant
under differentiable invertible transformations of the con-
tinuous random variables A1 and A2, and decreases other-
wise [16, Ch. 4]. The quantity I ¼ IðA1;A2Þ is the least upper
bound on the mutual information IðA�

1 ;A�
2 Þ defined over all

possible discretizations of the continuous random variables
A1 and A2 [16, Ch. 4]. This least upper bound I is the
information that is available across two images of a scene
each under a different illuminant.

Let

NI ¼ 2I : ð7Þ

Then NI is the least upper bound on the number of distinct
points that can be identified reliably across two images of
the scene. Notice that if A1 ¼ A2, the mutual information
IðA1;A2Þ is infinite.

In practice, estimating the information available, i.e.,
IðA1;A2Þ, is not straightforward. Several methods, includ-
ing some used in this analysis, make use of the fact that
mutual information can be expressed as a combination of
differential entropies [4], [5], [6]. The differential entropy
hðA1Þ of A1 is defined [4], [5] by

hðA1Þ ¼ �
Z
f1ða1Þ log f1ða1Þ da1; ð8Þ

which, unlike the limit of discrete entropy (3) as bin size
tends to zero, need not be infinite, although it does depend
on the units in which the values of A1 are expressed. The
differential entropy hðA2Þ of A2 and the joint differential
entropy hðA12Þ of A12 ¼ ðA1; A2Þ are defined analogously.
The information available is [6]

IðA1;A2Þ ¼ hðA1Þ þ hðA2Þ � hðA12Þ; ð9Þ

mirroring (4).
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One method of estimating IðA1;A2Þ is to estimate the pdfs
f1 and f2 and the joint pdf f12, and use them to estimatehðA1Þ,
hðA2Þ, and hðA12Þ from the corresponding definitions, e.g.,
(8). The estimates of f1, f2, and f12 are necessarily based on
finite samples. Accordingly, suppose that N points fðxi; yiÞ j
i ¼ 1; . . . ; Ng are sampled uniformly from a scene and their
color values are calculated from (1) for illuminants e1 and e2,
yielding the sets

a1i ¼ ðr1i; g1i; b1iÞ j i ¼ 1; . . . ; Nf g;
a2i ¼ ðr2i; g2i; b2iÞ j i ¼ 1; . . . ; Nf g;

ð10Þ

and

a12i ¼ ða1i; a2iÞ j i ¼ 1; . . . ; Nf g: ð11Þ

The difficulty is in arriving at the estimates of f1, f2, and f12

from these samples. If the sample size N is large enough,
reliable estimates of f1, f2, and f12 may be obtained by simple
histogram-based methods such as binning and adaptive
partitioning [17]. This is equivalent to D-bin quantization
with pmfs as in (2), although if partitioning is adaptive,
variable values of �r, �g, and �b are needed. Even so, D
must be very large to obtain accurate estimates; otherwise the
pdf is not well approximated by the empirical pmf, leading to
bias [18]. In addition, the sample sizeN has to be much larger
than the number of bins with nonzero probability [19]. Some
of these disadvantages can be overcome with the use of
kernel density estimators [10], [18], but systematic errors in
the differential entropy estimates remain [20], [21].

By contrast, methods based on kth-nearest-neighbor
statistics [20], [21] avoid estimating pdfs and instead involve
calculating distances in the neighborhood of each point in a
sample drawn from the spaces spanned by A1, A2, and A12,
such as the sets in (10) and (11). The advantages of
kth-nearest-neighbor estimators have been documented
elsewhere [21], [22], [23].

For completeness, four estimators were used to estimate
the information available:

1. a kernel density estimator [10],
2. a generalized version of a nearest-neighbor estima-

tor due to Kozachenko and Leonenko [20], [ 24],
3. a nearest-neighbor estimator due to Kraskov et al.

[21], and
4. an experimental offset modification [14] used to

improve both estimators 1 and 2.

3.1 Kernel Density Estimator

A kernel density estimator provides estimates f̂1, f̂2, and f̂12

of the corresponding pdfs f1, f2, and f12 by smoothing each
finite sample of N color values (10) and (11) with a kernel
function K�, which, in one dimension, is often chosen as a
Gaussian density, K�ðuÞ ¼ ð2��2Þ�1=2 expð�u2=2�2Þ [18],
where � is the bandwidth of the smoother. Thus, for any
point a1 ¼ ðr1; g1; b1Þ in the space spanned by A1, the kernel
density estimate f̂1ða1Þ of f1 at a1 is defined by

f̂1ða1Þ ¼
1

N

XN
i¼1

K�Rðr1 � r1iÞK�Gðg1 � g1iÞK�Bðb1 � b1iÞ:

ð12Þ

If required, the product of the three univariate Gaussian
densities can be replaced by a single multivariate Gaussian
density. The estimates f̂2ða2Þ and f̂12ða12Þ are defined
analogously. An inappropriate choice of bandwidth � can,
however, give misleading results, and two automatic
methods are described in Appendix A, which can be found
in the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2012.78.

The kernel-density-based estimator ĥKDðA1Þ of the
differential entropy hðA1Þ is obtained [10] by plugging the
estimator f̂1ða1Þ into (8), that is,

ĥKDðA1Þ ¼ �
Z
f̂1ða1Þ log f̂1ða1Þ da1;

and analogously for ĥKDðA2Þ and ĥKDðA12Þ. The kernel-
density-based estimator ÎKDðA1;A2Þ of the information
available IðA1;A2Þ follows from (9), that is,

ÎKDðA1;A2Þ ¼ ĥKDðA1Þ þ ĥKDðA2Þ � ĥKDðA12Þ:

3.2 Generalized Kozachenko-Leonenko Estimator

The nearest-neighbor estimator of differential entropy
proposed by Kozachenko and Leonenko [20] was general-
ized by Goria et al. [24] to estimators based on kth-nearest
neighbors. For a fixed integer k with 0 < k < N , let �1i be the
euclidean distance between a1i and its kth-nearest neighbor
for the illuminant e1. If  denotes the digamma function and
v ¼ �m=2=�ðm=2þ 1Þ is the volume of an m-dimensional
open ball of unit radius, then the generalized Kozachenko-
Leonenko estimator ĥKLðA1Þ of the differential entropy hðA1Þ
is defined, in nats, by

ĥKLðA1Þ ¼
m

N

XN
i¼1

ln�1i þ lnðN � 1Þ �  ðkÞ þ ln v;

where m ¼ 3, the dimension of A1. The estimators ĥKLðA2Þ
and ĥKLðA12Þ are defined analogously with m ¼ 3 and 6,
respectively. The Kozachenko-Leonenko estimator ÎKLðA1;
A2Þ of the information available IðA1;A2Þ then follows, as
before, from (9), that is,

ÎKLðA1;A2Þ ¼ ĥKLðA1Þ þ ĥKLðA2Þ � ĥKLðA12Þ:

3.3 Kraskov-Stögbauer-Grassberger Estimator

Two nearest-neighbor estimators were described by Kraskov
et al. [21], but they yielded similar results, and only the one
giving the smaller systematic errors was used, namely, that
denoted by Ið2Þ in [21]. For a fixed integer k with 0 < k < N ,
let l1i and l2i be the edge lengths of the smallest rectangle
around ða1i; a2iÞ containing k neighbors. For some norm k � k,
let n1i and n2i be the numbers of a1j and a2j, i 6¼ j, in the
paired sample such that ka1i � a1jk � l1i=2 and ka2i �
a2jk � l2i=2. Denote by � the average of the values  ðn1iÞ þ
 ðn2iÞ of the digamma function over all i. The Kraskov-
Stögbauer-Grassberger estimator ÎKSGðA1;A2Þ of the infor-
mation available IðA1;A2Þ is then defined, in nats, by

ÎKSGðA1;A2Þ ¼  ðkÞ � 1=k� � þ  ðNÞ:

3.4 Offset Estimators

The foregoing estimators were found to converge slowly
with Gaussian images (Appendix B, available in the online
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supplemental material). To improve the convergence of the
kernel density estimator and Kozachenko-Leonenko esti-
mator, each was decomposed into two components: one, the
mutual information between equivalent Gaussian variables
with known variance-covariance structure, the other, an
offset obtained by applying the estimator to normalized
versions of A1, A2, and A12. This decomposition was not
possible with the Kraskov-Stögbauer-Grassberger estimator
ÎKSGðA1;A2Þ, which estimates mutual information directly.

In more detail, if A is a random variable and t an
invertible linear transformation, then, in general,

hðAÞ ¼ hðtAÞ � log jtj; ð13Þ

where jtj is the absolute value of the determinant of the matrix
representing t. Set t1 ¼ ðVar A1Þ�1=2, t2 ¼ ðVar A2Þ�1=2, and
t12 ¼ Var ðA12Þ�1=2. Let IEGðA1;A2Þ be the mutual informa-
tion [6] of the equivalent Gaussian variables, i.e., having the
same variance-covariance structure as A1 and A2, so that

IEGðA1;A2Þ ¼
1

2
log

jVar A1j jVar A2j
jVar A12j

� �
: ð14Þ

Accordingly, from (13) and (9), the mutual information
between A1 and A2 can be written

IðA1;A2Þ ¼ IEGðA1;A2Þ þ hðt1A1Þ þ hðt2A2Þ � h t12A12ð Þ:
ð15Þ

An estimator ÎEG of IEG is obtained by replacing the
variances in (14) by the sample variances. The offset
versions of the kernel-density estimator and Kozachenko-
Leonenko estimator are then obtained by applying each to
the three differential entropies hðt1A1Þ, hðt2A2Þ, and
hðt12A12Þ in (15).

In Appendix C, available in the online supplemental
material, the convergence of the kernel density estimator
and the Kozachenko-Leonenko estimator is compared with
that of their offset versions by applying each of them to
Gaussian images.

4 INFORMATION RETRIEVED AND ITS ESTIMATORS

As already noted in Section 3, the quantity NI defined by (7)
is the least upper bound on the number of distinct points
that can be identified reliably across two images of a scene
under illuminants e1 and e2. This identification does,
however, assume that matching is by maximum likelihood
[25] or its equivalent. That is, for a sample of N points (10), a
particular point ðxj; yjÞ with color value a2j is matched to
the point ðxi; yiÞ with color value a1i that maximizes the
probability of a1i given a2j.

For maximum-likelihood matching to be applied, the
conditional pmfs p1j2 must be known or estimated reliably,
which is not generally feasible. Instead, a nearest-neighbor
criterion may be used, which may not be optimal [25], but
may approach optimality with a judiciously chosen metric.
The information retrieved is then the logarithm of the
maximum number of distinct points that can be reliably
identified by nearest-neighbor matching across two images
of a scene under different illuminants. It is always lower than
or equal to the information available. An equivalent defini-
tion of information retrieved in the more general case is
�-capacity; see, e.g., [25]. By contrast with the information

available, invertible transformations of the sample values
(10) can increase the information retrieved. With a nearest-
neighbor criterion defined in accordance with a measure �,
typically the euclidean or Mahalanobis distance, the trans-
formations t1 and t2 that make the transformed values

ft1a1i j i ¼ 1; . . . ; Ng;
ft2a2i j i ¼ 1; . . . ; Ng

ð16Þ

as close to each other as possible maximize the information
retrieved. These optimal transformations depend on the
sample values (10); they were here constrained to be linear.

In practice, estimating the information retrieved is more
difficult than estimating the information available [25].
Approximations, upper bounds (tighter than the trivial one
given by the information available), and lower bounds have
been proposed for �-capacity [25], [26], [27] and specifically
for color-dependent identification [28], [29]. The approx-
imations in [28], [29] were based, as in [27], on additive
Gaussian noise channels, for which the nearest-neighbor
criterion with a Mahalanobis distance coincides with the
maximum-likelihood criterion [6].

More precisely, suppose that the means of t1A1 and t2A2

coincide so that, for some zero-mean random variable W ,

t2A2 ¼ t1A1 þW: ð17Þ

If the random variables in (17) are Gaussian and t1A1 and W
independent of each other, then the mutual information
takes a particularly simple form, which may be used to
approximate the information retrieved. This Gaussian
approximation IGAðt1A1; t2A2Þ is given by

IGAðt1A1; t2A2Þ ¼
1

2
log

jVarðt2A2Þj
jVarðt2A2 � t1A1Þj

� �
: ð18Þ

An estimator ÎGA of IGA is obtained by replacing the
variances in (18) by the sample variances. A slightly different
version in which the variance of the numerator of (18) is
assumed to be jVarðt1A1Þ þVarðt2A2 � t1A1Þj was used in
[28] and [29]. The results obtained with the two versions
were similar.

If, instead, the random variables in (17) are not
necessarily Gaussian but t1A1 and W are still independent
of each other, then the mutual information can be expressed
as a difference between two differential entropies, which
may also be used to approximate the information retrieved.
The additive approximation IAAðt1A1; t2A2Þ is given by

IAAðt1A1; t2A2Þ ¼ hðt2A2Þ � hðt2A2 � t1A1Þ: ð19Þ

An estimator ÎAA of IAA is obtained by replacing the
differential entropies h in (19) by the offset Kozachenko-
Leonenko estimator ĥKLo. These approximations (18) and (19)
are rough but useful and were used (Section 8) to explore
optimal postsensor processing.

A very different approach to estimating the information
retrieved, outlined in [28] and [29], is to quantify the
entropy of point matching. Some results have been reported
in [11] and [14].

4.1 Nearest-Neighbor Errors and Entropy of Point
Matching

The estimator of the information retrieved that was devel-
oped in [11], [28], and [29] was based on the entropy of the
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error of a theoretical observer making nearest-neighbor
matches across two images of a scene under different
illuminants. A slightly different interpretation of that
estimator can be derived from the relationship between the
minimum number of bits needed to encode a random
variable and the entropy of that variable [6, Ch. 5].

Without any prior information, the number of bits needed
to encode a sample ofN points from an image of a scene with
color values t1a1i under illuminant e1 is logN , i.e., the entropy
of a random variable with a discrete uniform distribution.
But with prior information, namely, the color values t2a2j of
the N points of the same scene under illuminant e2, the
number of bits is reduced. Thus, for a point ðxj; yjÞwith color
value t2a2j under illuminant e2, there is only a subset of points
ðxi; yiÞ whose color values t1a1i under illuminant e1 are
sufficiently close to t2a2j to be confused with ðxj; yjÞ with
respect to some nearest-neighbor criterion �. The largest such
subset excluding ðxj; yjÞ is given by

fðxi; yiÞ j �ðt1a1i; t2a2jÞ < �ðt1a1j; t2a2jÞg: ð20Þ

The number m of points in (20) (where m should not be
confused with the dimensional variable m of Section 3.2) is
an instance of a random variable with pmf pm specifying
the number of mismatches. The entropy of that random
variable,

HðMÞ ¼ �
XN�1

m¼0

pm log pm;

is the entropy of point matching [11]. It yields the number of
bits needed to encode the N surfaces in an image of a scene
under illuminant e1 given an image of the same scene under
illuminant e2. If matching is perfect, so there are no incorrect
matches for any point, then HðMÞ ¼ 0. Conversely, if
matching is uniformly random, then HðMÞ ¼ logN . Fig. 1
shows an example of the actual errors in point matching.

The difference logN �HðMÞ is the reduction in number of
bits needed to encode the N points in an image of a scene
under illuminant e1 given an image of the same scene under

illuminant e2. An estimator of information retrieved by
nearest-neighbor matching INNðt1A1; t2A2Þ is defined pre-
cisely by that difference. That is,

INNðt1A1; t2A2Þ ¼ logN �HðMÞ:

The dependence of this estimator on the distributions of
color values in the images and on the nearest-neighbor
criterion is evident in (20).

4.2 Grassberger Estimator

The naive estimator of the entropy HðMÞ in Section 4.1 is
usually biased when the number of nonzero probabilities pm
is close to the sample size N , and a bias-corrected estimator
due to Grassberger [19] was therefore used in this analysis. If
 denotes the digamma function, the Grassberger estimator
ĤGðMÞ of HðMÞ is defined, in nats, by

ĤGðMÞ ¼ lnN �
XN�1

m¼0

pm ðNpmÞ:

The Grassberger estimator ÎNNGðt1A1; t2A2Þ of the informa-
tion retrieved is, accordingly,

ÎNNGðt1A1; t2A2Þ ¼ logN � ĤGðMÞ:

In Appendix D, available in the online supplemental
material, the naive estimator and the Grassberger estimator
are compared by applying each of them to Gaussian images.

5 EXPERIMENTAL SIMULATIONS

As mentioned earlier, calculations were based on a set of 50
hyperspectral images of rural and urban scenes [15], [30],
illuminated by simulated daylights with CCTs of 4,000, 6,500,
and 25,000 K. The five camera sensor spectral sensitivities are
shown in Fig. 2 for (a) an Agilent CMOS sensor array from a
Concord EyeQ digital camera, data digitized from Fig. 8C in
[31], (b) a Foveon X3 sensor array from a Sigma SD9 digital
camera, data digitized from Fig. 7 in [31], (c) a Kodak frame-
transfer CCD sensor array from a Kodak DCS-460 digital
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Fig. 1. Identification errors across images of a scene under daylight illuminants with correlated color temperatures of (a) 25,000 K and (b) 4,000 K.
After scaling of sensor responses to the spatial mean (see Section 7), the color values of points in image a marked 1, 2, ..., 8 (not all are
distinguishable) are all closer to those of point 1 in image b than those of point 9, the correct match. For purposes of illustration, the images
themselves have not been scaled to the mean.



camera, data digitized from Fig. 8A in [31], (d) a CCD sensor
array from a Nikon D1 digital camera, data digitized from
Fig. 9 (top) in [32], and (e) a Sony interline CCD sensor array
from a Hewlett Packard digital camera, data digitized from
Fig. 8B in [31]. The spectral sensitivities of the cone
photoreceptors of the eye in (f) are from the Stockman and
Sharpe fundamentals [33].

The 50 hyperspectral images were divided into two
groups of 29 mainly vegetated scenes and 21 mainly
nonvegetated scenes [15]. Example images are shown in
Fig. 3. Each hyperspectral image had spatial dimensions
� 1; 344� 1;024 pixels and spectral range 400-720 nm

sampled at 10-nm intervals. At each pixel ðx; yÞ, the effective
spectral reflectance rð�;x; yÞ was therefore defined at
33 values of � (Section 3 and footnote 1), which is sufficiently
dense for the present purposes [34], [35]. Further details about
the hyperspectral images and effective global illuminants and
reflectances can be found in [15]. To reduce computation time
and to accommodate the approximately 1.3 pixel line spread
function of the camera system [15], images were spatially
subsampled, with only alternate pixels being used, so that the
subsampled images had spatial dimensions � 672� 512.
Results obtained with these subsampled images were closely
similar to those obtained with full-sized images.
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Fig. 2. Normalized spectral sensitivities for (a) an Agilent CMOS sensor array from a Concord EyeQ digital camera [31], (b) a Foveon X3 sensor
array from a Sigma SD9 digital camera [31], (c) a Kodak CCD sensor array from a Kodak DCS-460 digital camera [31], (d) a CCD sensor array from
a Nikon D1 digital camera [32], (e) a Sony CCD sensor array from a Hewlett-Packard digital camera [31], and (f) the cone photoreceptors of the
human eye [33].

Fig. 3. Color images of a sample of eight scenes from the 50 scenes analyzed in this work. The upper row is from mainly vegetated scenes and the

lower row from mainly nonvegetated scenes.



For convenience, the three daylight illuminants were
reconstructed from daylight basis functions [36], although
the use of these functions has no particular significance in this
analysis. The two pairs with CCTs of 4,000 and 6,500 K and of
6,500 and 25,000 K had similar chromaticity differences and
the remaining pair with CCTs of 25,000 and 4,000 K had a
much larger chromaticity difference.

The kernel density estimator (Section 3.1) was implemen-
ted with the Kernel Density Estimation Toolbox, KDE 2003,
for Matlab (The MathWorks, Inc., Natick, MA), at http://
www.ics.uci.edu/~ihler/code/. The Kozachenko-Leonenko
estimator (Section 3.2) was implemented with the Approx-
imate Nearest Neighbor Searching Library, ANN, ver 1.1.1,
at http://www.cs.umd.edu/~mount/ANN/ [37], which
contained an efficient C++ routine for exact nearest-neighbor
search. The Kraskov-Stögbauer-Grassberger estimator (Sec-
tion 3.3) was implemented with MILCA 2004 for Matlab at
http://www.klab.caltech.edu/~kraskov/MILCA/ [21],
[23]. The naive estimator and the Grassberger estimator of
information retrieved (Sections 4.1 and 4.2) were implemen-
ted with the ANN, ver 1.1.1, library.

6 ESTIMATES OF INFORMATION AVAILABLE

Fig. 4 shows the convergence of the estimates of the
information available with increasing size N of random
samples from Scene d of Fig. 3 under daylight illuminants
with CCTs of 25,000 and 4,000 K. The sensors were from the
Foveon X3 sensor array (Fig. 2b). The estimators were the
equivalent Gaussian estimator ÎEG (dash-dotted curve),
Section 3.4; the offset kernel density estimators ÎKDo each
with a different automatic bandwidth-selection method,
namely, rule-of-thumb (dashed curve), Sections 3.1 and 3.4,
Appendix A, available in the online supplemental material,
and likelihood cross-validation (dotted curve), Sections 3.1
and 3.4, Appendix A; and the offset Kozachenko-Leonenko
estimator ÎKLo (solid curve), Sections 3.2 and 3.4. Sample size
N ranged from 23 to 218 for all estimates except for the kernel

density estimator with likelihood cross-validation for which
the maximum sample size was limited to 216 because of the
lengthy computation time required with larger samples.

The kernel density estimator ÎKDo with automatic band-
width selection by rule-of-thumb and the offset Kozachenko-
Leonenko estimator ÎKLo converged to similar values,
whereas the equivalent Gaussian estimator ÎEG appears
biased upward with respect to these estimators. The kernel
density estimator ÎKDo with automatic bandwidth selection
by likelihood cross-validation did not have an obvious
asymptote, even asN approached the maximum sample size.

The rate of convergence depends on the linear correlation
between the images of the scene. With this particular scene,
illuminants, and the Foveon X3 sensor set, the correlation
between the two images was very strong, with average
correlation coefficient2 � ¼ 0:9994.

Appendices B and C, available in the online supplemental
material, set out a systematic comparison of these and other
estimators with both strongly and weakly correlated syn-
thetic Gaussian images, the outcome of which suggests that
the offset Kozachenko-Leonenko estimator ÎKLo was the best
estimator of those tested. In the following, estimates of the
information available are reported only for ÎKLo.

Fig. 5 shows a dotplot of the mean estimated information
available with the estimator ÎKLo and each of the sets of
sensors of Fig. 2. Different symbols show results from
scenes under daylight illuminants with large chromaticity
differences (circles) and small chromaticity differences
(inverted and upright triangles). Mean estimated informa-
tion available for illuminants with CCTs of 25,000 and
4,000 K varied over the sets of sensors from 15.5 to 18.0 bits.
From (7), these values correspond to 4:7� 104 and 2:7� 105

distinct identifiable points per scene. Mean estimated
information available for illuminants with CCTs of 25,000
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Fig. 5. Mean estimated information available across images of scenes
under pairs of daylight illuminants with correlated color temperatures of
25,000 and 4,000 K (circles), 25,000 and 6,500 K (inverted triangles),
and 4,000 and 6,500 K (upright triangles). Estimates from the offset
Kozachenko-Leonenko estimator ÎKLo (Sections 3.2 and 3.4) are for
each of the sensors of Fig. 2. Means were taken over 50 scenes. SDs
were 1.1-1.4 bits. The horizontal scale has been extended to allow
comparison with other information plots.

Fig. 4. Sample-size dependence of estimates of the information
available across images of Scene d of Fig. 3 under daylight illuminants
with CCTs of 25,000 and 4,000 K. Information available is plotted
against sample size N for the equivalent Gaussian estimator ÎEG (dash-
dotted curve), offset kernel density estimator ÎKDo with rule-of-thumb
(RoT, dashed curve) and likelihood cross-validation (LCV, dotted curve),
and offset Kozachenko-Leonenko estimator ÎKLo (solid curve). The
sensors were from the Foveon X3 sensor array (Fig. 2b).

2. The average correlation coefficient was defined as ðcor ðR1; R2Þ þ
cor ðG1; G2Þ þ cor ðB1; B2ÞÞ=3, where cor ðX;Y Þ ¼ cov ðX;Y Þ=ðvar ðXÞvar
ðY ÞÞ1=2.



and 6,500 K and of 4,000 and 6,500 K were, as expected,
larger, and varied over the sets of sensors from 18.5 to
20.6 bits, which correspond to 3:6� 105 and 1:54� 106

distinct identifiable points per scene.
The estimated information available was usually less

with mainly vegetated scenes than with mainly nonvege-
tated scenes, by 0.7-1.5 bits, depending on the set of sensors
(cf. [15]). The estimates varied little over scenes, with SDs of
1.1-1.4 bits, a result that extends an earlier finding [28] with
the Gaussian approximation (18) of information retrieved
described in Section 4.

7 ESTIMATES OF INFORMATION RETRIEVED

The information retrieved with a nearest-neighbor criterion
depends critically on the transformations t1 and t2 of the
sample values (16). Typically, t1 and t2 represent scaling by
von Kries’ rule. As originally conceived by von Kries [1], [2],
the eponymous scaling assumes that the spectral effects of
the prevailing light on the sensitivity of long-, medium-, and
short-wavelength-sensitive cone photoreceptors of the eye
are contingent only on the response of each photoreceptor
class and in a linear way. But von Kries’ rule leaves
unspecified precisely how the prevailing light determines
the coefficients that describe the adjustment of each
photoreceptor sensitivity (see, e.g., [38], [39]).

Many machine models of color constancy, including
Land’s Retinex models [40], [41], assumed that von Kries
scaling also applies to lights reflected from surfaces.
Subsequent analysis showed that it does indeed give a
good description of the effects of illuminant changes with
artificial scenes [42], [43] and natural scenes [30]. Departures
from von Kries’ rule have been addressed by relaxing the
scaling so that it is dependent on the signals from all three
sensor classes [44], [45], [46] or by making it nonlinear [47].

For von Kries scaling proper, the transformations t1 and t2
(16) can each be expressed as a diagonal matrix transforma-
tion [48]. The coefficients of the transformations depend on
the spectral sensitivities of the sensors, the scene being
imaged, and the illuminants. A common procedure for
determining the coefficients is by the so-called gray-world
assumption [41], [49], that is, taking the inverse of the spatial
average of the N sample color values a1i, i ¼ 1; . . . ; N , for t1,

and a2i, i ¼ 1; . . . ; N , for t2. In deciding on the coefficients,
however, it is important to distinguish between the problem
of estimating the spectrum e1 or e2 [50], [51] and the problem
of finding an approximately correct one-to-one correspon-
dence between triplets given the illuminants [52]. Only the
second problem is relevant here, and it does not matter
whether the mean reflectance of the scene is neutral.

Fig. 6 shows the convergence of the estimates of the
information retrieved with increasing size N of random
samples from the scene of Fig. 3d under daylight illuminants
with CCTs of 25,000 and 4,000 K. The sensors were from the
Foveon X3 sensor array (Fig. 2b). The estimators were the
Gaussian approximation ÎGA (dash-dotted curve), Section 4;
the additive approximation ÎAA (dotted curve), Section 4; the
naive estimator of information retrieved ÎNN (dashed curve),
Section 4.1; and the Grassberger estimator ÎNNG (solid curve),
Section 4.2. The sample size N ranged from 23 to 218 for all
estimators.

The differences between the naive estimator ÎNN and the
Grassberger estimator ÎNNG were very small in this example.
The additive approximation ÎAA was slightly biased upward
with respect to these two estimators, and the Gaussian
approximation ÎGA rather more so. Small differences be-
tween ÎNN and ÎNNG also emerged with strongly correlated
synthetic Gaussian images (see Appendix D, available in the
online supplemental material). In the following, estimates of
the information retrieved are reported only for ÎNNG.

Fig. 7 shows a dotplot of the mean estimated information
retrieved with the Grassberger estimator ÎNNG and each of
the sets of sensors of Fig. 2. Mean estimated information
retrieved from scenes under daylight illuminants with CCTs
of 25,000 and 4,000 K varied over the sets of sensors from 5.9
to 9.2 bits, which correspond, respectively, to 62 and 592
distinct identifiable points per scene. As with information
available, information retrieved was higher for illuminants
with smaller chromaticity differences. Thus, mean estimated
information retrieved from scenes under illuminants with
CCTs 25,000 and 6,500 K and of 4,000 and 6,500 K varied over
the sets of sensors from 8.0 to 11.6 bits, corresponding to 260
and 3:2� 103 distinct identifiable points per scene. The mean
estimated information retrieved was again less with mainly
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Fig. 7. Mean estimated information retrieved with the Grassberger
estimator ÎNNG and von Kries scaling of the sensor signals. SDs were
1.0-1.3 bits. Other details as for Fig. 5.

Fig. 6. Sample-size dependence of estimates of the information
retrieved across images of Scene d of Fig. 3 under daylight illuminants
with CCTs of 25,000 and 4,000 K. Information is plotted against sample
size N for Gaussian approximation ÎGA (dash-dotted curve), additive
approximation ÎAA (dotted curve), naive estimator of the information
retrieved ÎNN (dashed curve), and the Grassberger estimator ÎNNG (solid
curve).



vegetated scenes than with mainly nonvegetated scenes, by
0.2-1.0 bits, depending on the set of sensors. The estimates
varied little over scenes, with SDs of 1.0-1.3 bits.

The information retrieved is much less than the
information available, as is evident from a direct compar-
ison of Figs. 7 and 5. For all except the Foveon X3 sensor
set, the mean estimated information available was
50-62 percent of the information available; for the Foveon
X3, it was only 38 percent. The ordering of the sets of
sensors by information retrieved is also quite different
from that by information available (Fig. 5).

8 OPTIMIZED SENSOR TRANSFORMATIONS

Fortunately, more information can be retrieved if spectral
sensitivities are first transformed effectively by sharpening
[43], [44], [45], before von Kries scaling, so that nearest-
neighbor matching approaches more closely maximum-
likelihood matching. The required sharpening transforma-
tion can be represented as a linear combination of the signals
from the sensors of the camera (or from the cone photo-
receptors of the eye, for which these transformations have
been justified on both behavioral and physiological grounds,
although their effects extend beyond narrowing spectral
sensitivities [53], [54]; see also [11], [13]). When sharpening is
combined with von Kries scaling, the transformations t1 and
t2 of the random variables A1 and A2 (16) can be written as
t1 ¼ t01t0 and t2 ¼ t02t0, where t0 represents the sharpening
transformation (the same for the two images) and t01 and t02 the
diagonal matrix transformations representing von Kries
scaling (different for the two images). The task is to find the
coefficients of t0 that maximize the information retrieved
between t01t0A1 and t02t0A2.

Given two images of a scene under two different
illuminants, one way to estimate the coefficients of t0 from
(17) is to represent the random variable A2 as a linear
transform of A1 and a noise term, that is,

A2 ¼ t�1
0 ðt0�1

2 t01Þt0A1 þ t�1
0 t0�1

2 W;

and then find a linear mapping t ¼ t�1
0 ðt0�1

2 t01Þt0 that
maximizes the information retrieved between tA1 and A2

(alternatively, it is possible to find a linear mapping t that
minimizes the sum of the squares of the differences
between tA1 and A2, as in [44]). A unique solution for t0
is obtained from the eigenvectors of t (see, e.g., [44]) by
setting the diagonal elements of t0 to unity and preserving
the ordering of the spectral locations of the modified
spectral sensitivities. The information retrieved may be
maximized with one of the approximations or estimators
introduced in Sections 4, 4.1, and 4.2. For the Gaussian
approximation ÎGA (Section 4), the solution is given by the
linear mapping t for which tA1 and A2 � tA1 are uncorre-
lated. If Cov ðA1; A2Þ is the matrix of covariances between
the elements of A1 and A2, that is,

Cov ðA1; A2Þ ¼
cov ðR1; R2Þ cov ðR1; G2Þ cov ðR1; B2Þ
cov ðG1; R2Þ cov ðG1; G2Þ cov ðG1; B2Þ
cov ðB1; R2Þ cov ðB1; G2Þ cov ðB1; B2Þ

0
B@

1
CA;

then the optimal linear mapping is given by

t ¼ CovðA2; A1Þ VarA1ð Þ�1: ð21Þ

For the additive approximation ÎAAðtA1;A2Þ (Section 4) and
the Grassberger estimator ÎNNGðtA1;A2Þ (Section 4.2), there
is no analytic solution.

A simplex optimization algorithm (see, e.g., [55]) was used
to find the coefficients of the sharpening transformation t0 for
which information retrieved with the Grassberger estimator
ÎNNG was maximum. Random samples of size 212 were used
to compute the value of ÎNNG at each iteration of the simplex
algorithm. The algorithm was initialized with the solution
(21) maximizing the Gaussian approximation ÎGA to the
information retrieved, although similar results, not reported
here, were obtained with initial values from the additive
approximation ÎAA and by least squares in exploratory
simulations with the spectral sensitivities of the photorecep-
tors of the eye.

The six off-diagonal coefficients of the optimal sharpen-
ing transformation varied markedly from camera to
camera owing to their different sensor spectral sensitivities.
Nevertheless, with the exception of the Foveon X3 sensor
set (Fig. 2b), the optimal coefficients varied little over the
50 scenes and the three illuminant pairs, with SDs from
3:7� 10�3 to 7:9� 10�2 bits. For the Foveon X3, the SDs of
the optimal coefficients were considerably larger, from 0.1
to 0.6 bits.

The optimal sharpening transformation can be averaged
over scenes and illuminant pairs, yielding a unique, fixed
transformation for each set of sensors. Fig. 8 shows a dotplot
of the mean estimated information retrieved with the
Grassberger estimator ÎNNG and the sensors of Fig. 2 with a
fixed sharpening transformation. The mean estimated in-
formation retrieved as a percentage of the information
available was 63-81 percent. This is larger than for estimates
without sensor sharpening and with von Kries scaling by
18-25 percent (see Section 7). As with the previous estimates
without sensor interactions (Fig. 7), the estimates of the
information retrieved varied little over scenes, with SDs
lower than 1.5 bits, except again for the Foveon X3, with SDs
as high as 2.3 bits.

Rather than keeping the sharpening transformation t0
fixed for each set of sensors, it can be allowed to vary over
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Fig. 8. Mean estimated information retrieved with the Grassberger
estimator ÎNNG and optimal sensor sharpening fixed for each camera
and the eye. SDs were 1.1-2.3 bits. Other details as for Fig. 5.



scenes and illuminants. Fig. 9 shows a dotplot of the mean
estimated information retrieved with the Grassberger esti-
mator ÎNNG and the sets of sensors in Fig. 2 with variable
sensor sharpening. The mean estimated information re-
trieved as a percentage of the information available was
82-86 percent. This is larger than for estimates with a fixed
sharpening transformation by 3-10 percent, except for the
Foveon X3, for which the increase was considerably larger, by
21 percent. Such an increase is consistent with the larger
variabilities in the coefficients of the optimal sharpening
transformation noted earlier for the Foveon X3. The max-
imum SD over scenes declined from 1.5 to 1.2 bits for all the
sets of sensors, except for the Foveon X3, for which the
decline in SD was more substantial, from 2.3 to 0.9 bits.

The extent of the mean information retrieved as a
proportion of the information available with a variable
sharpening transformation may be a slight underestimate.
An analysis of the information retrieved with the cone
photoreceptors of the eye [11] showed that with a variable
sharpening transformation, the convergence of the Grass-
berger estimator ÎNNG failed to asymptote at the maximum
sample size N available, i.e., 218.

9 DISCUSSION

Capturing scene information from image colors depends
crucially on the choice of camera sensors. Although not all of
the information available can be retrieved with any particular
set of sensors, providing that the sensor spectral sensitivities
are optimally modified with a sharpening transformation,
the information retrieved can approach the information
available, depending of course on the scene and illumination.
As shown in this work, estimating the continuous and
discrete informational quantities involved and comparing
them over different sets of camera sensors is not straightfor-
ward, but clear differences between sensor sets did emerge
over a range of natural scenes and daylight illuminants. Most
notably, with the best sensor set about 390 percent more
points could be identified per scene than with the worst. In
the following sections, some of the factors contributing to
these differences in performance are examined in more detail.

9.1 Estimators and Estimates

For the information available, which requires an estimator
for trivariate continuous random variables (Section 3), the
offset Kozachenko-Leonenko estimator proved the best of the
several estimators tested: In addition to its fast convergence,
it has the important property of asymptotic unbiasedness
[20], [24]. For the information retrieved, which requires an
estimator for discrete random variables (Section 4), the
Grassberger estimator [19], which also has the property of
asymptotic unbiasedness, sufficed. Both the offset Koza-
chenko-Leonenko estimator and the Grassberger estimator
yielded good estimates with Gaussian images (Appendices C
and D, available in the online supplemental material).

Importantly, despite the different nature of these two
estimators, one for continuous variables, the other for
discrete, the estimated information retrieved from Gaussian
images converged to the estimated information available as
sample size increased. This convergence provided an
essential control, for, with Gaussian images, a nearest-
neighbor criterion based on a Mahalanobis distance coin-
cides with a maximum-likelihood criterion.

With the 50 natural scenes considered here, illuminated
by daylights with the largest chromaticity difference, i.e.,
with CCTs of 25,000 and 4,000 K, the mean estimated
information available across each pair of images varied from
15.5 to 18.0 bits, depending on the set of sensors. These values
correspond to 4:7� 104 and 2:7� 105 distinct identifiable
elements or points per scene, i.e., a ratio of 570 percent
between the best and worst sets of sensors. The mean
estimated information retrieved with the same daylight
illuminants, and with a sharpening transformation opti-
mized for scenes, illuminants, and sensor sets, varied from
13.2 to 15.5 bits, respectively, corresponding to 9:5� 103 and
4:7� 104 distinct identifiable points per scene, i.e., a ratio of
490 percent between the best and worst sets of sensors.

For the human eye, the mean estimated information
available for the same daylight illuminants was 17.1 bits,
corresponding to 1:37� 105 distinct identifiable points per
scene, and the mean estimated information retrieved was
14.7 bits, corresponding to 2:7� 104 distinct identifiable
points per scene.

For daylight illuminants with smaller chromaticity differ-
ences, both the information available and the information
retrieved were fittingly larger. For illuminants with CCTs of
25,000 and 4,000 K and of 4,000 and 6,500 K, the mean
estimated information available varied over the sets of
sensors from 18.5 to 20.6 bits, corresponding to 3:6� 105

and 1:54� 106 distinct identifiable points per scene. The
mean estimated information retrieved varied from 15.4 to
16.9 bits, corresponding to 4:4� 104 and 1:22� 105 distinct
identifiable points per scene.

Both the estimates of the information available and the
information retrieved were fairly stable over scenes, with SDs
of about 1.2 bits for each. Estimates were larger for
nonvegetated scenes than for vegetated ones, by about 1.0
and 0.5 bits, respectively, consistent with the lower frequency
of metamerism found in nonvegetated scenes [15]. Although
expressed as points per scene, these estimates of the numbers
of distinct identifiable points effectively refer to the number
of surfaces or surface elements in a scene with distinct
spectral reflectances. Such numbers therefore express pre-
cisely how well the elements of a scene can be identified by
their color values, independent of spatial context or their
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Fig. 9. Mean estimated information retrieved with the Grassberger
estimator ÎNNG and optimal sensor sharpening varying over cameras
and the eye, scenes, and illuminant pairs. SDs were 0.8-1.2 bits. Other
details as for Fig. 5.



spatial position. Incorporating processing noise into the
estimates would inevitably lower these values, as has been
demonstrated elsewhere by including the probabilistic
nature of human judgments in estimates of the number of
perceptually distinct surface colors in natural scenes [56].

9.2 Camera Sensors

Of the five sets of camera sensors tested, the Foveon X3 [31]
yielded the greatest information available under daylight
illuminants with the largest chromaticity differences (Fig. 5),
and with a sharpening transformation optimized for both
scenes and daylight illuminants, it also yielded the greatest
information retrieved (Fig. 9), namely, 15.5 bits, correspond-
ing to 4:7� 104 distinct point per scene, although it was the
least successful with a fixed sharpening transformation
(Fig. 8). More generally, the ranking of camera sensors by
information available (Fig. 5) coincided with the ranking by
information retrieved with a variable sharpening transfor-
mation (Fig. 9), unlike that with von Kries scaling alone
(Fig. 7) or with a fixed sharpening transformation (Fig. 8).

The advantage of a fixed over a variable sharpening
transformation for each camera is in the simplification of the
estimation problem, i.e., determining three coefficients
instead of nine [44], [46]. But the simplification is at a cost.
For the Agilent, Kodak, Nikon D1, and Sony sets of sensors,
the reduction in information retrieved with a fixed rather
than variable sharpening transformation was only about
3-6 percent of the information available. For the cone
photoreceptors of the eye, it was about 10 percent and for
the Foveon X3 set of sensors, 21 percent.

In spite of the marked differences between some sensor
sets, caution should be exercised in extrapolating these
results to camera performance in practice. This analysis took
no account of design features such as the spatial resolution of
the camera, its color depth, and the level of internal noise, all
of which can influence the identifiability of reflected spectra.

9.3 Sampling Limits

In general, with a particular set of scenes and daylight
illuminants, the factors that determine the information
available are primarily the spectral positions of the sensors,
i.e., the wavelengths at which sensitivity is maximum, and
the spectral widths of the sensors. Determining the optimum
spectral positions of a set of sensors is a sampling problem,
complicated by the variation with wavelength of reflected
spectra under changes in illuminant. Determining the
optimum spectral width is also a sampling problem, albeit
constrained by the tradeoff between the von Kries invariance
provided by an infinitesimal spectral width and the spectral
coverage provided by a spectral width that extends over the
visible spectrum. Both factors can be modulated by the
sharpening transformation discussed in Section 8. For
the sets of sensors considered here, the mean spacing of the
peaks actually accounted for little of the variance in the
information available. The area under the spectral sensitivity
curves accounted for somewhat more, i.e., 20-65 percent.
Ultimately, optimization is an empirical issue.

Although most of the information available in a scene can
be retrieved by von Kries scaling and sensor sharpening,
i.e., 82-86 percent depending on the set of sensors and the
daylight illuminants, still more information can be retrieved
if nonlinear sensor transformations or probabilistic methods
are allowed. As indicated in Section 4, the ideal approach to

matching would be by maximum likelihood, but this would
require the estimation of the conditional probability density
functions of sensor signals contingent on scene and illumi-
nants, which, in turn, require very large image samples. If
that were achievable, then the information retrieved would
tend to the information available. Given their simplicity,
however, linear models performed remarkably well in
retrieving the information available.

Even so, it is important to recognize the real limits on the
recovery of scene information from image colors. With the
largest difference in daylight illuminants, a retrieval of 82-86
percent of the information available when interpreted as
numbers of distinct identifiable points per scene represents
just 8-22 percent of the points available. The fact that for the
cone photoreceptors of the eye the number of distinct
identifiable points per scene falls in the upper part of this
range suggests that even with the reduction in performance
associated with noise in the photoreceptors and in post-
receptoral processing, the spectral positioning of cone
photopigments may be close to optimal with natural scenes.
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