
1 Introduction
The perceived colour of a surface depends on its spectral-reflecting properties, the
spectral-radiance properties of the illumination, and the spectral-reflecting properties
of the other surfaces in a scene. But if variations in the illuminant spectrum are not
too extreme, the visual system can compensate through adaptational and other mecha-
nisms for its effects (Arend and Reeves 1986; Ba« uml 1999). This is the phenomenon of
illuminant colour constancy (Maloney 1999; Foster 2003). Nevertheless, even with a
nominally colour-constant visual system, there will usually be some surfaces in a scene
that will appear different in colour with a change in illuminant. These residual colour
differences are the result of interactions between the illuminant spectrum and sur-
face spectral reflectance that fail to be predicted by the visual system. Some of these
failures are related to the phenomenon of metamerism, whereby two surfaces with
different spectral reflectances appear identical under one light but not under another
(Wyszecki and Stiles 1982).

Are such residual colour differences important in making visual judgments?
Suppose perceived surface colour is used to label or identify objects in a scene under
different illuminants. As the number of surfaces in the selected sample increases, the
information gained from the scene also increases, in a way that can be defined for-
mally by information-theoretic methods. In the presence of residual colour differences,
however, there will be errors in identification and a loss in information.

To quantify this information loss, an analysis was made of high-resolution digital
representations of rural and urban scenes obtained with a hyperspectral imaging
system, which provided estimates of the surface spectral reflectance at 10-nm intervals
at each point (pixel) in each scene. In computer simulations, scenes were variously
illuminated by daylights of correlated colour temperatures 4 300 K, 6500 K, and
25 000 K. A random sample of points was drawn from each scene and, after compen-
sation for the effects of chromatic adaptation, was labelled within an approximately
perceptually uniform colour space. The reliability of this labelling under changes in
illuminant was used to calculate how much information was preserved in each sample.
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The information preserved under illuminant changes increased with the size of sample,
but was limited to a relatively low asymptotic value, indicating the importance of
physical factors in constraining identification by apparent colour.

2 Methods
2.1 Image reflectances
A high-spatial-resolution hyperspectral imaging system was used to acquire data from
rural and urban scenes in the Minho region of Portugal. Details of an earlier version of
this system have been given in Nascimento et al (2002). The present system used a Peltier-
cooled digital camera providing a spatial resolution of 134461024 pixels (C4742-95-12ER,
Hamamatsu Photonics KK, Japan) with a fast-tuneable liquid-crystal filter (VariSpec,
model VS-VIS2-10-HC-35-SQ, Cambridge Research & Instrumentation, MA, USA) mounted
in front of the lens, together with infrared blocking filter. For each scene, 33 images were
captured at 10-nm intervals with 12-bit intensity resolution at each pixel. The line-spread
function of the system was close to Gaussian with standard deviation �1:3 pixels at
550 nm. Images were corrected for dark noise, spatial nonuniformities (mainly off-axis
vignetting), stray light, and any wavelength-dependent variations in magnification or
registration. The spectral reflectance at each pixel was estimated by normalising the
corrected signal against that obtained from a neutral standard consisting of a small
planar grey (Munsell N5 or N7) surface placed in the scene whose reflected spectrum
was measured with a telespectroradiometer (SpectraColorimeter, PR-650, Photo Research,
Chatsworth, CA), with calibration traceable to the National Physical Laboratory. Initially,
the illumination was assumed to be spatially uniform in all scenes; the effect of indirect
illumination is considered later.

2.2 Representation of surface colours
In computational simulations, scenes were illuminated by daylights with correlated colour
temperatures of first 25 000 K and then 6500 K, or first 4 300 K and then 6500 K. The
surface colours represented by pixels were coded within the three-dimensional colour
space CIELAB, commonly used for surface appearance (Fairchild 1998; Westland and
Ripamonti 2004). It has coordinates L �, a �, b �, with L � representing an achromatic
attribute, and a � and b �, respectively, red ^ green and yellow ^ blue chromatic attributes.
The procedure was as follows. For each of the three illuminants, the spectrum of the
reflected light at each pixel was first converted to tristimulus values. The effects of full
chromatic adaptation to the sample were then calculated from a simple standardised
model, CMCCAT2000 (see eg Li et al 2002); that is, a fixed linear transformation M,
defined by CMCCAT2000, was applied which converted the original tristimulus values
X, Y, Z to nominal R, G, B values; these were then scaled by a diagonal (von Kries)
linear transform representing full adaptation; and then the inverse transformation Mÿ1

was applied to obtain the c̀orresponding colours' XC,YC,ZC . These XC,YC ,ZC values
were then converted to L �, a �, b � values with respect to a reference white achromatic
stimulus D65 of luminance 100 cd mÿ2. Because just-noticeable colour differences do
not always have the same CIELAB differences (CIELAB space is perceptually non-
uniform), the CIE colour-difference formula CIEDE2000 and the colour-difference
formula CMC(l : c) of the Colour Measurement Committee of the Society of Dyers
and Colourists (see eg Luo et al 2001) were each used to evaluate the differences DE.
Additional calculations were made with other plausible values of the chromatic-adaptation
transformation M (Finlayson and Su« sstrunk 2000, 2002).

2.3 Information-theoretic measure of object identification
A comprehensive measure of the ability to identify surfaces across a change in illumination,
from say illuminant e1 to illuminant e2 , is provided by the mutual information I(e1 ; e2 ) from
information theory (Cover and Thomas 1991; MacKay 2003). Informally, I(e1 ; e2 )
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represents the reduction in uncertainty about a sample of surfaces under illuminant
e1 given knowledge about the surfaces under illuminant e2 .

Estimates of I(e1 ; e2 ) for a fixed pair of illuminants e1 , and e2 were obtained as
follows. Repeated draws of n sample points (pixels) were taken at random, without replace-
ment, from a selected scene. In each draw, each point under illuminant e2 (CIELAB
coordinates L �2 , a

�
2 , b

�
2 ) was identified with the point under illuminant e1 (coordinates L �1 ,

a �1 , b
�
1 ) that was closest to it in colour: its `nearest neighbour' (the difference between

coordinates being defined according to the colour difference DE ). From these repeated
draws, a probability transition matrix was derived, giving the probability p(i, j) of
identifying point j under illuminant e2 with point i under illuminant e1 . From p(i, j),
the mutual information I(e1 ; e2 ) is given by

I�e1 ; e2 � �
Xn
i�1

Xn
j�1

p�i, j� log p�i, j�
p�i�p� j� , (1)

where

p�i� �
Xn
j�1

p�i, j� and p� j� �
Xn
i�1

p�i, j� .

If the base of the logarithm is 2, then I(e1 ; e2 ) is expressed in bits. Numerical esti-
mates will be given later, but, for comparison, upper limits on the information used by
observers have been estimated as 29 ^ 58 bits in some attentive-detection tasks (Verghese
and Pelli 1992) and 36 ^ 49 bits in a partial-report task (Sperling 1960).

Difficulties with the expression given in equation (1) can arise when n is large
and the probabilities p(i, j) are small (eg Brillinger 2002). The problem can be circum-
vented, however, when n is so large that the distribution of colour-code values may
be treated as continuous; for then an estimate of an upper bound C on I(e1 ; e2 ) can be
taken from an analysis of the capacity of an additive noise channel, where the noise
between input and output corresponds to the differences in code values under illumi-
nants e1 and e2 . If the noise is distributed normally, then the capacity of this Gaussian
channel has a simple formulation in terms of the quotient of the variances of the
code values and of the noise (Cover and Thomas 1991). This quotient corresponds
in effect to the number of distinguishable code values. Thus, if the variances in the
coordinates L �1 , a �1 , b �1 over the selected scene are vL � , va � , vb � and the variances in
the differences L �2 ÿ L �1 , a

�
2 ÿ a �1 , b

�
2 ÿ b �1 are vDL � , vDa � , vDb � , then

C � 1

2
log2 1� vL �

vDL �

 !
� log2 1� va �

vDa �

 !
� log2 1� vb �

vDb �

 !" #
, (2)

providing L �, a �, b � are independent. Although the assumption of independence can
be justified, neither L �, a �, b � nor the differences DL �, Da �, Db � are exactly normally
distributed. Even so, it may still be shown that equation (2) cannot be exceeded with
normally distributed code values and nearest-neighbour identification (Lapidoth 1996).

3 Results
3.1 Mismatches
Figure 1 illustrates how incorrect identifications occur. The solid symbols mark the
CIELAB chromatic coordinates (a �, b �) of 5 points under the 25 000 K illuminant and
the open symbols their coordinates under the 6500 K illuminant, after full chromatic
adaptation. For points 1 ^ 4, the assumption that each open symbol corresponds to
the nearest solid one (ignoring the L � coordinate) gives the correct identification, but
not so for point 5, where the open symbol is closer to the solid symbol for point 4.
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3.2 Information capacity
The curves in figure 2 show the estimated information preserved I(e1 ; e2 ) under
changes in illuminant from 25 000 K to 6500 K as a function of the logarithm to the
base 2 of the number of sample points n. The evaluation of equation (1) was restricted
to the range 1 4 n 4 210, to avoid the estimation problem (section 2.3). Similar results
were obtained with other scenes and scenes cropped to minimise the effects of shadows
(as described in Nascimento et al 2002). Under the assumption that performance can
be approximated by an additive Gaussian channel, these curves have asymptotes at
9 ^ 11 bits for these particular illuminant changes. A similar pattern of performance
was obtained with changes in daylight illuminant from 4300 K to 6500 K.

Critically, the square root of the sum of the variances vDL � , vDa � , vDb � of the
differences in the corresponding values of L �, a �, b � under the two illuminants
(see section 2.3) often exceeded 1.0. Since the nominal threshold for a CIELAB (or
CIEDE2000) difference to be visually detectable is of this order (or less), it follows
that incorrect identifications can occur as a result of clearly discriminable changes in
colour appearance, despite full von-Kries adaptation.
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Figure 1. The origin of incorrect identifica-
tions. The solid symbols mark the CIELAB
chromatic coordinates (a �, b �) of 5 points
under a daylight of correlated colour temper-
ature 25 000 K, and the open symbols their
corresponding coordinates under a daylight
of correlated colour temperature 6 500 K
(the L � coordinate has been ignored).

10

8

6

4

2

0

In
fo
rm

a
ti
o
n
p
re
se
rv
ed
=
b
it
s

0 2 4 6 8 10
log2 number of sample points

buildings
town
fields
leaves

Figure 2. Information preserved I(e1 ; e2 ) under a change in daylight illuminant from e1 with
correlated colour temperature 25 000 K to e2 with correlated colour temperature 6 500 K as a
function of the logarithm to the base 2 of the number of sample points n. The broken curves
are for four different scenes and the solid line of unit slope shows the maximum possible value
of I(e1 ; e2 ). Each scene was of size 134461024 pixels.
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4 Discussion
Because of the nature of physical surfaces and illuminants, there will usually be some
surfaces in a scene that will appear different in colour with a change in illuminant. If
perceived surface colour is used to label or identify objects in a scene under different
illuminants, then these failures in colour constancy will lead to a loss in information.
As has been shown here, the information preserved under illuminant changes increases
as the number of sample points in the scene increases, but it is eventually limited by
an asymptotic value. This asymptote depends, of course, on the magnitude of the
change in illuminants. It also depends on the nature of the scenes, although the effect
seems not to be large.

Information capacity was estimated here for a perceptual colour space with an
approximately uniform colour-difference metric and for the completely adapted eye.
How the effects of adaptation are estimated depends to some extent on the nature of
the chromatic-adaptation transformation described in section 2.2. Replacing this trans-
formation by one that corresponds to the adaptation of more spectrally sharpened
colour mechanisms (Foster and Snelgar 1983; Finlayson and Su« sstrunk 2002) may lead
to an improvement in performance. Even so, the information capacities described here
define relevant physical limits to visual performance, which are rarely considered in
experimental studies of surface-colour-matching ability (cf Nascimento et al 2004).
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