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The ability to perceptually identify distinct surfaces in natural scenes by virtue of their color depends not only on the relative
frequency of surface colors but also on the probabilistic nature of observer judgments. Previous methods of estimating the
number of discriminable surface colors, whether based on theoretical color gamuts or recorded from real scenes, have
taken a deterministic approach. Thus, a three-dimensional representation of the gamut of colors is divided into elementary
cells or points which are spaced at one discrimination-threshold unit intervals and which are then counted. In this study,
information-theoretic methods were used to take into account both differing surface-color frequencies and observer
response uncertainty. Spectral radiances were calculated from 50 hyperspectral images of natural scenes and were
represented in a perceptually almost uniform color space. The average number of perceptually distinct surface colors was
estimated as 7.3 � 103, much smaller than that based on counting methods. This number is also much smaller than the
number of distinct points in a scene that are, in principle, available for reliable identification under illuminant changes,
suggesting that color constancy, or the lack of it, does not generally determine the limit on the use of color for surface
identification.
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Introduction

Color can be remarkably effective in allowing surfaces in
natural scenesVand by extension objects and regionsVto
be distinguished from each other. Yet, in the limit, how
many surfaces can an observer usefully discriminate by
virtue of their color in such scenes?
This kind of question has previously been addressed in

an idealized context by calculating, within a suitable
three-dimensional color space, the volume of the solid
arising from the set of all possible surface spectral
reflectances. This solid, known as the object-color solid
(Wyszecki & Stiles, 1967), was suggested by Judd and
Wyszecki (1975) to contain about 10 million discrim-
inable surface colors, although the provenance of this
estimate is a little uncertain (McCamy, 1998; Pointer,
1998). A more grounded analysis by Pointer and Attridge
(1998) counted the number of cubic cells of unit side in
the object-color solid in CIELAB color space (CIE,
2004a), which produced an estimate of about 2.3 million
discriminable colors, later revised slightly downward by
Martı́nez-Verdú et al. (2007) to about 2.0 million. Even
so, the object-color solid is a hypothetical construct,
containing all spectral distributions, including those
having just two values, 0 and 1 (MacAdam, 1935;

Martı́nez-Verdú et al., 2007), and it does not represent
the gamut of surface colors to be found in natural scenes.
A similar problem of representation occurs with artificial
collections of colored materials, including color atlases
(Nickerson & Newhall, 1943; Pointer, 1980).
An important feature of natural scenes is that their

spectra are not distributed uniformly. Most natural spectra
come from surfaces whose colors under daylight illumina-
tion are dominated by browns, greens, and blues, mainly
from earth, vegetation, and sky (Burton &Moorhead, 1987;
Hendley & Hecht, 1949; Osorio & Bossomaier, 1992;
Webster & Mollon, 1997). In addition, not all possible
natural spectra are present in any particular scene. The
number of discriminable colors averaged over natural
scenes might therefore be expected to be much less than
2.0–2.3 million, even though these are the scenes to which
observers should be accustomed and for which perform-
ance might be expected to be optimal (MacLeod & von der
Twer, 2003).
An estimate of the number of discriminable colors in

natural scenes was provided by Linhares, Pinto, and
Nascimento (2008), who used a set of 50 hyperspectral
images of rural and urban scenes to calculate reflected
spectra. Because the coordinates (L*, a*, b*) of CIELAB
color space do not define a strictly uniform color space,
that is, the Euclidean distance $E* = [($L*)2 + ($a*)2 +
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($b*)2]1/2 between points does not correspond to a
constant perceptual color difference, Linhares et al.
calculated the separations between points using the
CIEDE2000 color-difference formula (CIE, 2004a), which
largely compensates for the non-uniformity of CIELAB.
The number of discriminable colors was estimated by
iteratively discarding points that differed from each other
by less than one half the nominal CIEDE2000 threshold
color difference $E00 = 0.6. The procedure was repeated
until there were no points left. Although based on a
smaller population than the theoretical object-color solid
used by Martı́nez-Verdú et al. (2007) and Pointer and
Attridge (1998), the resulting estimate was almost the
same, a total of about 2.3 million colors (Linhares et al.,
2008, Table 1), accumulated over the 50 scenes. The
estimated number of discriminable colors averaged over
individual scenes was inevitably smaller, about 2.7 � 105

(Linhares et al., 2008, Table 1).
There are, however, two fundamental problems with

trying to use counting methods to estimate the number of
surface colors an observer can distinguish in natural
scenes. First, these methods do not allow for the different
relative frequencies of different surface colors within a
scene. Certainly, where colors are sparse, there is little
risk of confusion, and perceived color is a reliable guide
to surface color, but where colors are dense, the risk of
confusion is high, and perceived color is a less reliable
guide. Second, the assumption in counting methods of a
hard threshold boundary separating perceptually discrim-
inable colors represents an all-or-nothing deterministic
process. In practice, observer responses are probabilistic,
governed by a psychometric function relating the mea-
sured difference in colors to the probability of reporting a
difference between them. Thus, with the same stimuli,
perceptual responses necessarily vary from trial to trial. It
is not easy to implement this probabilistic property in a
procedure based on counting discriminable colors.
Fortunately, there is an alternative approach based on

information theory (Cover & Thomas, 1991; Shannon,
1948a, 1948b) which incorporates the differing relative
frequencies of surface colors in a natural way and which
also accommodates observer response uncertainty. A
particular information-theoretic quantity, the mutual infor-
mation, provides an estimate of the number of perceived
surface colors that can each be identified with a distinct
surface color in the scene. This number is referred to here
as the number of perceptually distinct surface colors to
avoid confusion with the number of discriminable or
discernible colors estimated by Linhares et al. (2008) and
Pointer and Attridge (1998).
In this analysis, colors were represented in a nearly

uniform color space and were derived from the reflected
spectral radiances from 50 hyperspectral images of natural
scenes under a simulated standard daylight with a
correlated color temperature of 6500 K, representing
approximate average daylight through the visible spec-

trum. The estimated mutual information yielded an
average number of perceptually distinct surface colors of
7.3 � 103, markedly smaller than that based on counting
methods. An implication of this result for estimates of
color constancy in natural scenes is briefly considered in
the Discussion section.

Theory

Consider a scene illuminated by the chosen daylight. As
outlined earlier, the color of the reflected light from each
surface element in the scene can be expressed in CIELAB
(L*, a*, b*) coordinates, and a color-difference formula
such as CIEDE2000 (Luo, Cui, & Rigg, 2001) or DIN99
(Cui, Luo, Rigg, Roesler, & Witt, 2002) can then be used
to correct for non-uniformities (Linhares et al., 2008).
Instead, to simplify the analysis, the color of the reflected
light was expressed in CIECAM02 space (CIE, 2004b),
which has the advantage that perceived color differences
represented as Euclidean differences in CIECAM02
coordinates (J, aC, bC) correspond to almost constant
perceptual color differences (Luo, Cui, & Li, 2006;
Melgosa, Huertas, & Berns, 2008). Since CIECAM02 is
determined empirically and has a built-in chromatic-
adaptation transform (CIE, 2004b), it automatically
incorporates any improvements in discrimination perfor-
mance found in the region of the reference white. The
variable J represents lightness and aC and bC represent the
projections of chroma onto the red–green and blue–yellow
hue axes, giving a hue angle h = tanj1(bC/aC). Along with
several other color spaces, CIECAM02 may depart from
uniformity with very small color differences, where
CIELAB $E* e 1 (Melgosa, Huertas, & Garcı́a, 2008).
The fact that CIECAM02 is a color-appearance space is

immaterial to this analysis: any other color space would
suffice, providing that the same space was also used to
represent the psychometric function describing observer
response uncertainty. There is a general constraint that
the color space should not incorporate any dependence
on the spatial structure of the sceneVas in, e.g., S-CIELAB
(Zhang & Wandell, 1997) or iCAM (Fairchild & Johnson,
2004)Vsince this analysis is concerned with the distin-
guishability of surface colors taken individually, not with
their distinguishability as modified by accidents of
context.
The triplet (J, aC, bC) may be treated as an instance u of

a trivariate continuous random variable U with probability
density function (pdf) fU, say. Likewise, the observer’s
perceptual response may be treated as an instance v of a
second trivariate continuous random variable V with
pdf fV, say. Given two particular triplets u and uV, the
probability that an observer reports them as being different
depends on the corresponding difference v j vV. This
dependence is described by the psychometric function <,
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say. The differences w = v j u and wV= vVj uVare, in
turn, instances of a trivariate continuous random variable
W with pdf fW, where V = U + W. The pdf fW is essentially
the derivative of the psychometric function < (DeCarlo,
1998).
The degree of unpredictability of each of the random

variables U, V, and W may be quantified by the differential
entropy (Cover & Thomas, 1991). For example, the
differential entropy h(U) of U is given by

hðUÞ ¼ j
Z

fUðuÞlog fUðuÞdu; ð1Þ

where the symbol h should not be confused with that for
hue in CIECAM02. When the logarithm is taken to the
base 2, the differential entropy is given in bits. Shannon’s
mutual information I(U; V) between U and V is given
(Cover & Thomas, 1991) by

IðU;VÞ ¼ hðVÞj hðVkUÞ: ð2Þ

Given the near uniformity of CIECAM02, it may be
assumed that < is constant, and therefore W is independ-
ent of U, although see MacLeod and von der Twer (2003).
Accordingly (Cover & Thomas, 1991), h(VjU) = h(W),
and therefore

IðU;VÞ ¼ hðVÞ j hðWÞ: ð3Þ

This quantity I(U; V) measures the amount of informa-
tion that the perceived color provides about the sampled
surface colors. It has the useful interpretation as the mean
number N of perceived surface colors that can each be
identified with a distinct surface color in the scene by
virtue of the following relationship (Cover & Thomas,
1991; Shannon, 1948a, 1948b):

N ¼ 2IðU;VÞ: ð4Þ

Notice that the differential entropies h(V) and h(W) may
be positive, negative, or zero, depending, not least, on the
scale of measurement defined by CIECAM02, but the
mutual information I(U; V) is always positive and
independent of the scale.

Methods

Estimates of differential entropies were based on data
generated from a set of 50 hyperspectral images of natural
rural and urban scenes (Foster, Amano, Nascimento, &
Foster, 2006; Nascimento, Ferreira, & Foster, 2002). See
Linhares et al. (2008) for thumbnail images. Each

hyperspectral image had dimensions e1344 � 1024 pixels
and spectral range 400–720 nm sampled at 10-nm intervals,
providing an effective spectral reflectance r(1; x, y) at
each wavelength 1 and position (x, y). The reflectances
r(1; x, y) were obtained by dividing the spectral radiance
of the image by the spectral radiance of a small neutral
(Munsell N5 or N7) reference surface embedded in the
scene and then multiplying by the known spectral
reflectance of the neutral surface. The effect of a particular
daylight was simulated by multiplying r(1; x, y) at each
point (x, y) by a standard illuminant spectrum, here a
daylight with correlated color temperature of 6500 K,
fixed over all scenes so that the color gamut of each scene
was not confounded by differences in illuminant. The raw
spectral radiance images were actually acquired under
daylights with correlated color temperatures ranging from
about 4400 K to 8200 K.
The accuracy of the hyperspectral imaging system was

described in Foster et al. (2006). The root-mean-square
error between estimates of reflectance from the hyper-
spectral images and telespectroradiometer measurements
of test pigments was 1.1%, falling to 0.8–0.9% when
allowance was made for a 1-nm difference in wavelength
calibration, smaller than the nominal spectral accuracy of
both devices. With independent sampling at each wave-
length, the imaging system was capable of following
the rapid variations in spectral reflectance sometimes
found with natural pigments (Jaaskelainen, Silvennoinen,
Hiltunen, & Parkkinen, 1994; Vrhel, Gershon, & Iwan,
1994). With an acceptance angle of the camera of about
6 degrees of visual angle, the spatial resolution of the
system was at least as good as that of the eye at the same
viewing distance. Each pixel was therefore assumed to
correspond to a single surface in the scene. Even if at a
finer scale its spectral reflectance was a mixture of several
spectral reflectances, the mixture would have been unde-
tectable by the eye. See Foster et al. (2006), Sections 2.A
and 3.E, for further discussion.
The triplets (J, aC, bC) were calculated at each pixel in

each image of each scene according to the CIECAM02
specification with default values, including those for
chromatic adaptation (CIE, 2004b). Integrations were
performed numerically over 400–720 nm with the given
10-nm sampling interval.
Estimates of h(V) were not feasible as the values of V

are not directly available, but from numerical simulations,
it was found that h(U) and h(V) were almost equal, with
h(V) on average about 0.1 bits larger than h(U). Hence, in
Equation 3, if h(V) is replaced by h(U), and if ĥ(U) and
ĥ(W) are the corresponding estimates of h(U) and h(W),
then I(U; V) may be estimated by

ÎðU;VÞ ¼ ĥðUÞj ĥðWÞ: ð5Þ

One direct way to obtain ĥ(U) is to find an estimate of the
pdf fU and plug the result into Equation 1. Naı̈ve estimates
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of fU may be obtained by binning, i.e., partitioning the
space of triplets (J, aC, bC) from each scene into a finite
number of cells (different from the cells of the counting
methods described earlier) and counting the frequency of
occurrences in each cell (Silverman, 1986). In practice, the
number of cells needed for an accurate estimate of the pdf is
generally large and the estimate of the frequency of
responses will be biased unless the sample size is much
larger still than the number of cells. If the sample is not large
enough, systematic errors in estimating the entropy can occur
(Kraskov, Stögbauer, & Grassberger, 2004). These errors
may be minimized by introducing bias-correction terms, but
the accuracy of the estimates still depends on binning.
A different approach that completely avoids estimation

of the pdf makes use of k-nearest-neighbor statistics to
obtain an estimate ĥ(U) of the differential entropy h(U).
The k-nearest-neighbor estimator due to Kozachenko and
Leonenko (Goria, Leonenko, Mergel, & Novi Inverardi,
2005; Kozachenko & Leonenko, 1987) was chosen since it
provides results that are efficient, adaptive, and have
minimal bias (Kraskov et al., 2004). It was applied to
the triplets (J, aC, bC) from each scene in an offset form that
converges more rapidly and accurately than the original
estimator (Foster, Marı́n-Franch, Amano, & Nascimento,
2009; Marı́n-Franch, 2009).
An estimate ĥ(W) of the differential entropy h(W)

associated with observer response uncertainty was
obtained from the reported perceptibility of small color
differences between matt paint samples (Wang, Luo, Cui,
& Xu, 2009). The samples consisted of 10 reference
samples and, for each reference, 30 test samples. The
recorded proportions of perceptible differences ranged
from 0.125 to 1.0, and, at each level, estimates were made
of the differences ($J, $aC, $bC) in (J, aC, bC) values. The
resulting sample sizes (300) were, however, too small to
find a reliable estimate of the differential entropy h(W) by
any of the empirical methods mentioned earlier. Fortu-
nately, as the distribution of the differences $J, $aC, and
$bC were each approximately Gaussian, the differential
entropy h(W) could be estimated by the differential
entropy of a trivariate Gaussian variable; that is,

ĥ Wð Þ ¼ 1

2
log ð2:eÞ3kKk

h i
; ð6Þ

where jKj is the determinant of the covariance of W,
which was approximately the product of the individual
variances AJ

2Aa
2Ab

2, since there was little correlation
between J, aC, and bC. An estimate ĥ(W) of h(W) was
also obtained from the reported acceptability of the color
differences between the same samples that Wang et al.
used for perceptibility judgments. Perceptibility results are
presented in detail; acceptability results in summary form.
For comparison, an estimate ĥ(W) of the differential

entropy h(W) was also obtained with a hard threshold
based on the assumption of a uniform distribution of W
over a sphere of radius 0.3, as in Linhares et al. (2008).

Estimates were made for the average scene and for the
union of those scenes, i.e., with surface colors merged
over the 50 scenes.

Results and comment

Figure 1 shows two of the 50 scenes with the lowest and
highest estimated entropy ĥ(U) and correspondingly
lowest and highest estimated mutual information. The
difference in the color gamuts of the two images is obvious.
The corresponding estimates of the number N of percep-
tually distinct surface colors were 5.5 � 102 and 4.1 � 104.
Table 1 shows estimates averaged over all 50 scenes

and for the union of those scenes, each illuminated by the
6500 K daylight. Entries are for the differential entropy
h(U) for surfaces, the differential entropy h(W) for
observer responses based on Gaussian perceptibility data
and on a uniform distribution (equivalent to a hard
threshold of 0.3 in CIECAM02), the corresponding mutual
information I(U; V) from Equation 5, and the number N of
perceptually distinct surface colors from Equation 4.
With observer responses based on Gaussian percepti-

bility data, the estimated number of perceptually distinct
surface colors was 7.3 � 103 and 4.4 � 104 for the
average and union of the scenes, respectively.
With observer responses based on Gaussian accept-

ability data, results were only a little different. The
estimated differential entropy h(W) was j0.49 bits, i.e.,
0.20 bits less than the j0.29 bits for the perceptibility
data (Table 1). The estimated number of perceptually
distinct surface colors was 8.3 � 103 and 5.1 � 104 for the
average and union of the scenes, respectively, an increase
of 14%.
As a control on these calculations, the same method of

analysis was applied to a flattened version fU� of the pdf fU
used to estimate surface-color entropy h(U), to mirror the
estimates based on uniform distributions reported by
Linhares et al. (2008) and Pointer and Attridge (1998).
With the same method of estimation based on the offset
Kozachenko–Leonenko estimator, the differential entropy
h(U
�
) of fU� for the union of the scenes was estimated as

Figure 1. Images with the lowest and highest mutual information.
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18.42 bits (to be compared with 15.14 bits in Table 1).
With a differential entropy of j0.29 bits for observer
responses based on the Gaussian perceptibility data
(Table 1), the mutual information was estimated as 18.72
bits (Equation 5). With a differential entropy of j3.14 bits
for observer responses based on a uniform distribution
(Table 1), the mutual information was estimated as 21.57
bits (Equation 5). These estimates of mutual information
correspond (Equation 4) to 4.3 � 105 and 3.1 � 106

discriminable colors, bracketing the value of 2.3 � 106

obtained by Linhares et al. (2008) and Pointer and
Attridge (1998) for the union over scenes.
For the mean over scenes rather than the union, the

differential entropy of fU� was estimated as 14.95 bits (to
be compared with 12.53 bits in Table 1), and the mutual
information as 15.24 and 18.09 bits for observer responses
based on the Gaussian perceptibility data and a uniform
distribution, respectively. These estimates of mutual
information correspond (Equation 4) to 3.9 � 104 and
2.8 � 105 discriminable colors, also bracketing the value
of 2.7 � 105 obtained by Linhares et al. (2008) for the
average over scenes.

Discussion

Traditional methods of estimating the number of
discriminable surface colors do not take into account their
frequencies of occurrence. Yet, as argued earlier, the
number of surface colors an observer can usefully
distinguish depends strongly on their relative frequencies
in a given scene. It was found here that the number of
perceptually distinct surface colors, averaged over 50
natural scenes, was about 7.3 � 103, more than an order of
magnitude lower than the 2.7 � 105 discriminable colors
reported by Linhares et al. (2008), with almost the same
set of scenes. When these numbers were obtained not as
averages over individual scenes but accumulated over the
union of all 50 scenes, a similar disparity occurred. The
number of perceptually distinct surface colors was 4.4 �
104 and the number of discriminable colors was 2.3 � 106

(Linhares et al., 2008).
These large differences between the number of percep-

tually distinct surface colors and the number of discrim-
inable colors are due not only to the non-uniform relative

frequencies of surface colors in natural scenes but also to
observer response uncertainty. For the union of scenes, the
differential entropies for observed and flattened surface-
color relative frequencies were 15.1 and 18.4 bits,
respectively, a difference of 3.3 bits (a smaller difference
of 2.4 bits was obtained with the average over scenes).
The differential entropies for observer responses based on
the Gaussian perceptibility data and on a uniform
distribution, i.e., a hard threshold, were j0.29 and
j3.14 bits, respectively, a difference of 2.85 bits. These
two factors, the relative frequencies of surface colors in
natural scenes and observer response uncertainty, appear
to contribute almost equally to the low estimates of the
number of perceptually distinct surface colors.
Nevertheless, as with any estimate of this kind, there are

several sources of potential error. First, the empirical
psychometric function describing observer response
uncertainty was based on relatively small numbers of test
and reference samples (Wang et al., 2009), and no
identical samples were included that would have allowed
the estimation of a true false-alarm rate, and thereby a
bias-free measure of discrimination such as dV from
signal-detection theory (Macmillan & Creelman, 2005).
Second, as noted earlier, the perceptual uniformity

afforded by CIECAM02 is not perfect (Melgosa, Huertas,
& Garcı́a, 2008), and color differences do depend on
where in color spaces the colors are located (Luo et al.,
2006). The assumption of independence between percep-
tual color difference and surface color leads to a small
underestimation of the expected number of perceptually
distinct surface colors because h(W) in Equation 3 is larger
(Cover & Thomas, 1991) than h(VjU) in Equation 2.
Third, the use of a Gaussian model for discriminating

surface colors based on perceptible color differences may
not be sufficiently accurate. With a better model of
discrimination, not necessarily defined with respect to
perceptibility, the resulting differential-entropy estimates
may be smaller, but without more data it is not possible to
estimate precisely by how much. How the psychometric
function varies with location in color space may also be
important (MacLeod & von der Twer, 2003). This
dependence of estimates on the model of discrimination
is not unique, of course, to the approach adopted in this
analysis: counting methods depend explicitly on the
assumed hard threshold for the color difference $E* or
$E00.

Surface-color
entropy h(U)

Observer
entropy h(W)

Information
I(U; V)

No. of
colors N

Average 12.53 Gaussian j0.29 12.82 7.3 � 103

Uniform j3.14 15.68 5.2 � 104

Union 15.14 Gaussian j0.29 15.43 4.4 � 104

Uniform j3.14 18.28 3.2 � 105

Table 1. Estimates of the differential entropy h(U) of surface colors in natural scenes, the differential entropy h(W) of observer responses,
the mutual information I(U; V), and the number N of perceptually distinct surface colors, all measured in bits. The estimated standard
deviation of h(U) was 1.25 bits. The total number of scenes was 50.
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Finally, these calculations took no explicit account of
metamerism, that is, of the fact that surface color does not
define a unique surface spectral reflectance, although it
does appear implicitly in determining the pdf fU of surface
colors with a particular illuminant.
A question related to the one considered here is how the

number of perceptually distinct surface colors varies with
a change in illuminant spectrum. Estimates made else-
where (Foster et al., 2009) suggest that, for an ideal
observer unaffected by any uncertainty in matching, the
number of distinct points in a scene that are, in principle,
available for reliable identification under an illuminant
change from a 25,000 K daylight to a 4000 K daylight is
about 1.37 � 105. It is interesting that even with this
extreme illuminant change, this number is much larger
than the number 7.3 � 103 of perceptually distinct surface
colors, suggesting that color constancy, or the lack of it,
does not generally determine the extent to which surfaces
may be identified by their color in natural scenes under
different illuminants.
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