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The illumination in natural environments varies through the day. Stable inferences about surface color
might be supported by spatial ratios of cone excitations from the reflected light, but their invariance
has been quantified only for global changes in illuminant spectrum. The aim here was to test their invari-
ance under natural changes in both illumination spectrum and geometry, especially in the distribution of
shadows. Time-lapse hyperspectral radiance images were acquired from five outdoor vegetated and non-
vegetated scenes. From each scene, 10,000 pairs of points were sampled randomly and ratios measured
across time. Mean relative deviations in ratios were generally large, but when sampling was limited to
short distances or moderate time intervals, they fell below the level for detecting violations in ratio
invariance. When illumination changes with uneven geometry were excluded, they fell further, to levels
obtained with global changes in illuminant spectrum alone. Within sampling constraints, ratios of cone
excitations, and also of opponent-color combinations, provide an approximately invariant signal for
stable surface-color inferences, despite spectral and geometric variations in scene illumination.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

In natural environments, the light from the sun and sky varies
continuously over the course of the day. As a result, the reflected
light provides a constantly changing signal to the eye. As Larry
Arend remarked,

The retinal signal is jointly determined by some combination of distal optical
variables, some of which (the ones we wish to recover) are intrinsic color prop-
erties of the surface and some of which are contingent, i.e., accidents of the
transient optical environment in which the surface is being viewed.

[Arend (2001), p. 392]

Yet despite this changing signal, our perception of natural sce-
nes is stable. What, then, underpins this stability, in particular,
the stability of perceived surface colors under different illumina-
tions? As with geometrical shape perception under changes in
object pose, taking ratios of signals can sometimes deliver an
invariant property (e.g. Kent & Mardia, 2012; Maybank, 1995;
Moons, Pauwels, Van Gool, & Oosterlinck, 1995). A retinally
derived signal that offers an invariance to changes in illumination
is the spatial ratio of cone excitations generated in response to
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light reflected from different surfaces (Foster & Nascimento,
1994). From computational simulations with natural scenes
(Nascimento, Ferreira, & Foster, 2002), it is known that spatial
ratios remain approximately invariant under changes in the
illuminant.

This invariance property has long been assumed, explicitly or
implicitly, in chromatic-adaptation models of the von Kries type
(Brill, 2008; van Trigt, 2007; von Kries, 1902, 1905) and in the
Retinex models due to Land (Funt, Ciurea, & McCann, 2004; Land,
1983; Land & McCann, 1971). Spatial ratios have also been used
to explain judgments about surface color in displays of Munsell
colored papers under different illuminants (Amano, Foster, &
Nascimento, 2005), even when chromatic adaptation does not
eliminate differences in color appearance (Reeves, Amano, &
Foster, 2008). Moreover, in operationally oriented tasks, spatial
ratios seem to be the kinds of signals preferred by observers for
making discriminations between illuminant changes and simu-
lated changes in surface reflectances (Nascimento & Foster, 1997).

Nonetheless the invariance of spatial ratios in both natural sce-
nes and Munsell papers has been quantified only with simulated
global changes in illumination spectrum (Nascimento, Ferreira, &
Foster, 2002). This limitation is immaterial providing that interest
is in spatially uniform illuminants (e.g. Foster, Amano, Nascimento,
& Foster, 2006). But it does become relevant in the transient optical
environment of the natural world where changes in the spectrum
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of the illumination are accompanied by changes in its geometry.
Those changes may be global, due to movement of cloud and vari-
ations in atmospheric scatter, or local, due to changes in mutual
illumination (Bloj, Kersten, & Hurlbert, 1999; Funt & Drew, 1993)
and in shadows (Giles, 2001; Zhou, Huang, Troy, & Cadenasso,
2009), which may be attached, depending on the angle of incidence
of the illumination and viewing direction, or unattached or cast,
depending on other objects in the scene. Because of the general
complexity of natural scenes (Arend, 2001; Endler, 1993), changes
in mutual illumination and in the distribution of shadows probably
represent the greatest challenge to the automatic extraction of
surface-color attributes.

Most studies of the role of illumination geometry in perception
have been concerned with object shape or surface perception (e.g.
Bloj, Kersten, & Hurlbert, 1999; Castiello, 2001; Cavanagh &
Leclerc, 1989; Elder, Trithart, Pintilie, & MacLean, 2004; Lee &
Brainard, 2014; Leek, Davitt, & Cristino, 2015; Mamassian, Knill,
& Kersten, 1998; Ripamonti et al., 2004; Schofield, Rock, &
Georgeson, 2011; Tarr, Kersten, & Biilthoff, 1998; Wagemans, van
Doorn, & Koenderink, 2010). But some studies have considered
the distributional effects of shadows, for example, in matching
and discrimination with regular geometrical arrays (e.g.
Heckman, Muday, & Schirillo, 2005; Kingdom, Beauce, & Hunter,
2004); in detecting fruit in natural scenes (Lovell et al., 2005),
and in relation to foraging behavior (Arnold & Chittka, 2012).

The effects of changing illumination geometry on reflected
spectra can sometimes be unexpected. Fig. 1 shows sampled spec-
tra and color images rendered from hyperspectral radiance images
of a natural scene at different times of the day. The spectra at loca-
tions 1 and 2 in the foreground foliage are almost constant
between 11:40 and 12:40 (graphs 1 and 2, left and center col-
umns), yet appear to interchange as the direction of illumination

modulates the detailed pattern of shadows between 12:40 and
16:37 (graphs 1 and 2, center and right columns). The spectrum
at location 3 in the distant haze and woodland retains its profile
but undergoes progressive compression as the amount of haze
diminishes (graph 3, left, center, and right columns). By contrast,
over the same period, the profile of the spectrum at location 4 from
the midfield red roof remains almost constant (graph 4, left, center,
and right columns).

The aim of this study was to test how well ratios of cone exci-
tations sampled from natural scenes are preserved under natural
changes in illumination, especially in the distribution of shadows,
through the course of the day. Time-lapse sequences of hyperspec-
tral radiance images were acquired from five outdoor vegetated
and nonvegetated scenes. From each scene, 10,000 pairs of points
were sampled randomly and ratios of cone excitations and of other
postreceptoral combinations of cone excitations were measured
across time. Estimates of the mean relative deviations in ratios
were found to be generally large. But when sampling was limited
to short distances or to moderate time intervals, they fell below
the criterion level for detecting violations of ratio invariance.
Additionally, when uneven changes in illumination geometry were
excluded, for example, when sample points were first in direct sun-
light and then partially in shade, they fell further, to levels
obtained with simulated global changes in illumination spectrum.
Within sampling constraints, ratios provide an approximately
invariant signal for stable surface-color inferences.

Partial reports of these findings were presented at the Vision
Sciences Society 15th Annual Meeting (VSS 2015) and at MODVIS
2015, St. Pete Beach, FL, USA, 2015. Preliminary accounts of
time-lapse changes in cone-excitation ratios were included in
unpublished reports from two Master's projects (Dorrer &
Newton, 2007; Raath & Woodward, 2008).
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Fig. 1. Top row. Color images rendered from three hyperspectral radiance images of the parish of Nogueir6 in the Minho region of Portugal. The images were acquired at
11:40, 12:40, and 16:37 on 9 June 2003. Bottom row. Plots of reflected radiance spectra at single-pixel locations marked by crosses in the images above. For the spectra at
locations 1 and 2 in the foreground foliage, the maxima at 550 and 720 nm (arrowed, left, center, and right columns) are similar to those found in radiance estimates derived
from laboratory spectral reflectance measurements (Carter & Knapp, 2001; Sims & Gamon, 2002). For the spectrum at location 3 in the distant woodland, the local maxima at
410 and 450 nm (arrowed, left column) were attributed to haze and are similar to those found in typical daylight spectra (Hernandez-Andrés, Romero, & Nieves, 2001; Judd
et al.,, 1964; see also Burton & Moorhead, 1987). Other aspects of the spectra are discussed in the text.
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2. Methods
2.1. Image acquisition

The custom-built hyperspectral imaging system has been
described elsewhere (Foster et al., 2006, Sect. 2). The essential
details are reproduced here, with some additional calibration infor-
mation. The system comprised a low-noise Peltier-cooled digital
camera with CCD sensor (Hamamatsu, model C4742-95-12ER,
Hamamatsu Photonics K. K., Japan) and a fast liquid-crystal tun-
able filter (VariSpec, model VS-VIS2-10-HC-35-SQ, Cambridge
Research & Instrumentation, Inc., MA) mounted in front of the lens,
together with an infrared blocking filter. The camera provided an
effective image size of 1344 x 1024 pixels. The focal length was
set typically to 75 mm and aperture to f/16 or f/22 to achieve a
large depth of focus. The zoom was set to maximum. The system
line-spread function was close to Gaussian with a standard devia-
tion of approximately 1.3 pixels at 550 nm. The intensity response
at each pixel, recorded with 12-bit precision, was linear over the
entire dynamic range. The wavelength range of the tunable filter
was 400-720 nm. Its bandwidth (FWHM) was 7 nm at 400 nm,
10 nm at 550 nm, and 16 nm at 720 nm. Its tuning accuracy was
<1 nm over 400-660 nm and <2 nm over 670-720 nm, and it dif-
fered by <1 nm between the center and at the edges of the imaging
field (see Ekpenyong (2013) and Pinto (2004) for further details).
Root-mean-square errors in the recovery of radiance spectra were
<2%, based on measurements of the recovery of spectral reflectance
factors of colored samples (Foster et al., 2006; Nascimento,
Ferreira, & Foster, 2002).

At each scene, the camera system was adjusted for position,
viewing direction, focus, and aperture, all of which were then fixed.
A small neutral (Munsell N7) flat surface was embedded in the
scene to provide a spectral reference and its position and orienta-
tion adjusted in relation to the field of view. A small neutral
(Munsell N7) glass or plastic sphere was also embedded in all
but one scene to help quantify the effects of changing illumination
geometry. Around the time of image acquisition, a horizontally ori-
ented barium sulfate plug was introduced to enable estimates to be
made of the illumination under direct sunlight and in the shade.
The reflected spectrum was recorded with a telespectroradiometer
(SpectraColorimeter, PR-650, Photo Research Inc., Chatsworth, CA),
whose calibration was traceable to the National Physical
Laboratory. The angular subtense of each scene at the camera
was approximately 6.9° x 5.3°. Each pixel therefore represented
the integrated optical image radiance over approximately
0.3 x 0.3 arcmin.

Each time-lapse sequence of hyperspectral images was
obtained by making acquisitions at intervals of about one hour,
sufficiently long to reveal changes in the distribution of illumina-
tion (see e.g. Fig. 1), although with some scenes acquisitions were
made more frequently towards the end of the day. Each acquisi-
tion, which took a few minutes, comprised three steps. First, the
camera exposure time required at each wavelength was deter-
mined by an automatic calibration routine that ensured the max-
imum sensor-element output was within 86-90% of its saturated
value. Second, with exposure times defined, wavelength
sequences of raw grayscale images were recorded over the range
400-720 nm at 10-nm intervals. The recording was repeated one
or more times within each acquisition period to enable the
signal-to-noise ratio (SNR) to be improved, as explained later.
Third, the spectral radiance of the light reflected from the refer-
ence surface was recorded from the same viewing direction with
the telespectroradiometer. Depending on the scene, acquisitions
continued to be made over 9-10h or until the level of natural
light impeded recording.

2.2. Image processing

The raw grayscale images were first corrected by subtracting
estimates of dark noise and stray light derived from earlier calibra-
tion measurements. Spatial non-uniformities (mainly off-axis vig-
netting) were corrected by dividing by an estimate of the
flat-field image. Where recordings of wavelength sequences of
images had been repeated (Section 2.1), the corrected images at
each wavelength were registered over replicates by translation to
compensate for any small differences in optical image position
and then averaged. They were next registered over wavelength
by uniform scaling and translation to compensate for any small dif-
ferences in optical image size with wavelength (chromatic differ-
ences of magnification) and any small differences in optical
image position. A few wavelength sequences of images were omit-
ted because their SNRs at 400 nm made registration unreliable. The
resulting hyperspectral image was then calibrated spectrally by
applying a spatially uniform spectral correction factor such that
the spectral radiance at the neutral reference surface in the image
matched the spectral radiance recorded with the telespectrora-
diometer. Recall that tuning accuracy differed by <1 nm between
the center and at the edges of the imaging field. The calibrated
hyperspectral radiance images from each acquisition period were
then assembled to make a time-lapse sequence. Finally, the
sequence was registered over acquisition times by translation to
compensate for any residual differences in optical image position.
All image registrations were performed to subpixel accuracy with
in-house software.

No assumptions were made about the spectral reflecting prop-
erties of individual surfaces within the scenes (apart from the ref-
erence surfaces) or the spectral properties of the differing
illuminations on the scenes (cf. Foster et al., 2006; Nascimento,
Ferreira, & Foster, 2002).

2.3. Scenes

Imaging took place in June and October of 2003 in the Minho
region of Portugal. The five outdoor scenes chosen contained a
mixture of woodland, herbaceous vegetation, barren land and rock,
and rural and urban buildings. The scenes were the parish of
Nogueird, a building in Gualtar, a rock face in Sete Fontes, the vil-
lage of Levada, and a terrace in Sameiro. Images were acquired
under direct sunlight in a clear or almost-clear sky. If clouds were
present, care was taken to avoid variations in illumination during
the acquisition. Color images rendered from the hyperspectral
images of each scene are shown in Fig. 2, together with the times
and dates of acquisition. Over scenes, the correlated color temper-
ature of the illumination from the sun and sky ranged from 4400 K
to 8300K in direct sunlight and from 6000 K to 22,600K in the
shade.

For the Nogueird, Sete Fontes, and Levada scenes, three replicate
images were available for averaging at each wavelength from each
acquisition period (Sections 2.1 and 2.2). For the Gualtar scene,
there were two. But for the Sameiro scene, imaging conditions
proved more difficult than expected, with the result that no reli-
able replicates could be obtained. Although for the sake of com-
pleteness, data from unaveraged Sameiro hyperspectral images
are included in an illustration of the effects of the spacing of sam-
ple points in scenes (Section 3.2), they were otherwise excluded
from the subsequent analysis.

Data from these time-lapse sequences of hyperspectral radiance
images have not been reported previously, except for one hyper-
spectral image of the 7-9 from each scene being used for
spectral-reflectance estimates (e.g. Foster et al., 2006, Sect. 2).
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Fig. 2. Color images rendered from time-lapse sequences of hyperspectral radiance images. The images for all but the last scene were obtained by averaging multiple
replicates from each acquisition period. The scenes were the parish of Nogueird, a building in Gualtar, a rock face in Sete Fontes, the village of Levada, and a terrace in Sameiro,
all in the Minho region of Portugal. The dates of image acquisition were 9 June 2003, 6 June 2003, 6 October 2003, 8 October 2003, and 7 October 2003, respectively.
Acquisition times are shown in the top left of each color image. Image sizes were 1344 x 1024 pixels, and each scene subtended approximately 6.9° x 5.3° at the camera from
a distance of approximately 1.3 km, 53 m, 29 m, 560 m, and 25 m, respectively. The Munsell reference surfaces can be seen as either narrow strips or square patches on the
right-hand side of the Nogueiré scene and at the bottom of the Gualtar, Sete Fontes, Levada, and Sameiro scenes. Some of the color images have been brightened for the
purposes of illustration. The thin black or colored edges present in some images are the result of multiple hyperspectral image registrations, mainly over time, and were

excluded from the analysis.

<

2.4. Cone excitations and spatial ratios

Data values in each time-lapse sequence of hyperspectral
images were indexed by acquisition time t, wavelength /, and spa-
tial coordinates (x,y). For each scene, a sample of 2N points (x;,y;)
and (x},y}), with i=1, 2, .., N, was drawn randomly without
replacement from the 1,376,256 (=1344 x 1024) available.!
Sampling was constrained so that the spacing of sample points, i.e.
the distance between (x;,y;) and (x},y}), was drawn from the logarith-
mic scale 1, 2, 4, ..., 256 pixels. As shown later, a logarithmic scale
linearized deviations in ratios. Spacings greater than 256 pixels pro-
duced obvious sampling nonuniformities near the boundary of the
1344 x 1024 pixels array. The value of N was varied in pilot simula-
tions and N = 10,000 was found to be sufficient for repeatable esti-
mates of the mean (each estimated SE was of the order of 1% of
the estimated mean).

Cone excitations were calculated in the usual way. Suppose that
at each pair of points (x;,y;) and (x},y}), the spectral radiances at
wavelength 4 and time t were E;(2;x;,y;) and Ei(2;x},y}), respec-
tively.? Let L(4), M(2), and S(2) be the long-, medium-, and
short-wavelength-sensitive (L, M, and S) corneal cone spectral sensi-
tivities, respectively. Then the corresponding cone excitations
l;,;m;, and s; at (x;,y;) are given by the integrals:

li = [Et(4;%:,y:)L(2)dA,
= fE[ j"Xlﬁyi)l\/l(/“)(:l)7
= [E:(4x;,y;)S(A)d4,

and the corresponding cone excitations [}, m, and s; at (x,y;) anal-
ogously.” Integrals were evaluated over the Wavelength range 400-
720 nm by summing at 10-nm intervals. The cone spectral sensitiv-
ities L(1), M(2), and S(1) were taken from the Stockman and Sharpe
2-degree cone fundamentals (Stockman & Sharpe, 2000; Stockman,
Sharpe, & Fach, 1999).

For each cone class, let r; be the ratio of excitations at (x;,y;) and
(., y)), e.g. for L cones, r; = I;/I;, withi=1, 2, ..., N; and let r;; and
ri» be the particular values of these ratios at times t; and t,
respectively. It is helpful to normalize the differences r;; — r;; by
Ii1 OF I or some combination of the two so as to stabilize the vari-
ance. The mean relative deviation MRD between ratios r;; and r;>
over all sample pairsi=1, 2, ..., N was thus defined by:

N

‘rxlfr12|
MRD = — ; o T2 1)

For comparison with an alternative definition of mean relative
deviation, see Appendix A.

! To preserve a neutral points-based approach to sampling, images were not
segmented into separate surfaces (Foster et al., 2009). Samples within a few pixels of
the image boundary were excluded to avoid artifacts from the registration process.

2 The notation is nonstandard to avoid confusion with that for cone spectral
sensitivities.

3 Spectral radiances E; were expressed in Wm 2 sr~' nm~! and spectral sensitiv-
ities L(4), M(%), and S(2) were normalized to a maximum of unity on a linear energy
scale.

Changes of illumination geometry at (x;,y;) and (x},y;) across
times t; and t, were classified as even or uneven according to a test
statistic derived from the reflected spectral radiances E;(4;Xi,y;)
and E; (4; X, y;) at t; and E»(4;x;,y;) and Ex(4; X}, y;) at ty, as described
in Appendlx B.

To provide a point of reference for observed estimates of the
mean relative deviation, threshold values were estimated from
two previous experiments in which observers discriminated illu-
minant from non-illuminant changes in simulated samples of
Munsell surfaces. Averaged over observers, these estimates varied
between about 12% (from Nascimento & Foster, 1997) and 14%
(from Nascimento & Foster, 2001), and a criterion level of 13%
was used subsequently to define the minimum for detecting viola-
tions of ratio invariance.

2.5. Postreceptoral combinations of cone excitations

Four kinds of postreceptoral combinations of cone excitations
were considered. Two were varieties of opponent-color transfor-
mations producing chromatic and achromatic responses and two
were varieties of cone-opponent transformations producing spec-
trally sharpened responses. Differences in the choice of cone fun-
damentals proved unimportant.

Let [, m, and s be the cone excitations at an arbitrary point (x, y)
in a scene. The first postreceptoral transformation was a theoreti-
cal decorrelating operation (Buchsbaum & Gottschalk, 1983). An
achromatic response a, a “red-green” chromatic response p, and
a “yellow-blue” chromatic response q were obtained by a linear
transformation®:

a=0.891+0.46m,
p=—-0.461+ 0.88m + 0.01s, 2)
q=-0.01m+ 0.99s.

The second, nonlinear, postreceptoral transformation was a
data-driven decorrelating operation (Ruderman, Cronin, & Chiao,
1998), which, crucially, contained a logarithmic compression:

a = 0.58log(l/l) + 0.58 log(m/m) + 0.57 log(s/3),

p =0.70log(I/I) — 0.71 log(m/m) + 0.01 log(s/5), 3)

q = 0.411og(l/l) + 0.40 log(m/m) — 0.82 log(s/s),

where [, m, and 5, are sample means.

The third, linear, postreceptoral transformation maximized
spectral sharpening (Foster & Snelgar, 1983) of cone-opponent
responses I#, m*, and s*, subject to certain constraints (Finlayson,
Drew, & Funt, 1994):

I = 2.461 — 1.97m + 0.08s,
m* = —0.66] + 1.58m — 0.12s, (4)
s* =0.091 — 0.14m + 1.00s.

4 Numerical values rounded to 0.01.
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Fig. 3. Scatter plots of spatial ratios of cone excitations across different times of day for the Nogueiré scene. In the top row, data are shown for successive times of 11:40 and
12:40. For each pair of randomly chosen points in the scene, the logarithm of the ratio at one time is plotted against the logarithm of the ratio at another time for L, M, and S
cone excitations. For clarity, just 1000 data points from the 10,000 available are plotted. The spacings of points in each sample pair were drawn randomly from the
logarithmic scale 1, 2, 4, .. ., 256 pixels, and their orientations randomly from the circle. Image sizes were 1344 x 1024 pixels, corresponding approximately to 6.9° x 5.3°. The
dashed lines represent orthogonal linear regressions. In the bottom row, corresponding data are shown for more widely separated times of 11:40 and 16:37.

The fourth postreceptoral transformation, also linear, maxi-
mized information retrieved from scenes (Foster, Marin-Franch,
Amano, & Nascimento, 2009):

I¥ =1-0.97m + 0.09s,
m# = —0.25]+m — 0.17s, (5)
s# =0.011 - 0.03m +s.

Spatial ratios of these transformed cone excitations at points
(x, y) and (x¥',y’) and mean relative deviations between the ratios
at different times were calculated as in Section 2.4, except for
transformation (3) which involved logarithmic compression.
Accordingly, with transformation (3), ratios were replaced by dif-
ferences, that is,

a=a-da,
p=p-p, (6)
0q=q—¢q.

Differences in these differences across time (i.e. logarithmic
ratios of ratios) were then averaged and exponentiated to enable
direct comparisons with mean relative deviations from linear
postreceptoral transformations.

2.6. Association between postreceptoral differences

A test was also made of a previously reported association (Fine,
MacLeod, & Boynton, 2003) between the logarithmic differences
éa, op, and 5q in postreceptoral combinations of cone excitations
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in pixels for L, M, and S cone excitations. Image sizes were 1344 x 1024 pixels, corresponding approximately to 6.9° x 5.3°. The solid circles represent means over all (non-
zero) time intervals and the open circles means over intervals of up to 1 h. The continuous straight lines are least-squares linear fits over the first four spacings, and the
dashed curves are locally weighted quadratic regression fits over all spacings (Cleveland, 1979; Zychaluk & Foster, 2009). The ordinate scale was chosen to show the full or
almost the full range of mean relative deviations, but for the Sameiro scene the scale was doubled (see Section 2.3). Estimated SEs of the estimated means were too small to

display.

according to definition (6). The pair-wise associations between the
differences were quantified by the mutual information I (Cover &
Thomas, 2006), that is, I(éa;dp), I(dp;d6q), and I(éq;sa). Mutual
information was estimated by the asymptotically bias-free k-near-
est-neighbor estimator due to Kozachenko and Leonenko (Goria,

Leonenko, Mergel, & Novi Inverardi, 2005; Kozachenko &
Leonenko, 1987) used in a computationally efficient, offset form
(Marin-Franch & Foster, 2013). The correlation between the esti-
mates I(da; dp), I(dp; 5q), and 1(4q; da) over intervals was quantified
by the mean Pearson product moment correlation coefficient.
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Fig. 5. Distribution of pairs of sample points in the Gualtar scene under uneven changes in illumination geometry between 11:44 (left) and 15:45 (right). The pairs are
indicated by the small red vectors connecting the sample points and were identified according to the method described in Appendix B. The spacings of the sample points were
8 pixels (top) and 32 pixels (bottom), corresponding approximately to 2.4 and 9.7 arcmin angular subtense at the camera.

3. Results and comment
3.1. Spatial ratios of cone excitations

The degree of invariance of ratios of cone excitations across
time can be illustrated with scatterplots, as in Fig. 3 for the
Nogueir6 scene. For each pair of randomly chosen points in the
scene, the logarithm of the ratio at one time is shown against the
logarithm of the ratio at another time, where the logarithms are
to the base 10. The top row is for ratios across successive times
of 11:40 and 12:40 and the bottom row for ratios across more
widely separated times of 11:40 and 16:37 (see Fig. 2 for the full
range of times available). Ratios are shown separately for L, M,
and S cones. The dashed lines represent orthogonal linear regres-
sions (major-axis estimation), appropriate for bivariate data
(Warton, Wright, Falster, & Westoby, 2006).

For the plots in the top row, the correlation coefficients were
0.96, 0.96, and 0.98 for L, M, and S cones, respectively. More rele-
vantly, the corresponding mean relative deviations in
cone-excitation ratios were 5%, 5%, and 3%. These values are almost
the same as those obtained with simulated global changes in illu-
mination spectrum, albeit with much greater changes in correlated
color temperatures (Nascimento, Ferreira, & Foster, 2002). For the
plots in the bottom row, with the longer time interval, the corre-
sponding correlation coefficients were 0.67, 0.67, and 0.76. The
corresponding mean relative deviations in cone-excitation ratios
were 21%, 21%, and 15%, greater than the criterion level of 13%
for detecting violations of ratio invariance (Section 2.4).

In all the plots the slopes of the regressions are greater than
unity and in the bottom row the slopes are greater than in the
top row, with the greatest slope at short wavelengths (bottom

right). The increase in slopes can be explained by the different
compressive effects of haze on the range of ratios available at the
different times of day. Details are given in Appendix C.

3.2. Deviations in ratios and sample spacing

The large deviations in some cone-excitation ratios reported in
the last section are not peculiar to the Nogueir6 scene. The mean
relative deviation over all scenes and non-zero time intervals
was 24%, a value that increased to 47% when the spacing of points
in sample pairs was drawn randomly from a linear scale rather
than from the default logarithmic scale (Section 2.4).

How, then, do deviations in ratios depend on sample point spac-
ing? Fig. 4 shows for each scene and cone class, mean relative

Table 1

Threshold sample point spacings (in pixels) averaged over time intervals and cone
classes.”

Nogueird Gualtar Sete Fontes Levada
All time intervals 25.9 103 3.2 4.6
Time intervals <1 h" - 40.5 113 33.8

2 Each entry shows the estimated spacing of points in sample pairs yielding a
criterion mean relative deviation in cone-excitation ratios of 13%, the minimum for
detection (Section 2.4). SEs, not shown, were estimated by bootstrap resampling
(Foster & Bischof, 1997) and were each <7% of the corresponding estimated mean.
For the Nogueiré scene, an estimated threshold for intervals <1 h was not defined
as mean relative deviations were all <13%. Data for the Sameiro scene were omitted
for the reasons indicated in Section 2.3. Image sizes were 1344 x 1024 pixels,
corresponding approximately to 6.9° x 5.3°.

b The 1 h limit was the shortest interval common to all time-lapse sequences (see
Fig. 2).
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deviation plotted against the logarithm of the spacing in pixels. The
solid circles represent means over all (non-zero) time intervals and
the open circles means over intervals of up to 1h, the shortest
interval common to all time-lapse sequences (see Fig. 2). The con-
tinuous straight lines are least-squares linear fits over the first four
spacings and the dashed curves are locally weighted quadratic
regression (‘loess’) fits over all spacings (Cleveland, 1979;
Zychaluk & Foster, 2009). The loess fits, used later to estimate
thresholds, accounted for 98% of the variance in the data.

For scenes with vegetation (Nogueir6, Levada, Sameiro) mean
relative deviations were somewhat smaller for S cones than for L
and M cones, and for each scene the effects of point spacing were
similar. But over scenes, the mean relative deviation for a given
spacing varied by a factor of two or more. Reasons for the excep-
tionally large deviations with the scene Sameiro have already been
noted (Section 2.3), and data from that scene were not used
further.

For each scene and cone class, the dependence of mean relative
deviation on log spacing was smooth and monotonic, and almost
exactly linear up to log spacings of 3-4 log pixels, i.e. 8-16 pixels.
This lawful behavior was obviously not an artifact of the size of the
line-spread function of the hyperspectral imaging system (SD
approximately 1.3 pixels; see Section 2.1). A monotonic increase
with spacing might be expected, since the probability of sampling
from an uneven change in illumination geometry should increase
with point spacing. A strictly linear increase with log spacing, how-
ever, is contingent on specific scene properties, including the rela-
tive frequency of different-sized surfaces in each scene (Yang &
Purves, 2003).

The relationship between sample point spacing and uneven
changes in illumination geometry is illustrated in Fig. 5. It shows
color images rendered from two hyperspectral images of the
Gualtar scene at 11:44 (left) and 15:45 (right), as in Fig. 2.
Sample pairs with uneven changes were identified according to
the method described in Appendix B and are denoted in the figure
by the small red vectors of length either 8 pixels (top) or 32 pixels
(bottom). Uneven changes were clearly more frequent with the lar-
ger of the two spacings.

From Fig. 4, it is evident that with sufficiently small spacings of
sample points, mean relative deviations fell below the criterion
level of 13% for detection (Section 2.4). Threshold values of those
spacings were estimated from the loess fits for each scene and cone
class. Table 1 shows the mean estimates with and without upper
limits on time intervals. There were marked variations over scenes,
with larger values for time intervals of up to 1 h. For the Nogueir6
scene, no threshold could be defined.

For a more detailed analysis of the effects of time interval, it
proved useful to define a common upper limit on point spacings
that, over all scenes and time intervals, yielded sample mean rela-
tive deviations below the criterion level. An upper limit of 32 pixels
yielded 13.3% and one of 16 pixels yielded 11.3%. Neither of these
limits has in itself any absolute significance, for as Table 1 showed,
threshold spacings depend strongly on the scenes themselves. A
common upper limit of 16 pixels was adopted.

3.3. Deviations in ratios across time

How do differences between cone-excitation ratios vary accord-
ing to the time of day? The plots in Fig. 6 show for the Nogueiré
scene the mean relative deviation between ratios at an initial ref-
erence time of 11:40 and at successive, approximately one-hour
time intervals.

The solid circles represent means over all spacing of points in
sample pairs, the open circles over spacings of up to 16 pixels
(the common upper limit, Section 3.2), and the star symbols over
pairs of points with even changes in illumination geometry
(Appendix B). Tellingly, over intervals of up to 2 h, means for spac-
ings of up to 16 pixels were similar in magnitude to those for
points with even changes in illumination geometry.

Means over all point spacings initially increased with increasing
time interval, although towards the end of the day, the differences
in the illuminations decreased, leading to smaller deviations in
ratios. Broadly similar dependencies on time interval, not shown
here, were found with an initial reference time of 12:40, and with
the next one, and so on; and likewise for the Gualtar, Sete Fontes,
and Levada scenes.

Over all reference times and scenes, there were 33 plots of the
form shown in Fig. 6, but the data most relevant to the invariance
of ratios are from the shorter time intervals around each reference
time. Fig. 7 shows mean relative deviation plotted against signed
time interval for all non-zero intervals of up to 1h. As in Fig. 6,
the solid circles represent means over all point spacings, the open
circles over spacings of up to 16 pixels, and the star symbols over
pairs of points with even changes in illumination geometry. The
additional data points for the Setes Fontes and Levada scenes at
intervals of less than 30 min were derived from acquisitions at
the end of the day when the light level was changing rapidly
(Section 2.1). Data values were not exactly symmetric about zero
time interval because each was from an independent set of sample
points.

For sufficiently short time intervals, mean relative deviations
did not exceed the criterion level of 13% for detection
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been clipped). Other details as for Fig. 6.

Table 2

Mean relative deviations (%) in spatial ratios of excitations of long-, medium-, and
short-wavelength-sensitive (L, M, and S) cones with and without upper limits on
point spacings and time intervals.

Table 3

Mean relative deviations (%) in extreme spatial ratios of excitations of long-,
medium-, and short-wavelength-sensitive (L, M, and S) cones for all illumination
changes and for illumination changes with even geometry.*

L M S L M S
All intervals All spacings 21.2 20.8 17.7 All illumination changes All intervals 62.6 62.1 59.2
Spacings <16 pixels” 12.1 11.8 9.9 Intervals <1 h 32.6 32.6 325
Intervals <1 h* All spacings 11.3 111 9.8 Even illumination changes All intervals 8.7 8.7 9.2
Spacings <16 pixels” 7.1 7.0 6.2 Intervals <1h 8.3 8.4 8.8

2 Each entry shows the estimated mean relative deviation taken over scenes,
spacings of sample points, and time intervals. The mean for each individual scene
was estimated from 10,000 pairs of scene points drawn randomly from the scene
for each spacing and time interval, and then averaged over all spacings and (non-
zero) time intervals. SEs, not shown, were each <2% of the corresponding estimated
mean.

® The 16 pixels limit on spacings was derived from the average estimated
threshold spacing for detecting violations of ratio invariance (Section 3.2). Image
sizes were 1344 x 1024 pixels, corresponding approximately to 6.9° x 5.3°.

¢ The 1 h limit was the shortest interval common to all time-lapse sequences (see
Fig. 2).

@ Ratios were either <0.32 or >3.2 . [llumination changes with even geometry are
defined in Appendix B. Other details as for Table 2.

(Section 2.4), whether or not point spacings were limited to 16 pix-
els. Table 2 shows the means over scenes with and without upper
limits on point spacings and time intervals.’

5 Slightly smaller mean relative deviations were obtained with a 4 pixels upper
limit on spacings of sample points, as reported at VSS 2015.
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Table 4

Mean relative deviations (%) in spatial ratios of excitations of long-, medium-, and
short-wavelength-sensitive (L, M, and S) cones for illumination changes with even
geometry.®

L M S

All intervals All spacings 5.8 5.7 5
Spacings <16 pixels 4.7 4.7 3.9
Intervals <1h All spacings 4.6 4.5 4.1
Spacings <16 pixels 3.5 3.4 3.1

¢ Illumination changes with even geometry are defined in Appendix B. Other
details as for Table 2.

3.4. Extreme ratios

I[s the invariance of spatial cone-excitation ratios, where it
occurs, an artifact of most ratios being close to unity? As the scat-
terplots in the top row of Fig. 3 illustrate for the Nogueir6 scene,
the distributions of the logarithms of the ratios are concentrated
around zero, and it might be hypothesized that such values are
likely to arise from points sampled from single surfaces under sim-
ilar illumination conditions. Ratios from those points are therefore
likely to remain constant.

As the scatterplots demonstrate, some extreme ratios are pre-
served (those represented by data points in the top right and
bottom left of the plots). But to test this hypothesis properly,
mean relative deviations were calculated over all scenes, time
intervals, and sample point spacings for which log ratios fell out-
side the range [-0.5, 0.5], i.e. for which ratios were either less
than 0.32 or greater than 3.2. For each scene, these extreme
ratios were in the minority, constituting about 5% of the total,
and the number of sample pairs was accordingly increased to
100,000.

Table 3 shows the means over scenes for extreme ratios from all
illumination changes and from illumination changes with even
geometry (Appendix B). Providing that uneven changes were
excluded, the means fell well below the criterion level of 13% for
detecting violations of ratio invariance (Section 2.4).

3.5. Postreceptoral ratios

For the three linear postreceptoral transformations of cone exci-
tations described in Section 2.5, mean relative deviations were clo-
sely similar to those shown in Table 2 for untransformed cone
excitations. Tables D.1-D.4 in Appendix D show the means for both
linear and nonlinear transformations.

For the linear opponent-color transformation of definition
(2), the linear spectral sharpening transformation of definition
(4), and the linear transformation of definition (5), which max-
imized information retrieved, differences in mean relative devi-
ations with respect to those for the untransformed cone
excitations (Table 2) were less than 2 percentage points for
each sampling condition. But for the combination of logarithmic
compression and linear transformation of definition (3), mean
relative deviations were much higher for achromatic responses,
exceeding the criterion level of 13% for detection, and, con-
versely, much smaller for the two chromatic responses
(Appendix D, Table D.2).

The pairwise associations between the logarithmic differences
éa, op, and 4q in postreceptoral combinations defined by the
mutual information quantities I(da;dp), 1(dp;dq), and I(5q;da)
(Section 2.6) were correlated across time. Pearson product moment
correlation coefficients averaged across time intervals and spacings
of sample points ranged from 0.45 for the Levada scene to 0.89 for
the Gualtar scene.

3.6. Natural and simulated illumination changes

Restricting pairs of sample points to those with even changes in
illumination geometry (Appendix B) provided a rough test of pre-
vious simulations with global changes in illumination spectrum
and no accompanying change in illumination geometry (e.g.
Nascimento, Ferreira, & Foster, 2002). Table 4 shows mean relative
deviations from pairs of points with even changes in illumination
geometry. Depending on the sampling constraints, the means ran-
ged from 3.1% to 5.8%, overlapping the values of 3.1-4.8% obtained
with simulated global changes in illumination spectrum
(Nascimento, Ferreira, & Foster, 2002, Table 1). There are, nonethe-
less, several additional factors that need to be considered in this
comparison, as explained in Section 4.

4. Discussion

Because of the complexity of natural scenes, geometrical varia-
tions in local illumination can be similar in size to the variations in
global illumination over the course of the day (Nascimento,
Amano, & Foster, 2016). Whether signals such as the spatial ratio
of cone excitations generated from reflected light are invariant
across time depends on the interaction of these spatial and tempo-
ral factors, which varies from scene to scene.

Evaluated over scenes, time intervals, and spacings of sample
points, the estimated mean relative deviation in ratios was about
24%, a value that increased to 47% when sample spacings were
drawn from a linear rather than logarithmic scale. These estimates
are greater than the criterion level of 13% for detecting violations of
ratio invariance and much greater than the level of about 4% found
with simulated global changes in illumination spectrum
(Nascimento, Ferreira, & Foster, 2002). Yet when sampling was
constrained, either to moderate time intervals or to short dis-
tances, the estimated mean relative deviation decreased to about
11%, below the criterion level for detection.

Unsurprisingly, the spacing of sample points at which devia-
tions in ratios reached the criterion level varied markedly over
scenes. Estimates ranged from 3 to 26 pixels (1-8 arcmin), when
averaged over all time intervals, and from 11 pixels (3 arcmin) to
unlimited values when averaged over intervals of up to 1 h.
While these threshold spacings might be gauged intuitively in rela-
tion to the overall image size of 1344 x 1024 pixels (corresponding
approximately to 6.9° x 5.3°), they depend, as implied earlier,
more on the physical distances within the scenes themselves than
on the angle they subtended at the camera.

It should not be concluded, however, that in the absence of spa-
tial and temporal sampling constraints, deviations in ratios are
caused by changes in illumination geometry, per se. Rather, they
are caused by the unevenness in those changes where that uneven-
ness exists. For the Nogueird, Gualtar, Sete Fontes, and Levada sce-
nes, the proportion of samples from uneven illumination changes
ranged from 10% to 66%. The remaining samples were from even
illumination changes, but still involved movement of the sun and
possibly cloud and variations in atmospheric scatter, mutual illu-
mination, and local attached and cast shadows. Revealingly, esti-
mates of mean relative deviations in ratios from even changes
fell to levels found with simulated global changes in illumination
spectrum.

Nevertheless the similarity in the two kinds of estimates, that is,
from natural illumination changes with even geometry and from
simulated global changes in illumination spectrum, should be
interpreted with care. The simulations (Nascimento, Ferreira, &
Foster, 2002) were based on larger ranges of daylight illuminants,
many more natural scenes, and linear sampling of point spacings.
No allowance was made for independent sampling noise (e.g.
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Osorio & Vorobyev, 2005; Vorobyev & Osorio, 1998). Furthermore,
the global changes effectively averaged illumination shifts that at
the end of the day could have been in opposite directions in
directly illuminated and shadowed regions of the scene (Hubel,
2000), although control simulations in which shadowed regions
were masked suggested that averaging did not distort estimates
(Foster et al., 2006, Sect. 3.F). Overall, these simulations appear
not to seriously misrepresent the effects of natural variations in
illumination, providing that uneven changes in illumination geom-
etry are excluded.

With natural scenes, one of the factors affecting the invariance
of ratios from distant regions is atmospheric scatter, which could
have blurred the changing distribution of shadows. Thus haze
may have contributed to the lower deviations in ratios from the
Nogueir6 scene early and later in the day (Fig. 2, top left, 11:40,
12:40, and 13:45), even though it covered only part of the scene.
Yet it was largely absent at other times and the low mean relative
deviations in ratios from that scene were probably due more to the
properties of the scene itself. Haze is visible over the distant hills in
the Levada scene, but it, too, seems to have had a limited impact on
deviations in ratios from the scene as a whole.

It was anticipated that ratios of linear combinations of cone
excitations, both opponent-color and cone-opponent, would yield
levels of invariance similar to those found with ratios of cone exci-
tations. A previous analysis of ratios of opponent-color signals
revealed an analogous result with simulated global changes in illu-
mination spectrum (Nascimento & Foster, 2000). Interestingly, an
association previously reported between differences in logarithmic
combinations of cone excitations (Fine, MacLeod, & Boynton, 2003)
was preserved over time intervals, most strongly for the Gualtar
scene and least so for the Levada scene.

As already noted, the approximate invariance of ratios under
global changes in illumination spectrum has been invoked in the
explanation of a broad range of perceptual color phenomena, not
least the phenomenon of color constancy in its various forms,
including relational and displacement color constancies (see, in
addition to previously cited sources, Amano & Foster, 2004;
Chittka, Faruq, Skorupski, & Werner, 2014; Foster et al., 2001;
Hurlbert & Wolf, 2004; Kamermans, Kraaij, & Spekreijse, 1998;
Khang & Zaidi, 2002; Kulikowski et al., 2012; Lee, Dawson, &
Smithson, 2012; Plet & Gerbino, 2001; Ripamonti & Westland,
2003; Tokunaga & Logvinenko, 2010; Wachtler, Albright, &
Sejnowski, 2001; Werner, 2014; Westland & Ripamonti, 2000).
Moreover, a generalization of spatial ratios that replaces scaling
by an affine transformation has been exploited in modeling the
additional effects of changes in viewing medium (Hagedorn &
D’Zmura, 2000; Romero, Luzén-Gonzalez, Nieves, & Hernandez-
Andrés, 2011; see also Zaidi, 1998). The finding of an approximate
invariance of ratios under constrained sampling may extend the
scope of these and related studies to environments undergoing nat-
ural changes in illumination. It is, though, important to distinguish
between optical limits on the invariance of cone-excitation ratios or
their equivalents and limits on performance set more centrally (e.g.
Arnold & Chittka, 2012; Cornelissen & Brenner, 1995; Kentridge,
Heywood, & Cowey, 2004; Linnell & Foster, 1996; Murray et al.,
2014; Rinner & Gegenfurtner, 2002; Smithson & Zaidi, 2004;
Wachtler, Albright, & Sejnowski, 2001; Werner, 2014). The present
work has been concerned solely with optical limits. It is also impor-
tant to distinguish between the information extracted at points
sampled randomly from scenes and the information extracted from
particular areas, such as object edges (Gijsenij, Gevers, & van de
Weijer, 2012; Peyvandi, Nieves, & Gilchrist, 2013).

As a final cautionary note, these estimates of mean relative
deviations in cone-excitation ratios may represent only an upper
bound on the true invariance of ratios in natural scenes. During
image acquisition both movement within scenes and movement

of the camera itself could have introduced errors. Large scene
movements were easily detected and the images then rejected,
as with the Sameiro scene, and small camera movements were
automatically compensated for by image processing, at least up
to the resolution of the registration routines. Even so, small unde-
tected movements within scenes and other imaging artifacts
would have inflated any differences in observed ratios.

These caveats aside, it is evident that within certain sampling
constraints, spatial ratios of cone excitations, and also of
opponent-color combinations, provide an approximately invariant
signal for stable surface-color inferences, despite a transient opti-
cal environment where changes in the spectrum of the illumina-
tion are accompanied by changes in illumination geometry.

The hyperspectral radiance images used in this study are avail-
able from the authors’ web sites, http://personalpages.manchester.
ac.uk/staff/d.h.foster/ and http://online.uminho.pt/pessoas/smcn/.
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Appendix A. Quantifying deviations in ratios

With the notation of Section 2.4, the mean relative deviation
MRD between ratios r;; and r;» at times t; and t,, respectively,
taken over sample pairs i=1, 2, ..., N may be formulated in two

ways:
TN ria —ria
MRD, = — —_— Al
A N;mm{r,ﬂ_l,ri,z} (A1)
and
MRD ZN: |rl]7r12‘ (A2)
BT i1 rll + r12 /2 ’

The formulation MRD, of definition (A.1) has been used previ-
ously with global changes in illumination spectrum (e.g.
Nascimento, Ferreira, & Foster, 2002). Unfortunately, with addi-
tional changes in illumination geometry, the estimate provided
by MRD, can become biased when it contains terms whose
denominators are much smaller than the numerators, for example,
when just one member of the pairs (x;,y;) and (x},y}) is in shadow
at t; and not at t,. The bias can be reduced by replacing the mini-
mum operator in the denominator by the mean, as in the formula-
tion MRDg of definition (A.2). When multiplied by 100 it is the
symmetric mean absolute percentage error.

By construction, MRD, is never smaller than MRDg. In fact,
MRDA/MRDg = 1 + MRD4A/2. Yet in simulations with natural scenes
undergoing global changes in illumination spectrum, the two mea-
sures were found to differ little from each other. For example, if the
illuminant changed from a daylight with correlated color temper-
ature of 25,000 K to one of 4300 K, the value of MRD4 was, at most,
4.8% (Nascimento, Ferreira, & Foster, 2002, Table 1). The corre-
sponding value of MRDg is then 4.7%. But the difference between
the two definitions becomes significant when one of the ratios is
very different from the other. If r;; has some particular nonzero
value and r;, tends to zero, then the summand in definition (A.1)
tends to infinity, whereas the summand in definition (A.2) tends
to 2, with little impact on MRDg. In this report, all values of the
mean relative deviation were calculated according to definition
(A.2), shown as definition (1) in the main text.
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Appendix B. Classifying changes in illumination geometry

There are many ways of identifying shadowed regions in image
data (see e.g. Finlayson, Hordley, Lu, & Drew, 2006; Gijsenij et al.,
2012; Gu & Robles-Kelly, 2014; Jiang, Schofield, & Wyatt, 2011;
Parraga, Brelstaff, Troscianko, & Moorehead, 1998; Salvador,
Cavallaro, & Ebrahimi, 2004; Tappen, Freeman, & Adelson, 2005’).
The requirement in this analysis, however, was more specific,
namely to identify pairs of sample points with uneven changes in
illumination geometry. These changes may be a result of a change
in the distribution of shadows, but could also occur with strong dif-
ferences in mutual illumination.

The Gualtar building scene provides a simple example. The
color images in Fig. B.1 were rendered from hyperspectral images
acquired at 11:44 and 15:45. Rectangular sample areas a, b, and
¢ have been outlined in white. The change in illumination from
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Fig. B.1. Classifying even and uneven changes in illumination geometry. The two
color images were rendered from hyperspectral radiance images of the Gualtar
scene at 11:44 and 15:45. The plot below shows empirical distributions of the
statistic p(4;x,y;X',y’) given by definition (B.1) for even (left) and uneven (right)
illumination changes across scene points drawn respectively from areas a and b and
from a and c, as indicated in the color images.

11:44 to 15:45 across the two areas a and b was even: spatial ratios
of cone excitations from a and b depend only on the spectrum of
the illumination and on the surface spectral reflectances, for the
given viewing direction and angular distribution of incident illumi-
nation (more precisely on the spectral bidirectional reflectance dis-
tribution function, BRDF; Nicodemus, Richmond, Hsia, Ginsberg, &
Limperis, 1997). In contrast, the change in illumination from 11:44
to 15:45 over the areas a and c¢ (and b and c) was uneven: ratios of
cone excitations from a and c at 11:44 are unaffected by shadow
whereas those at 15:45 are affected strongly. The ratios from a
and c can therefore differ arbitrarily across different times. This
uncertainty is of course not restricted to planar surfaces of build-
ings and cast shadows; it also occurs with natural non-planar
materials and attached shadows (see Fig. 2 for examples).

To provide an objective criterion for distinguishing between
even and uneven changes in illumination geometry at two arbi-
trary points in a scene, a test statistic was constructed from the
reflected spectral radiances at those points. With the notation of
Section 2.4, let E{(/; x, y) and E(4; X', y') be the respective spectral
radiances at (x, y) and (x’,y’) at time t; and Ex(4; x, y) and E>(4; X', ')
the corresponding values at time t,. The ratios E{(4; x, ¥)/E1(4; X, y'")
and Ex(Z; x, y)|Ex(/4; X', ¥') each depend on the spectral reflectances
of the two surfaces, but if the illumination change is even, as over
areas a and b in Fig. B.1, then the ratio of these ratios:

Ei(%%y) E(4X.Y)
E1(%%.Y) Ex(%5x,Y)

pLx.Y;Xy) = (B.1)

should be close to unity at all wavelengths A, with any small depar-
tures depending on the details of the spectral BRDF (this ratio of
ratios of spectra should not be confused with the ratio of ratios of
cone excitations; see e.g. Brill & West, 1981; van Trigt, 2005). If,
though, the illumination change is uneven, as over areas a and c,
then p(4;x,y;x',y’) should depart sharply from unity over a range
of wavelengths /. The plot in Fig. B.1 shows the empirical distribu-
tions of p(4;x,y;x’,y’) for the paired areas a, b, and a, c. The intersec-
tion of the two distributions, at pu = 1.24, provides a criterion
for deciding whether the sample for a particular pair of points
elsewhere in the scene is from an even change or not.

For each of the four other scenes used in this study, empirical
distributions of p(4;x,y;x’,y’) were obtained by selecting sample
areas with even and uneven illumination changes similar to those
in Fig. B.1 for the Gualtar scene. The areas varied from side 10 pix-
els to 50 pixels. Values of py, ranged from 1.22 to 1.66 over the five
scenes.

A separate estimate of the empirical distribution of
p(4;x,y;x,y'") was obtained from three scenes where there was a
sufficiently large embedded neutral sphere (see e.g. bottom left
of the Levada scene, Fig. 2). On each sphere, sample areas similar
to those in Fig. B1 were identified, but their position and size were
allowed to vary. Values of py,, ranged from 1.31 to 1.40. For consis-
tency over scenes, a common value of py, was used and set equal
to the mean of 1.34. With this criterion, the proportion of sample
pairs with even illumination changes varied over the four scenes
from 34% for the Levada scene to 90% for the Gualtar scene. The
proportion was 1% for the fifth Sameiro scene.

To provide an independent test of whether this method of clas-
sification could have falsely excluded pure spectral changes in illu-
mination, it was applied to hyperspectral images of the same
scenes undergoing simulated global changes in illumination spec-
trum, as in Nascimento et al. (2002). A hyperspectral image was
taken from each time-lapse sequence from each scene and its radi-
ances E(4;x,y) were converted to effective spectral reflectances
R(%;x,y) by scaling with a known reflectance Ry(%;Xo,Y,) at some
point (Xo,Y,) in the scene (see e.g. Foster et al., 2006, Appendix
A), thus,
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Global daylight illumination changes were simulated by multi-
plying R(%;x,y) by daylight illuminants with correlated color tem-
peratures of 25,000 K and 4000 K generated from a principal
components analysis (Judd, MacAdam, & Wyszecki, 1964).
Neither this method of generation nor the choice of source data
was critical. Deviations in cone-excitation ratios across the two
simulated radiance images were calculated with and without
uneven illuminant changes. No difference was detected with any
of the five scenes. Since the simulated changes in illumination
spectra were greater than any of the natural changes in illumina-
tion spectra in the time-lapse sequences, it seems likely that the
test statistic p(4;x,y;x’,y’) excluded only sample points where
there was also an uneven change in illumination geometry, though
not necessarily all such points.

R(%x,y) = E(4:x,y)

Appendix C. Haze and orthogonal regressions on ratios

The scatterplots of spatial ratios of cone excitations in Fig. 3
have orthogonal regression slopes greater than unity, a property
that may be explained by the compressive effects of haze on the
range of ratios available. Assume without loss in generality that
the ratios are of L-cone excitations. The characteristic bright veil
over distant parts of the scene, also known as airlight, is produced
by light from the sun and sky not otherwise imaged by the camera
being scattered into the imaging path. This light can be repre-
sented as a constant additive term, k > 0, which depends on both
wavelength and viewing distance (Middleton, 1960). Suppose that
in the absence of haze the (positive) cone excitations at arbitrary
scene points (x,y) and (x',y') are [ and ', respectively, and that in
the presence of haze they are I+k and I +k, respectively.
Suppose that the ratio I/I' > 1. Then the ratio (I+ k)/(I' + k) satis-
fies the conditions that (I+k)/(I' +k) > 1 and that (I+k)/(I' +k)
< I/I. Conversely, suppose that the ratio I/I' < 1. Then the ratio
(I+k)/(I' + k) satisfies the conditions that (I+k)/(I' +k) <1 and
that (I+k)/(I' +k) > 1/I. The transformation of I/l to
(I +k)/(I' + k) is therefore strictly monotonic decreasing, i.e. com-
pressive. Let v = log(l/I') and u = log[(l + k)/(I + k)]. Since taking
logarithms preserves monotonicity, the transformation of » to u
is also compressive. For a sample of 2N scene points (x;,y;) and
(x;,y;), with i=1, 2, .., N, the slope of the orthogonal regression
of v; on u; is greater than unity, consistent with the plots in
Fig. 3 showing slopes in the bottom row greater than in the top
row and with the greatest slope for S-cone excitations (Burton &
Moorhead, 1987).

Appendix D. Deviations in postreceptoral ratios

Tables D.1-D.4 show mean relative deviations in spatial ratios
of combinations of cone excitations for four kinds of postreceptoral
transformations (Section 2.5).

Table D.1

Mean relative deviations (%) in spatial ratios of opponent-color combinations A, P, and
Q giving achromatic and chromatic red-green and yellow-blue responses, respec-
tively, according to Buchsbaum and Gottschalk (1983).%

A P Q
All intervals All spacings 21.1 20.2 17.7
Spacings <16 pixels 12.0 11.6 9.9
Intervals <1h All spacings 11.2 11.0 9.8
Spacings <16 pixels 7.0 7.0 6.2

4 Opponent-color transformations as in definition (2), main text. Other details as
for Table 2.

Table D.2

Mean relative deviations (%) in spatial ratios of logarithmic opponent-color combi-
nations A, P, and Q giving achromatic and chromatic red-green and yellow-blue
responses, respectively, according to Ruderman, Cronin, and Chiao (1998).%

A P Q
All intervals All spacings 35.2 0.8 5.8
Spacings <16 pixels 19.7 0.5 3.9
Intervals <1h All spacings 18.7 0.5 3.7
Spacings <16 pixels 11.6 0.4 2.8

¢ Opponent-color transformations as in definition (3), main text. Other details as
for Table 2.

Table D.3

Mean relative deviations (%) in spatial ratios of cone-opponent combinations L*, M*,
and S* of cone excitations giving maximally sharpened spectral responses, according
to Finlayson, Drew, and Funt (1994).%

L* M* s*

All intervals All spacings 22.0 20.6 17.6
Spacings <16 pixels 12.5 11.8 9.8
Intervals <1h All spacings 11.6 11.0 9.8
Spacings <16 pixels 7.3 6.8 6.1

2 Cone-opponent transformations as in definition (4), main text. Other details as
for Table 2.

Table D.4

Mean relative deviations (%) in spatial ratios of cone-opponent combinations L*, M*,
and S* of cone excitations maximizing information retrieved, according to Foster et al.
(2009).2

L* Mm# s*

All intervals All spacings 22.8 21.6 17.6
Spacings <16 pixels 13.0 124 9.8
Intervals <1h All spacings 124 115 9.8
Spacings <16 pixels 7.9 7.3 6.1

2 Cone-opponent transformations as in definition (5), main text. Other details as
for Table 2.
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