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Abstract

To what extent do observers’ judgments of surface color with natural scenes depend on global image statistics?
To address this question, a psychophysical experiment was performed in which images of natural scenes under
two successive daylights were presented on a computer-controlled high-resolution color monitor. Observers
reported whether there was a change in reflectance of a test surface in the scene. The scenes were obtained with

a hyperspectral imaging system and included variously trees, shrubs, grasses, ferns, flowers, rocks, and buildings.
Discrimination performance, quantified on a scale of 0 to 1 with a color-constancy index, varied from 0.69 to 0.97
over 21 scenes and two illuminant changes, from a correlated color temperature of 25,000 K to 6700 K and from

4000 K to 6700 K. The best account of these effects was provided by receptor-based rather than colorimetric
properties of the images. Thus, in a linear regression, 43% of the variance in constancy index was explained by
the log of the mean relative deviation in spatial cone-excitation ratios evaluated globally across the two images

of a scene. A further 20% was explained by including the mean chroma of the first image and its difference from
that of the second image and a further 7% by the mean difference in hue. Together, all four global color properties
accounted for 70% of the variance and provided a good fit to the effects of scene and of illuminant change on
color constancy, and, additionally, of changing test-surface position. By contrast, a spatial-frequency analysis of the
images showed that the gradient of the luminance amplitude spectrum accounted for only 5% of the variance.

Keywords: Natural scenes, Color constancy, Image statistics, Spatial cone-excitation ratios, Spatial-frequency
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Introduction

The ability of human observers to make accurate judgments about
the colors of surfaces under different colored lights depends on
many factors. Predicting the accuracy of such judgments, that is,
the degree of color constancy is difficult, especially when the
surfaces are part of natural scenes containing complex spatial
variations in spectral reflectance. The problem might, however, be
made more tractable by taking a statistical approach in which the
color properties of images as a whole are considered rather than
just the particular features of the surface being judged and its local
context. From psychophysical experiments with simpler geometric
displays, the global properties of average scene hue, saturation,
and the variation in these quantities over the field of view might all
be relevant factors (e.g., Webster & Mollon, 1995; Brown &
MacLeod, 1997; Kulikowski et al., 2001; Wachtler et al., 2001;
Brenner et al., 2003). But there are few data in the literature
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describing surface-color judgments in natural scenes that might
provide the basis for such an analysis.

To address this problem, a psychophysical experiment was
undertaken to measure surface-color matching with images of
natural vegetated and non-vegetated scenes under different illumi-
nants characteristic of the sun and sky at different times of the day
(Judd et al., 1964; Wyszecki & Stiles, 1982). The images were
generated from hyperspectral data, to allow the accurate and
independent control of illuminant and reflectance spectra, and they
were viewed on a high-resolution color monitor driven by a 30-bit
RGB color-graphics computer system. An operational approach to
the color-matching task was adopted (Craven & Foster, 1992;
Foster, 2003) in which observers reported in each experimental
trial whether a test surface in the scene had changed in its
reflecting properties during the change in daylight. The spectral
reflectance of the test surface was varied randomly from trial to
trial, and observers’ ability to detect that variation across succes-
sive images of the scene was used to quantify their color constancy
(Foster & Nascimento, 1994, Appendix 1; Foster et al., 2003). As
anticipated, observers’ performance varied markedly with the scene.

To then determine how well this variation in performance could
be explained by global image statistics, a linear regression analysis
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was performed using a range of colorimetric and receptor-based
properties of the images. The most successful explanatory factor
was the mean deviation in spatial ratios of cone excitations due to
light reflected from pairs of surfaces evaluated over the scene
under two successive illuminants. In conjunction with other global
statistics, namely, the mean chroma of the image of the scene
under the first illuminant, its difference from the mean chroma of
the image of the scene under the second illuminant, and the mean
difference in hue, it was possible to explain 70% of the perfor-
mance variation, the rest being attributed to local image properties
and to individual observer variation.

A separate control experiment was undertaken in which the
position of the test surface in the scene was changed. The resulting
change in performance was limited, and its variation with scene
could also be explained by these global color properties. To test the
role of purely spatial global properties, the luminance distribution
in each image was subjected to a spatial-frequency analysis. The
gradient of the amplitude spectrum accounted for only 5% of the
performance variation.

Materials and methods

Stimuli and procedure

The natural scenes used as stimuli were drawn from the Minho
region of Portugal, which has a temperate climate and a variety of
land covers. Twenty-one close-up and distant hyperspectral images
of scenes were acquired. These comprised the main vegetated and
non-vegetated land-cover classes (UNESCO, 1973; Federal Geo-
graphic Data Committee, 1997), including woodland, shrubland,
herbaceous vegetation (e.g. grasses, ferns, and flowers), barren
land (e.g., rock), cultivated land (fields, also farm outbuildings),
and urban (residential and commercial buildings). Images of eight
example scenes are shown in Fig. 1A to Fig. IH (and a further
eight in Foster et al., 2004). For the present purposes, the set of
natural scenes did not have to be an exhaustive representation of
the land-cover classes, merely sufficiently varied to produce a
useful range of experimental performance levels. The fact that the
main findings from the analysis of performance were stable under
repeated resampling of the 21 scenes suggests that the set was
indeed large enough, and moreover, it contained no or few outliers.
Nevertheless, it remains a finite sample from a potentially infinite
population.

Each scene included a gray or colored sphere in the field of
view that provided the experimental test surface (indicated by
arrows in Fig. 1A to Fig 1G), except for three distant scenes in
which a uniform surface (e.g., a roof or wall, Fig. 1H) was used
instead (introducing a gray sphere into the scene has been used
previously to measure illumination with an RGB camera (Ciurea &
Funt, 2003)). A larger image of the test sphere in Fig. 1F is shown
in Fig. 2. Scenes were recorded under a cloudless sky with the sun
behind the camera, or occasionally recorded under uniform cloud.
Any scenes containing visible light sources, including the sky,
were excluded and, as far as possible, also those containing water,
glass, and other materials producing specular reflections.

In each trial of the experiment, two images of a particular scene
were presented in the same position in sequence on a computer-
controlled color monitor, each for 1 s, with no interval (a design
that yields higher levels of color constancy than side-by-side
simultaneous presentation; see Foster et al. (2001a)). The images
differed in the global illuminant on the scene, which was first a

REVISED PROOF

Page: 2

D.H. Foster et al.

spatially uniform daylight of correlated color temperature 25,000
K and then one of 6700 K; or first one of 4000 K and then one of
6700 K. During the global illuminant change, the spectral reflec-
tance of the test surface in the second image also changed, by a
random amount (see Fig. 2 for examples of illuminant and reflec-
tance changes with detail of Fig. 1F). The observer’s task was to
decide whether the test surface in the successive images was the
same or different; that is, whether an illuminant change alone or an
illuminant change accompanied by a change in the spectral reflec-
tance of the test surface had occurred (Craven & Foster, 1992).
Responses were made with mouse buttons connected to a com-
puter. Observers were allowed to move their eyes freely. At the
beginning of the experimental session, the experimenter indicated
the identity of the test surface to the observer verbally and by
pointing, and gave a demonstration of illuminant changes and
varying sizes of reflectance changes.

Although 21 scenes were available with the 25,000 K illumi-
nant first, this number was reduced to 18 with the 4000 K
illuminant first, owing to limits on the gamut of colors displayable
by the monitor. The images were viewed binocularly at 100 cm and
subtended approx. 18° X 14° visual angle. Depending on the scene,
the subtense of the test surface varied from 0.3° to 5.6°, with
median 0.7°, interquartile interval 0.5°.

Over scenes, maximum pixel luminance varied from 8 to 33
cd m~2, and minimum pixel luminance from 0 to 1 cd m~2 (actual
black level of the display was approx. 0.004 cd m~?2). The exper-
iment took place in a darkened room. The monitor was surrounded
by an illuminated neutral surface with reflected luminance approx.
0.5 cd m™2 and was viewed by the observer within a black
non-reflecting tunnel. Evidence offered elsewhere (Baraas et al.,
2006), suggests that rods did not contribute to discrimination
performance. Observers each performed no less than 325 (5 blocks X
65) trials per scene. Details of the design and randomization are
given later (see llluminant and reflectance variation). Each exper-
imental session took about 1 h, and observers participated in no
more than two experimental sessions per day, with at least a 1-h
gap between the two.

In the control experiment on the effect of changing test-surface
position, a subset of 6 scenes was selected yielding mid-range
levels of color constancy; the test surface was inserted in a
different position in the scene; and the foregoing measurements
repeated.

Scene acquisition

The hyperspectral imaging system used to record the scenes for
this study was based on a low-noise Peltier-cooled digital camera,
which provided a spatial resolution of 1344 X 1024 pixels
(Hamamatsu, model C4742-95-12ER, Hamamatsu Photonics K.K.,
Hamamatsu, Japan) with a fast tunable liquid-crystal filter (VariSpec,
model VS-VIS2-10-HC-35-SQ, Cambridge Research & Instrumen-
tation, Inc., Woburn, MA) mounted in front of the lens, together
with an infrared blocking filter (Foster et al., 2004). Focal length
was typically set to 75 mm and aperture to f/16 or f/22 to achieve
a large depth of focus. The line-spread function of the system was
close to Gaussian with standard deviation approximately 1.3 pixels
at 550 nm. The intensity response at each pixel, recorded with
12-bit precision, was linear over the entire dynamic range. The
peak-transmission wavelength was varied in 10-nm steps over
400-720 nm. The bandwidth (FWHM) was 10 nm at 550 nm,
decreasing to 7 nm at 400 nm and increasing to 16 nm at 720 nm.
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Fig. 1. Example scenes and corresponding plots of surface-color judgments. The images A—H subtended approx. 17° X 14° visual angle
in the experiment and each contained a test surface, either a small sphere (A-G) or part of a building (H), indicated by arrows. In the

corresponding contour plots a-h, the relative frequency of observers

LTS

illuminant-change” responses to a change in illuminant on the

scene and variable test-surface reflectance is shown in the CIE 1976 (u',v") chromaticity diagram as a function of the chromaticity of
the reflectance change: the darker the contour, the higher the frequency. The square symbols show the position of the first illuminant
(daylight with correlated color temperature 25,000 K in a—d, 4000 K in e-h); the circles the second illuminant (6700 K); and the
triangles the mode (and where large enough the bars show £1 SE), from which the color-constancy index was derived. With perfect
constancy, the triangles and circles are coincident. The line marked L is the daylight locus.

Immediately after acquisition, the spectrum of light reflected
from a small neutral (Munsell N5 or N7; see details later) refer-
ence surface in the scene was recorded with a telespectroradiom-
eter (SpectraColorimeter, PR-650, Photo Research Inc., Chatsworth,
CA), the calibration of which was traceable to the National Phys-
ical Laboratory. Images were corrected for dark noise, spatial
nonuniformities (mainly off-axis vignetting), stray light, and any
wavelength-dependent variations in magnification or translation
(registration). The effective spectral reflectance at each pixel was
then estimated by normalizing the corrected signal against that

obtained from the reference surface. Further details are given
elsewhere (Nascimento et al., 2002; Foster et al., 2004, 2006).
For each scene, a second hyperspectral image was also re-
corded with several spheres placed at different points in the field
of view. The spheres were covered in Munsell N5 or N7 matt
emulsion paint (VeriVide Ltd, Leicester, UK), and, depending on
the scene, their diameters varied from 5 mm to 300 mm. The
hyperspectral image of one of these spheres was subsequently
inserted into the original hyperspectral image to provide the test
surface (Fig. 1A to Fig. 1G). The location of the test surface varied
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Fig. 2. Examples of illuminant and reflectance changes for detail of scene
F of Fig. 1. A and B: a gray sphere in scene under daylight of correlated
color temperature 25,000 K and 6700 K, respectively; C and D, a reddish
sphere in scene under the same two illuminants. The sequences A to B and
C to D both illustrate illuminant changes; the sequence A to D illustrates an
illuminant change with a reflectance change.

from near the edge of the image to near the center, chosen partly
to accommodate physical constraints and partly to avoid nearby
similarly colored surfaces.

Display system and calibration

Stimuli were produced on the screen of a 21-inch RGB CRT color
monitor (Trinitron Color Graphic Display, model GDM-F500R,
Sony Corp., Tokyo, Japan), with spatial resolution 1600 X 1200
pixels, controlled by a color-graphics workstation (Fuel V12,
Silicon Graphics, Inc., Mountain View, CA) whose 10-bit digital-
to-analog converters provided an intensity resolution of 1024
levels on each of the red, green, and blue guns. Each image of
approx. 1344 X 1024 pixels appeared in the central approx. 85% of
the displayable area of the screen. A calibrated telespectroradiom-
eter (SpectraColorimeter, PR-650, Photo Research Inc., Chat-
sworth, CA) and photometer (LMT, L1003, Lichtmesstechnik
GmbH, Berlin, Germany) were used to monitor and calibrate the
display system. Calibration data included the phosphor coordinates
and voltage-intensity look-up tables for the three guns. The mon-
itor was allowed 1 hour to warm up before use.

Images were prepared off-line. For each scene and color of test
surface, a radiance image for a particular global scene illumination
was obtained by multiplying the effective scene spectral reflec-
tance derived from the hyperspectral data by the global illuminant
spectrum (technical details in Foster et al., 2006). The spectral
reflectance at any pixel producing out-of-gamut values on the
monitor was iteratively affine transformed towards neutral while
preserving luminance (i.e., desaturating the pixel) until it was in
gamut for all illuminants. The mean proportion of pixels affected
was 3% in scenes without flowers, but almost all these pixels were
dark (99% had luminance <5% of maximum). Two close-up
scenes of high-chroma flowers had 29% of pixels affected, but
most of these were also dark (95% with luminance <5% of
maximum). Images were saved in 48-bit RGB PNG format. At run
time, they were converted to 10-bit-per-channel format and dis-
played on the monitor under real-time control with in-house soft-
ware written in C and C++ with OpenGL. Screen refresh rate was
approx. 60 Hz.
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Routine monitoring of the display system tested whether errors
in the displayed CIE (x, y, Y¥) coordinates of a white test patch
were <0.005 in (x, y) and <5% in Y (<10% at low light levels).
Tests of image fidelity used images from the experiments. Thus, 35
separate measurements were made with patches of width >20
pixels and approximately constant chromaticity (usually the test
surface) or edited to have exactly constant chromaticity, with
values in the CIE 1976 chromaticity diagram of 0.167 = u' =
0.286 and 0.383 = v’ = 0.541 at different positions on the screen.
Errors were =0.002 in (u', v"), and <10% in Y. For patches of this
size, chromatic errors were therefore less than 15% of the 0.015
grid spacing in the (u’, v’) plane used to sample observers’
responses (small solid points in graphs of Fig. 1a to Fig. 1h). For
much smaller patches (width <8 pixels, i.e., <11 arcmin) sur-
rounded by pixels of markedly different color, chromatic errors
about twice this size were recorded with the aid of a 2-mm aperture
mask fixed to the monitor screen. Because images were presented
sequentially in the same position on the screen, position-dependent
chromatic errors in each pair of images were the same.

Hlluminant and reflectance variation

The ordering of scenes and global illuminant changes was cho-
sen randomly but fixed in each experimental session. The reflec-
tance of the test surface in the first image was manipulated
independently of the global illuminant: five different initial test-
surface colors were tested in five separate blocks. In each block,
the spectral reflectance of the test surface in the second image
varied randomly, from trial to trial, in one of 65 ways (all
randomization was without replacement). This variation was
achieved by a computational device as follows. Suppose that the
initial spectral reflectance of the test surface was R(A;x,y) at
wavelength A and position (x,y) and that the global illuminant
spectrum was E(A), so that the color signal at the eye was
R(X;x,y)E(A). With a change in spectral reflectance to R'(A;x, y),
say, the color signal becomes R'(A;x,y)E(A); but the same
color signal can be achieved with the original reflectance R(A;x, y)
by replacing E(A) locally by a different daylight E’()) such that
R'(A;x,y)E(A) = R(A;x,y)E’(A); the change in reflectance
R’(A;x,y)/R(A;x,y) = E'(A)/E(X). Varying the chromaticity of
this local illuminant is closely related to varying the chroma-
ticity of the test surface, although the representation of changes
in spectral reflectances R'(A;x,y)/R(A;x,y) in terms of changes
in local illuminants E'(A)/E(A) has the advantage of a natural
colorimetric parameterization that is independent of the initial
spectral reflectance of the test surface, so that averages may be
calculated over stimuli (see Foster et al., 2001a). These local
illuminants were constructed from a linear combination of the
daylight spectral basis functions (Judd et al., 1964) whose cor-
responding chromaticities were drawn from the gamut in the
(u',v") diagram consisting of the 65 locations shown by the small
solid points in the plots in Fig. la to Fig. 1h, with spacing
0.015. The same technique was used to produce the five differ-
ent initial test-surface spectra, whose corresponding (u’,v") chro-
maticities were shifted from the original neutral Munsell N5 or
N7 by (0.015, 0), (0, 0.015), (—0.015, 0), (0, —0.015), and (0, 0).

Observers

Twelve observers (5 male, 7 female), aged 17-30 years, took part
in the experiment with the 25,000 K illuminant first, and a subset
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of eight (3 male, 5 female) with the 4000 K illuminant first (except
for one scene where seven observers were available). All observers
had normal or corrected-to-normal visual acuity and normal color
vision as assessed with Ishihara pseudoisochromatic plates, the
Farnsworth-Munsell 100-Hue test, and Rayleigh and Moreland
anomaloscopy. The experiments were conducted in accordance
with principles embodied in the Declaration of Helsinki (Code of
Ethics of the World Medical Association), and they were approved
by the Research Ethics Committee of the University of Manches-
ter. All observers were unaware of the purpose of the experiment.
Seven observers participated in the control on changing test-
surface location.

Analysis

For each scene, the relative frequency of “illuminant-change”
responses, pooled over observers, was calculated as a function of
the chromaticity of the local illuminant in the (u’,v") chromaticity
diagram. The frequency plots were smoothed by a two-dimensional
non-parametric locally weighted quadratic regression (“loess” Cleve-
land & Devlin, 1988), and contour plots derived as shown in
Fig. la to Fig 1h (cf. Bramwell & Hurlbert, 1996, who used a
two-dimensional Gaussian model; Foster et al., 2003). Each con-
tour represents a constant relative frequency: the darker the con-
tour, the higher the frequency; differences between contours
represent approx. 0.10-0.15 differences in frequency. The position
of the maximum of each frequency distribution was obtained
numerically from the loess analysis (shown by the triangles in
Fig. 1ato Fig. 1h). If the observer had perfect color constancy, that
position would coincide with the position of the second illuminant
(circles). To summarize the error in the surface-color judgment
(i.e., the bias) a standard color-constancy index (Arend et al.,
1991) was then derived. That is, if a is the distance between the
positions of the maximum (triangle) and the 6700 K illuminant
(circle) and b the distance between the positions of the 25,000 K
or 4000 K illuminant (square) and 6700 K illuminant (circle), then
the constancy index is 1 — a/b. Perfect constancy corresponds to
an index of unity and perfect inconstancy corresponds to an index
of 0, where the response peak coincides with the first global
illuminant. The standard error (SE) of this index was estimated
with a bootstrap procedure, based on 1000 replications, with
resampling over observers (Efron & Tibshirani, 1993).

The constancy indices for each scene and illuminant change
were assessed against possible global image properties in a linear
regression analysis, the indices weighted by their estimated SEs.
Global properties were here defined as those functions of the
whole image that did not depend on the properties of the test
surface, in particular, its spatial location. As already indicated, the
properties considered were of two kinds: one was colorimetric,
based on CIELAB lightness L*, hue h,;,, and chroma Cj;, (which
correlates with colorfulness as a proportion of the brightness of a
similarly illuminated area that appears white; see e.g., Fairchild
(2005)); the other was receptor-based, involving simple combina-
tions of excitations in long-, medium-, and short-wavelength-
sensitive cones (L, M, and S), calculated as in Foster et al. (2004).
As a result of previous work, one of these receptoral properties
included the spatial ratio of cone excitations between pairs of
points in the image (Foster & Nascimento, 1994; Nascimento &
Foster, 1997), although here evaluated over all surfaces rather than
just between the test surface and other surfaces or averages over
surfaces in the scene (Amano & Foster, 2004), possibly in some
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nonlinear form (Lucassen & Walraven, 1993, 2005). Differences in
ratios across images were calculated in the following way (Nasci-
mento & Foster, 1997). If r;; = (rjy,r)",r}) is the triplet of
cone-excitation ratios for L, M, and S cones obtained at each pair
of distinct pixels i, j in an image, and |r; ;| represents the Euclidean
norm [(rf)? + (r)")? + (r§)?1"/2, then the mean relative devi-
ation between the images of a scene under first and second
illuminants, (1) and (2), was defined by MRD(r) = E[|r(1) —
r(2)|/min{|r(1)], |r(2)|}], where E represents the average over
pairs of pixels i, j (see Table 1). In practice, to avoid the effects of
correlations due to the 1.3-pixel line-spread function, only alter-
nate pixels in the images were used in the calculation, giving a
total of typically (1344 X 1024)/4 = 344,064 pixels.

Notice that colorimetric and receptor-based properties were
used as explanatory factors, rather than experimental variables
such as scene illuminant, because they represent the information
available to the observer in the color signal. Although the distinc-
tion between colorimetric and receptor-based properties is not
intrinsic, for each may be expressed in terms of others (e.g.,
chroma expressed as a function of cone excitations), they have
different interpretations (Walsh, 1999; Smithson, 2005). More
important is the stability of the linear regression, which requires
that explanatory factors should not be highly correlated (Draper &
Smith, 1998). To this end, combinations of factors that were
linearly dependent were explicitly excluded from the analysis.

Results and comment

From the frequency plots of “illuminant-change” responses, color-
constancy indices were obtained from the 21 scenes under a
change in daylight from a correlated color temperature of 25,000 K
to 6700 K and from the 18 scenes under a change in daylight from
a correlated color temperature of 4000 K to 6700 K. For the eight
example scenes in Fig. 1, indices for scenes A to D under illumi-
nant changes of 25,000 K to 6700 K were 0.77, 0.69, 0.81, and
0.94, respectively, (plots a to d) and for scenes E to H under
illuminant changes of 4000 K to 6700 K were 0.75, 0.65, 0.90, and
0.88, respectively (plots e to h). Very high indices are not, how-
ever, special to non-vegetated scenes (Fig. 1D); for example, with
a close-up of a yellow lily (see Foster et al. (2004), Fig. 1, top
right) the color-constancy index was 0.97 with an illuminant
change of 25,000 K to 6700 K.

To explain this variation with scene and illuminant change, the
regression analysis referred to in Methods was applied to the list of
image statistics in Table 1. As an example of how a particular
image statistic can account for the variation, Fig. 3 shows color-
constancy index plotted against the log of the mean relative
deviation in spatial cone-excitation ratios for each scene and
illuminant change. A log transformation was used to accommodate
the extrema in these ratios, and the axis has been reversed so that
the level of constancy generally improves as the difference in
cone-excitation ratios across the two illuminants decreases. The
proportion R? of variance accounted for in this regression was
43%, corresponding to a product moment correlation coefficient of
0.66, which is statistically highly significant (r = —5.3, 2-tailed
P < 0.00001).

The explanatory power of each image statistic was summarized
by this quantity R?, with its estimated SE based on a bootstrap with
resampling over scenes and illuminant changes (Efron & Tibshi-
rani, 1993). The global statistics in Table 1 are listed in ascending
order of R?, and consist of the mean (denoted by E), SD, and mean
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Fig. 3. Variation of surface-color judgments. Color-constancy index is
plotted against the log of the mean relative deviation in spatial cone-
excitation ratios for each scene under two illuminants. Filled squares are
for 21 scenes with first illuminant a daylight with correlated color temper-
ature 25,000 K and second illuminant 6700 K (data from 12 observers);
filled circles are for 18 scenes with first illuminant 4000 K and second
illuminant 6700 K (data from 7-8 observers); open circles are for images
in the quartile with the highest mean chroma under the first illuminant or
highest difference in mean chroma. The dotted line is an unweighted linear
regression.

relative deviation (MRD) of basic colorimetric or receptor-based
properties.

Combinations of statistics were formed additively. Higher-
order moments, namely skewness and kurtosis, were found to offer
no particular advantage over these quantities.

In general, colorimetric properties provided a limited explana-
tion of the variance in color-constancy index over scenes and
illuminants, at most 28% from the standard deviation of the
chroma of the second image SD(CJ,(2)). By contrast, receptor-
based properties were more successful, with log mean relative
deviation in cone-excitation ratios logo(MRD(r)) accounting for
most variance, namely 43%, as already noted. Increasing the
number of explanatory properties from one to two or more in-
creased R?, but by progressively smaller amounts. Thus, with two
properties, the factor in combination with log mean relative devi-
ation in cone-excitation ratios giving the largest increase in R2,
from 43% to 54%, was mean chroma of the first image, E(C., (1)).
Including the interaction of these two factors as a third term in the
regression increased R? by only 1.7% and did not improve the fit
significantly (F(35,36) = 1.32, P > 0.2).

With three properties, the factor in combination with the pre-
vious two giving the largest increase in R?, from 54% to 63%, was
the mean difference in chroma between first and second images,
E(AC},), equivalent to adding the chroma of the second image as
an independent factor. As with two factors, including the pairwise
interactions of three factors as three additional terms in the regres-
sion increased R? by a further 1.9%, and did not improve the fit
significantly (F(32,35) = 0.57, P > 0.5). Interactions were not
considered further.

With four properties, the factor in combination with the previ-
ous three giving the largest increase in R2, from 63% to 70%
(corresponding to a multiple correlation coefficient of 0.84), was
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the mean difference in hue between first and second images
E(Ah,). Although here added step-by-step, the same four factors
proved optimal in an unconstrained fit, that is, without imposing
the results of the previous fits with one, two, and three factors.

Table 2 shows the coefficients of the four factors in the optimal
fit, each significantly different from zero. Their correlations ranged
from 0.07 to 0.23. Overall, they provided good fits to the effects of
scene and illuminant: adding a fifth property increased R? by 3%
at most, and just failed to improve the fit significantly (F(33,34) =
3.80, P = 0.06).

The coefficient for log mean relative deviation in Table 2 is
negative (i.e., constancy improved as mean relative deviation
decreased) and also negative for the mean chroma of the first
image and for the mean difference in hue between images (i.e.,
constancy worsened as each increased). The influence of chroma is
indicated in Fig. 3, where the points marked by open circles fall in
the quartile of scenes with the highest mean chroma under the first
illuminant or highest difference in mean chroma.

Test-surface size and position

The test-surface size varied in visual angle by a factor of about 18
over scenes, but it had no detectable effect on color-constancy
index: the proportion R? of variance accounted for was 1%; the
slope of the regression was —0.01 with SE 0.05. For the control
experiment in which the position of the test surface was changed,
there was a modest change in color-constancy index: the mean
absolute difference in values across scenes was 0.14 (cf. the range
in Fig. 3). Log mean relative deviation in cone-excitation ratios
accounted for 38% of variance in this difference, a proportion
which rose to 58% with the addition of the mean difference in hue
between first and second images, although the improvement in the
fit was not significant (F(3,4) = 1.37, P = 0.3).

Spatial statistics

Although colorimetric and receptor-based descriptions of natural
scenes were the properties of interest here, it is possible that spatial
properties alone might influence color constancy (e.g. Courtney
et al., 1995; Jenness & Shevell, 1995; Zaidi et al., 1997; Brenner
& Cornelissen, 1998; Wachtler et al., 2001; Zaidi, 2001; Werner,
2003; Hurlbert & Wolf, 2004). A useful spatial statistic for natural
images is the spatial power or amplitude spectrum, which is a
second-order statistic. In general, the amplitude of the spectrum
falls off as the reciprocal of the spatial frequency (Field, 1987).
Both second- and higher-order statistics are important in determin-
ing spatial discrimination performance (e.g., Knill et al., 1990;
Thomson & Foster, 1997; Parraga et al., 2005)

To test whether spatial statistics might be relevant to the present
analysis, the discrete 2-dimensional Fourier transform of the lumi-
nance distribution in each scene under a daylight of correlated color
temperature 6700 K was calculated and the log of the absolute value
of the amplitude plotted against log spatial frequency averaged over
horizontal and vertical directions (results not shown here). On these
log—log plots, the amplitude spectra were well described by linear
regressions, with the correlation coefficient varying from 0.91 to
0.98 over the 21 scenes. The gradient varied from —1.5 to —1.0
(cf. Knill et al., 1990; Tolhurst et al., 1992; Thomson & Foster,
1997) but explained little of the variation in color-constancy index:
the proportion R? of variance accounted for was 5%, not signifi-
cantly different from zero (P = 0.15).
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Table 1. Global image properties in ascending order of proportion of variance R? in color-constancy index
explained by a linear regression on the corresponding statistic

R? SE
Global property Statistic (%) (%)
Mean hue difference E(Ahg) 0.0 5.3
Standard deviation of hue image 1 SD(hy(1)) 0.1 10.9
Standard deviation of lightness image 1 SD(L*(1)) 0.3 55
Standard deviation of lightness image 2 SD(L*(2)) 0.4 5.5
Mean hue image 1 E(hg(1)) 0.4 10.5
Mean lightness image 1 E(L*(1)) 0.5 7.9
Standard deviation of hue difference SD(Ahygy,) 22 8.3
Standard deviation of hue image 2 SD(h(2)) 3.1 10.8
Standard deviation of chroma difference SD(AC,) 6.2 8.9
Standard deviation of color difference SD(AE},) 7.6 9.5
Mean lightness difference E(AL") 13.6 12.3
Standard deviation of cone excitations image 1 SD(g(1)) 17.1 139
Standard deviation of lightness difference SD(AL¥) 17.2 10.6
Mean chroma difference E(AC}, 22.8 13.7
Mean chroma image 1 E(C;, (1) 23.5 13.9
Standard deviation of chroma image 1 SD(CJ, (1)) 26.7 11.8
Standard deviation of chroma image 2 SD(C,;,(2)) 27.5 12.1
Standard deviation of difference in cone excitations SD(Aq) 29.7 13.8
Mean relative deviation in cone-excitation ratios log1o(MRD(r)) 43.2 14.5
Mean relative deviation in cone-excitation ratios log1o(MRD(r)) + E(CJ,(1)) 53.9 11.5

and mean chroma image 1

Mean relative deviation in cone-excitation ratios, logio(MRD(r)) + E(C},(1)) + E(ACE, 63.3 10.8

mean chroma image 1, and mean chroma difference

Mean relative deviation in cone-excitation ratios,
mean chroma image 1, mean chroma difference,
and mean hue difference

log1o(MRD(r)) + E(Cj,(1)) + E(ACS,) + E(Ahg) 70.5 8.0

Statistics were based on one or both images of a scene under two successive illuminants. Thus, for each variable X, the mean E(X)
and standard deviation SD(X) were evaluated over the N pixels of the image; e.g. if lightness L* at pixel i was L}, then E(L*) =
3, L;/N. Differences AX between variables were taken between corresponding pixels of the first and second images (1) and (2), so
AX; = X(1); — X(2);. The variable g is the triplet of L, M, S cone excitations (¢~,¢gM,q’) obtained at each pixel i, and the variable
r is the triplet of cone-excitation ratios (r,rM,rS) obtained at each pair of distinct pixels i, j; e.g., r} = g/*/q}, with g* > 0. The
mean relative deviation MRD(g) of ¢ was given by E[|Ag|/min{|q(1)|, |¢(2)|}], where |g| is the Euclidean norm. Values of CIELAB
lightness L*, chroma C);,, and hue h,, were calculated from the adaptation model CMCCAT2000 (see e.g. Li et al., 2002) and
colorimetric differences from CIEDE2000 (Luo et al., 2001), so AE.;, = AEq,. The coefficients of the additive model shown in the last
row are given in Table 2. The estimated SE of R? was obtained from a bootstrap (Efron & Tibshirani, 1993).
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General discussion

With the variety and complexity of natural scenes, it seems un-
likely that any single image property would provide a useful
predictor of surface-color judgments under different illuminants.
Yet, as the present analysis has shown, it is possible to explain 43%
of the variance in color-constancy index by the mean relative

deviation in spatial cone-excitation ratios across images of natural
scenes under successive illuminants: in short, the smaller the
deviation, the better the constancy. With the addition of other
global image properties, a further 20% of the variance could be
explained by the mean chroma of the scene under the first illumi-
nant and its difference from the mean chroma of the scene under
the second illuminant, and a further 7% by the difference in mean

Table 2. Values of four most important global image statistics accounting for variation in color-constancy index
with scene and illuminant

Global property Statistic Value SE P
(intercept) 1 0.34 0.11 0.004
Mean relative deviation in cone-excitation ratios logo(MRD(r)) —0.326 0.062 0.00001
Mean chroma image 1 E(Ci (1)) —0.0042 0.0013 0.003
Mean chroma difference E(AC}, 0.046 0.012 0.0006
Mean hue difference E(Ahgy) —0.0037 0.0013 0.007

The estimated value and standard error (SE) of each coefficient in the linear regression is shown with corresponding P-value for a
2-tailed r-test against the hypothesis that the coefficient is zero (d.f. = 34).
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hue. Taken together, all four factors accounted for 70% of the
variance and provided a good fit to the effects of scene and of
illuminant change on color constancy.

Why should deviations in spatial cone-excitation ratios have
such a strong effect on surface-color judgments? It has been
noted elsewhere that, in general, such ratios, which can also be
calculated across post-receptoral combinations (Zaidi et al., 1997)
and spatial averages of cone signals (Amano & Foster, 2004),
are almost invariant under changes in illuminant on scenes of
Mondrian-like patterns of Munsell papers (Foster & Nascimento,
1994) and on natural scenes (Nascimento et al., 2002). Even so,
they are not exactly invariant, and when deviations occur they are
interpreted by observers, incorrectly, as evidence of reflectance
changes rather than of an illuminant change (Nascimento & Foster,
1997). This sensitivity to changes in cone-excitation ratios may
underlie observers’ judgments of transparency with overlapping
surfaces (Westland & Ripamonti, 2000), the spatially parallel
detection of violations in color constancy in single and multiple
targets (Foster et al., 20015), and asymmetric color matching with
center-surround geometry (Tiplitz Blackwell & Buchsbaum, 1988;
Amano & Foster, 2004). In the present analysis, it was the devi-
ations in ratios evaluated over all the surfaces in the scene that
helped explain the variation in judging test-surface color. Given
observers’ misinterpretation of these deviations, it is perhaps not
surprising that their occurrence over the whole field affected
performance.

For a given level of deviation in cone-excitation ratios, the
worsening of surface-color judgments in scenes that under the first
illuminant had high chroma may have been due to a reduction in
receptor response range. On theoretical grounds, highly chromatic
scenes have been linked to poor color constancy, either through the
increased variance of spatial cone-excitation ratios (Nascimento
et al., 2004) or through effects involving chromatic-adaptation
transforms (Morovi¢ & Morovi¢, 2005). The improvement in
surface-color judgments with increasing chromatic difference be-
tween the scenes under the two illuminants (equivalent to increas-
ing the chroma of the second image) is harder to interpret. Although
statistically significant, its effect was similar in magnitude to
decreasing the hue difference between the scenes under the two
illuminants.

Global image statistics do not of course account for all of the
variation in observers’ performance. In addition to individual
differences, there are scene-specific effects involving remote ele-
ments in the field of view as well as local effects of test-surface
surround noted earlier (e.g., Shevell & Wei, 1998; Kraft & Brain-
ard, 1999; Wachtler et al., 2001; Brenner et al., 2003). Although
differences in spatial amplitude spectra did not influence perfor-
mance across scenes, a more comprehensive analysis might at-
tempt to include these local and remote effects and other properties
of the test surface, including its position. Nevertheless, it is
interesting that global statistics account for so much of the varia-
tion in performance, and, moreover, that the effects of changing
test-surface position can be interpreted in terms of the same
explanatory factors.
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