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Abstract. Measures of sensory performance yielding a
nonlinear dependence on stimulus level are often used
to derive a critical stimulus level that corresponds to
some criterion level of performance. Typical examples
include the sigmoidal psychometric function used to
estimate a “threshold” stimulus level, and the power-
law increment-threshold curve used to estimate a “field
sensitivity”. Estimates of the variance of an estimated
critical stimulus level derived from a single set of
performance data are, however, infrequently reported,
even though other estimates of reliability may not be
available. An application of the classical “combination
of observations” method is described here by which
such variance estimates may be computed. The
method was tested by applying it to sets of simulated
psychometric-function data and increment-threshold
data and comparing its results with those obtained by
Monte-Carlo studies, each comprising 1000 runs.
Differences between the estimated root mean variance
of the estimated critical stimulus level and the “true”
value were found to be not more than about 3% of the
true value.

1 Introduction

Many measures of sensory performance produce non-
linear dependencies on stimulus level. Typical
examples include the sigmoidal or logistic, psycho-
metric function, relating the probability of a correct
stimulus response to the level of the stimulus (Fig. 1a),
and the power-law, increment-threshold function, relat-
ing the “threshold” increment of a test stimulus level to

* A portion of the data presented here was contained in a
communication read at the Keele meeting of the Experimental
Psychology Society, March 1985

the background or field stimulus level (Fig. 2a). One
purpose in obtaining such performance data is to
estimate a critical level of the stimulus or some other
factor that yields a criterion level of sensory perfor-
mance. In the case of the psychometric function, this is
the level of the stimulus (the “threshold”) that corre-
sponds to some target probability, for example 75% in
a 2-alternative forced-choice task; in the case of the
increment-threshold curve, this is the level of the field
that corresponds to an increment threshold that is a
fixed multiple of absolute threshold; the reciprocal of
this field level is the “field sensitivity”.

Estimates of the variance or standard deviation of
an estimated critical stimulus level derived from a
single set of performance data are not commonly
reported. This may not be important where replication
of the experiment is feasible and several sets of
performance data may be used to obtain independent
estimates of a critical stimulus level. In a number of
experimental situations, however, there may not be
opportunity to obtain more than one set of perfor-
mance data and replication cannot then be used to
assess reliability. Even when replication is possible,
estimates of the variance of the individual estimates of
the critical stimulus level are still needed to compute
the best estimate of that level. The purpose of this
communication is to draw attention to the usefulness
of an approximate method belonging to the classical
study of the “combination of observations”. Under
fairly general conditions, the method allows a good
estimate to be made of the variance of an estimated
critical stimulus level from performance data, and
moreover the variances of any other variables (includ-
ing the parameters of the model curve) depending on
those data.

It may be noted that some existing computer
software packages, for example those based on the
Gauss-Newton algorithm, can routinely produce esti-
mates of the variances of parameter-value estimates, as
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do those procedures which transform the data so that
traditional linear least-squares regression may be used.
[For discussion of nonlinear least-squares regression
modelling see Ratkowsky (1983) and Draper and
Smith (1981, Chap. 10).] The method described here,
however, is quite general. Its principal requirements
are that some model- or curve-fitting procedure is
available, that the function or algorithm relating the
estimate of the critical level of the stimulus (or any
other variable) to the experimental data is well
behaved, and that the variances of the performance
values are reasonably small. No other special con-
straints on the curve-fitting procedure or the estimate of
the critical stimulus level or other variable are im-
posed. In particular, there is no requirement that the
performance data be transformed nonlinearly (as in
probit analysis), or that the goodness of fit be deter-
mined by least-squares, or that the performance values
be treated as normal random variables, or that the
matrix of 2"-order partial derivatives, the Hessian,
should be known, or that the estimate of the critical
stimulus level or other dependent variable should be
expressible as a linear transformation of the parameter
values of the performance curve.

2 Estimation of Variance by Combination
of Observations

Let y,,¥,5,...,y, be a set of n performance values
measured at corresponding values x,, x,, ..., X, of the
stimulus variable. For each pair of values (x;, y;), there
is a random “error” which causes y; to deviate from its
expected value. Let T be the estimate of the critical
value of the stimulus derived from the experimental
data by fitting some model performance curve.
Examples of this derivation are given in Sect. 4. The
variable T may be regarded as a function of the y;,
i=1,2,...,n, thus

T=g(y1, Y2 > Vn) - (1)

Suppose that the variances of the y;, are o7,
i=1,2,...,n. Then provided that the ¢; are all small,
the variables y; are uncorrelated (a condition that may
be relaxed at the cost of greater computational com-
plexity), and the function g is well behaved (Lindley
1965), the variance var(T) of T is given approximately
by

var(T)= ¥ (39/0y°o? @)

where the partial derivatives dg/dy; are evaluated at
Yi:Y25 o5 Vne

3 Implementation

In the example applications described below, a non-
linear optimization technique modified from the sim-
plex method (Nelder and Mead 1965) was used to fit
the model performance curve to the simulated data to
obtain, in turn, the estimate T in (1). The simplex
method is robust and computationally compact, and it
tends to produce a good approximate answer quite
efficiently (Dixon 1972), requiring mainly additions,
subtractions, and simple logical orderings, with few
multiplications and no divisions. Goodness of fit was
measured by the likelihood function.

The partial derivatives dg/dy; in (2) were each
estimated by finite-difference approximations. The
goodness of the estimates were monitored by compar-
ing values obtained by taking forward and backward
differences. The variances 62,i=1,2, ..., n, were, in the
case of normally distributed y,, assumed to be given. In
those cases where prior estimates of the ¢7 are not
available, they may be estimated from repeat measure-
ments of the y; at each stimulus level x;, i=1,2,...,n,
or, provided that the o7 are all equal (usually true for
increment-threshold data after the traditional log
transformation) and the performance model is correct,
they may be estimated by the residual sum of squares
divided by the residual degrees of freedom n— p, where
p is the number of parameters of the model. The
adequacy of the model may be tested in the usual way
by comparing the two estimates of the ¢7. In the case of
binomially distributed y;, i=1,2,...,n, the o7 were
determined from the y; and the number of trials at each
level.

4 Monte-Carlo Simulations

Computations were carried out in FORTRAN on a
laboratory minicomputer (CAI Alpha LSI-2 with
floating-point precision of 7 significant decimal digits)
and on two mainframe computers (CDC 7600 and
Cyber 176 with floating-point precisions of 15 signifi-
cant decimal digits). Where appropriate, calculations
were done in double-precision arithmetic. Results
presented here were obtained on the mainframe com-
puters; results for the minicomputer were similar, but
rather less precise.

Two classes of psychophysical performance were
simulated: the one comprising psychometric functions
characterized by an underlying sigmoidal dependence
of performance on stimulus level, with binomially
distributed performance values, and the other com-
prising increment-threshold functions characterized
by an underlying power-law dependence of perfor-
mance on (field) stimulus level, with normally dis-
tributed performance values (after logarithmic trans-



formation). An important property of any variance
estimate is its bias, that is, the difference between its
mean over successive determinations and its “true”
value. The “true” value was estimated in each case by
Monte-Carlo simulations of the psychophysical per-
formance over 1000 runs. For ease of comparison of
variance estimates with parameter values of the
models, square roots of variance estimates (standard
deviations, SDs) were tabulated. Percentage bias was
defined as the difference between the root mean
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Fig. 1a and b. Sigmoidal psychometric function. a lllustration of
simulated data set based on Eq. (3) with =500, =50, y=2,
and number of trials N =100 at each level x. b Histograms of
estimated values of « and f obtained over 1000 simulations
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variance estimated by the combination-of-observa-
tions method and the true value, expressed as a
percentage of the true value.

Sigmoidal Psychometric Function. A family of logistic
functions was used to model psychometric-function
data, thus
yi=1fy+(1—=1/y) (1 +exp(—(x;—x)/f) ',
i=1,2,...,n, 3)
where the parameters o and f determined the “mid-
point” and “spread” of the distribution, and the
constant y, when finite, corresponded to the number of
alternatives in the MAFC task giving rise to the data.
(The midpoint of the function is equal to the stimulus
level corresponding to the 75% performance level in a
2AFC task, and to the 50% performance level when
y— oo, where performance ranges from 0 to 100%.) For
given a, B, and v, the values y;, i=1,2, ..., n, in (3) were
replaced by values y;, i=1, 2,...,n, each drawn
pseudorandomly from a binomial distribution in
which the number of trials was N and the probability of
success in a single trial was equal to y,. An illustration
of such a data set for «=50.0, §=5.0, y=2, N=100,
n=111s given in Fig. 1a. This set of simulated data was
fitted by the function (3) by maximizing the likelihood
over o and B, and “new” estimates of the midpoint «
and, additionally, the spread f computed. One
thousand such sets of data were generated, which, in
turn, gave rise to 1000 estimates of « and f. Example
histograms of the estimated values of « and f are
illustrated in Fig. 1b. Variances of these estimates were
calculated and used as the “true” values'. The
combination-of-observations method was then ap-
plied individually to 1000 of the sets of simulated data,
resulting in 1000 estimates of the variances of the
estimates of ¢ and S.

Results obtained with two different values of the
parameters f§ and y in the underlying function (3) are
summarized in Table 1. In no case was the percentage
bias in the estimated SDs of the estimates of « and
B estimated by the combination-of-observations
method relative to the “true” SD more than 3.1%.

In an exploratory simulation to test the effect of
increasing the size of the o; [Eq. (2)] in Condition 2
(Table 1), the number of trials N at each level x; was
reduced from 100 to 10. Percentage bias in the
estimated SDs of the estimates of « and B then
increased to 11% and 14% respectively.

Power-Law Increment-Threshold Function. A family of
functions proposed by Sigel and Brousseau (1982), who

1  Inallcases, the distribution of estimated values did not differ
significantly from normality (p>0.1), and the means of the
estimated values did not differ by more than 0.5% of the model
values
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Table 1. Comparison of standard deviations (SDs) of estimates of
(a) the midpoint &, and (b) the spread § ofan underlying sigmoidal
function [Eq. (3)] obtained for two conditions (1,2), by direct
calculation (“True SD”), based on Monte-Carlo studies of 1000
runs each, and by the combination-of-observations method
(“Approx. SD”), where the root mean variance was computed
over 1000 simulations. Percentage bias in the combination-of-
observations method is shown. Parameter values for the underly-
ing sigmoidal function [Eq. (3)] and number of trials N at each
stimulus level x are indicated

Condition  True Approx. % Bias
SD

1(a) 1.002 1.000 0.20

1(b) 0.563 0.580 3.03

2(a) 1.003 1.034 3.11

2(b) 0.654 0.636 283

Condition 1: =500, §=10.0, y> 00, N= 100
Condition 2: =500, =50, y=2, N=100

generalized the increment-threshold function de-
scribed by Barlow (1958), was used to model
increment-threshold data, thus

yi:a(xi—i—lg)y’ i=1527"'7n7 (4)
or, after log,, transformation,

logy;=loga+ylog(x;+p), i=12,..,n, (5)

where the parameters «, f, and y determined absolute
threshold, the “break-point” of the curve, and the slope
of the curve. For given «, §, and y, the values logy,,
i=1,2,...,n, in (5) were replaced by values yi,
i=1,2,...,n, each drawn pseudorandomly from a
normal distribution with mean logy, and standard de-
viation o,=0 =0.05. An illustration of such a data set
for loga=1.0, logf="70, y=1.0, 6=0.05, and n=10
is given in Fig. 2a, where x’=logx. This set of simu-
lated data was fitted by the function (5) by minimizing
the residual sum of squares (equivalent to maximizing
the likelihood) and estimates computed of the loga-
rithm of the stimulus levels x'=¢; and x"=¢&,, corre-
sponding to elevations in log(increment threshold), y’,
of respectively 0.3 and 1.0 above log(absolute thres-
hold), loga+ylogf. One thousand such sets of data
were generated, which, in turn, gave rise to 1000
estimates of &, and &,. Example histograms of the
estimated values of £, and &, are illustrated in Fig. 2b.
Variances of these estimates were calculated and used
as the “true” values®. The combination-of-observa-
tions method was then applied individually to 1000 of
the sets of simulated data, resulting in 1000 estimates
of the variances of the estimates of &, and &,.
Results obtained with two different values of the
parameter y in the underlying function (5) are sum-
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Fig.2a and b. Power-law increment-threshold function. a Il-
lustration of a single simulated data set based on Eqgs. (4) and
(5) with loga=10, logf=70, y=1.0, and standard deviation
6=0.05 for all y'. b Histograms of estimated values of log(field
level) ¢,, and log(field level) &,, obtained over 1000 simulations

marized in Table 2. In no case was the percentage
bias in the estimated SDs of the estimates of & and &,
estimated by the combination-of-observations method
relative to the “true” SD found to be more than 1.8%.
Note that the size of the “true” SD is of the order of the
SDs of the log(increment threshold) values. Note also
the decrease in the size of the “true” SD with increase
(0.3 to 1.0) in the criterion elevation in log(increment
threshold) and with increase in the exponent 7.



Table 2. Comparison of standard deviations (SDs) of estimates of
(a) log(field level) ¢,, and (b) log(field level) &,, for an underlying
power-law function obtained for two conditions (1,2), by direct
calculation (“True SD”), based on Monte-Carlo studies of 1000
runs each, and by the combination-of-observations method
(“Approx. SD”), where the root mean variance was computed
over 1000 simulations. Percentage bias in the combination-of-
observations method is shown. Parameter values for the underly-
ing power-law function [Eq. (4)] are indicated

Condition  True Approx. % Bias
SD
1(a) 0.0630 0.0635 0.85
1(b) 0.0492 0.0496 0.83
2(a) 0.1151 0.1172 1.78
2(b) 0.0798 0.0802 043
Condition 1: loga=1.0, logf=70, y=1.0,
d=0.05
Condition 2: loga=1.0, logf="7.0, y=0.5,
o=0.05

In an exploratory simulation to test the effect of
increasing the size of the o, [Eq. (2)], the value of ¢ was
increased to 0.2 on the log scale. This value is rather
larger than would be expected in practice. Increases
in percentage bias in the estimated SDs of the
estimates of &, and &, were of the same order as
those obtained for the sigmoidal psychometric func-
tion with larger o,

5 Discussion

Estimates of the variance of a critical level of a stimulus
variable derived in a psychophysical performance task
may be useful in a number of circumstances: (1) where
replications of the experiment are impossible; (2) where
replications of the experiment are possible and the best
(minimum-variance) estimate of a critical stimulus
level is to be obtained by a weighted mean over the
separate replications of the experiment; and (3) where
values of the variance have an intrinsic importance, for
example when abnormal values signify the presence of
abnormal sensory function (compare Patterson et al.
1980).

Implicit in the present approach has been the
assumption that sufficient data were available to fit a
model performance curve. To make such a fit, it is not
necessary to determine performance at regular inter-
vals over the whole stimulus range. Indeed some
techniques for estimating a critical stimulus level have
deliberately combined selective sampling of the stimu-
lus range with fitting a performance curve. In the case
of the psychometric function, the simple adaptive
procedure PEST (Parameter Estimation by Sequential
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Testing; Taylor and Creelman 1967) has been used to
generate the testing levels and a psychometric function
fitted by maximum likelihood (Hall 1981). This hybrid
adaptive procedure makes fuller use of the data
obtained by PEST; it allows the number of trials to be
fixed; and it is relatively insensitive to inappropriate
estimates of the initial stimulus level and changes in
stimulus level (Hall 1981). In the case of the increment-
threshold function, a procedure has been followed in
which very few segments of the range were sampled
and a standard template fitted to derive field sensitiv-
ities (Stiles 1978, p. 19).

The values of the parameters of the sigmoidal and
power-law performance functions (3) and (4) used here
were chosen to be reasonably illustrative of values that
might be encountered in practice. In all the cases
tabulated, the percentage error in the root mean esti-
mated variance was not more than about 3% of the
“true” value, and this error would probably be consid-
ered acceptably small in many practical situations.
But, as with any method depending on Taylor-series
expansions, it is possible that with some performance
functions and particular critical stimulus levels the
combination-of-observations method may fail. The
method has, however, been used successfully in the
author’s laboratories for over one year with increment-
threshold data and with psychometric-function data
obtained by the hybrid adaptive procedure as well as
by the method of constant stimuli.

The combination-of-observations method appears
to have general applicability, and need not be re-
stricted to the estimation of variances of estimates of
particular stimulus levels or other dependent variables.
It might be used to test different stimulus parametriza-
tions to determine those which are more “natural” by
their minimum variance (a suggestion due to Dr. R.J.
Watt!) and, similarly, it might be used to evaluate
different performance models against the variance of
some test statistic (a suggestion due to Dr. P.T.
Smith!). Caution should, however, be exercised in the
general application of minimum-variance criteria if the
accuracy of the model is uncertain, as Draper and
Smith (1981, p. 25) have noted.
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manuscript.
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Two unfortunate printing errors were made in the above article:
on page 192, the footnote reference “2” on line 6 from the bottom of columa | should have been “1”,
on page 193, the footnote reference “1” on lines 13 and 16 from the bottom of column 2 should have been “*”.

Note added in proof. Dr. W. F. Bischof has pointed out the
relevance of a different approach, that of the bootstrap [Efron
B (1982) The jackknife, the bootstrap and other resampling
plans. CBMS-NSF Regional Conference Series in Applied
Mathematics, No.38; Society for Industrial and Applied
Mathematics, Philadelphia, PA] in which the variance of a
statistic is computed by repeated resampling of the data.



