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[. INTRODUCTION

In a classic paper [1], Zadeh introduced the notion of fuzzy sets and
fuzzy set operations. Chang [2], Wong [3], Lowen [4], and others
developed a theory of fuzzy topological spaces and Rosenfeld [5] initiated
a theory of fuzzy groups. These were brought together by Foster [6] to
form the elements of a theory of fuzzy topological groups.

Starting with a vector space E, a structure for fuzzy vector spaces and
fuzzy topological vector spaces was proposed by Katsaras and Liu [7]. In
this paper, we develop the theory of fuzzy topological vector spaces further
and introduce the notion of the differentiability of fuzzy continuous map-
pings defined on fuzzy topological vector spaces. The properties of
derivatives and formal rules of derivation are also briefly discussed. We
point out that our approach does not depend upon the imposition of a
norm on the space E. In particular, the derivative defined here should be
distinguished from the differential of a “fuzzy function™ described by Puri
and Ralescu [8] which relates to mappings from an open subset of a nor-
med space into a subset of fuzzy sets defined on a reflexive Banach space.

2. PRELIMINARIES

Definitions and notation for fuzzy sets follow Zadeh [17, and those for
fuzzy points and neighbourhoods follow Pu and Liu [9].

Let X be a set and [ the unit interval [0, 1]. A fuzzy set 4 in X is charac-
terized by a membership function p, which associates with each point
xe X its “grade of membership” p (x)el

* On leave from Istituto di Fisiologia e Chimica Biologica, Universita di Torino, Italy.

589
0022-247X/87 83.00

Copyright -« 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.



590 FERRARO AND FOSTER
DeriNiTION 2.1, Let 4 and B be fuzzy sets in X. Then

A=B<p,(x)=pug(x), xelX;
Ac B p (x) < pg(x), xelX;
C=AUB<s puc(x)=max{p,(x), us(x)}, xeX:
D=AnB< pup(x)=min{p,(x), ug(x)}, XeX;
E=CyA=pdx)=1—pu,(x), xeX.

More generally for a family {4}, jeJ, of fuzzy sets the union C=J,., 4,
and the intersection D =(\,., A; are defined by

pelxy=sup p,(x),  xelX,
jed
,u,)(x):infu/,,(x), xeX.

jeJ

We denote by k. the fuzzy set in X with membership function g, (x)=c,
cel, xe X. The fuzzy set k, corresponds to the set X and the fuzzy set k, to
the empty set (7.

DEFINITION 2.2. A fuzzy point in X is a fuzzy set with membership
function u,,(x), x € X, defined by
Uy (x)= 4, for x =y,

=0, otherwise,

where 0 < 2 < 1. The point y is called the support of y; and 4 its value (com-
pare Goguen [10], Pu and Liu [9], Sarkar [11]). The fuzzy point y; is
said to be contained in, or to belong to, a fuzzy set A, written y, € A, iff
A ().

DEFINITION 2.3. Let f be a mapping from a set X to aset Y. Let Bbe a
fuzzy set in Y, with membership function uz. Then the inverse image of B,
written f ~'[B], is the fuzzy set in X with membership function defined by

H/'*I[B](x)=ll3(f(x)), xeX.

Conversely, let 4 be a fuzzy set in X, with membership function u,. Then
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the image of A, written f[A], is the fuzzy set in Y with membership
function p,41(y), y€ Y, defined by

Hray(y)= su;]) Halz), if f~'(») is nonempty,
zef7Hy)

=0, otherwise,
where f~'(y) = {x]| f(x)=y}.

LEMMA 2.1.  Let f be a mapping from a set X to a set Y, let A,, A, be
Sfuzzy sets in X and let B,, B, be fuzzy sets in Y. Then

(i) AicA,=f[A4,]1< f[A4,],
(i) BycB,=f""[B1cf '[B,].
Proof. See [2].

3. Fuzzy TOPOLOGICAL SPACES

The following definition of a fuzzy topological space is due to
Lowen [4].

DEFINITION 3.1. A fuzzy topology on a set X is a family 7 of fuzzy sets
in X which satisfies the following conditions.
(i) Forallcel k. e7.
(1) If A, BeZ,then AnBeJ.
(i) If 4;€.7 forall jeJ, then {J;,., 4,€ 7.
The pair (X, 77} is called a fuzzy topological space, or fts for short, and the
members of J are called J -open fuzzy sets, or simply open fuzzy sets.

In the definition of a fuzzy topology by Chang [2], the condition (i) is
just

(1) ko keT.

The inclusion in J of all fuzzy sets with constant membership function is
required for the fuzzy continuity of the constant functions.

DEerFINITION 3.2, A fuzzy set in X is said to be F -closed, or closed for
short, iff its complement is an open fuzzy set.

DEFINITION 3.3. Let (X, ) be a fts. A fuzzy set 4 in X is called a
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neighbourhood of a fuzzy point y, in X iff there exists an open fuzzy set
Be 7 such that y;e B A.

Lemma 3.1, Let (X, 7)) be a fts and let 9(y;) denote the set of all
neighbourhoods of a fuzzy point y, in X. Then every member of 4(y.) has the
Sfollowing properties.

(i) Every fuzzy set which contains a fuzzy set belonging to 4(y,) itself
belongs to 4(y,).
(ii)  Every finite intersection of sets of 4(y;) belongs 1o 4(y,).

Proof. Straightforward.

DerINITION 3.4. In a fts (X, 7) a fundamental system of neighbourhoods
of a fuzzy point y, is a set #8(y;) of neighbourhoods of y; such that for
each neighbourhood A of y; there is a Be #(y;) such that Bc 4.

DerFINITION 3.5, Let (X, 7), (Y, ¥7) be two fts’s. A mapping f of (X, .7)
into (Y, ¥") is fuzzy continuous iff for each open fuzzy set V in 7 the
inverse image f ~'[ V'] is in 7. Conversely, f is fuzzy open iff for each open
fuzzy set U in 7, the image f[U] is in ¥". The mapping f is fuzzy con-
tinuous at a point x e X iff for each open fuzzy set V in ¥~ containing the
fuzzy point y;=(f(x))s, 0<d <1, the inverse image /~'[V] is an open
fuzzy set in 7 containing x,, 0 < i <.

LEmmA 3.2. If (X, 7), (Y, 7") are fis’s and [ is a mapping of (X, .T)
into (Y, ") the following assertions are equivalent.

(1) The mapping [ is fuzzy continuous.

(i) For each fuzzy set A in X and each neighbourhood V of f[A],
there is a neighbourhood U of A such that f{TU] c V.

Proof.  See [2].

DEFINITION 3.6. Let (X, .77), (Y, 77) be two fts’s. A bijective mapping of
(X, 77 ) onto (Y, ¥} is a fuzzy homeomorphism iff both fand /" are fuzzy
continuous.

DerFINITION 3.7, Given a family {(X, 7))}, je J, of fts’s, we define their
product [, (X;, 7;) to be the fts (X, ), where X =T],., X, is the usual
set product and J is the coarsest topology on X for which the projections
p; of X onto X, are fuzzy continuous for each jeJ. The fuzzy topology 7 is
called the product fuzzy topology on X, and (X, 7°) a product fts.
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LemMma 33. Let {(X,, 7))}, jeJ, be a family of fis's and (X, T) the
product fts. The product fuzzy topology I on X has as a base the set of finite
intersections of fuzzy sets of the form p'[U;], where U;e 7}, je J.

Proof. See [3].

Let {X,,, Jj=1,2,., n, be a finite family of sets and for each j let A;bea
fuzzy set in X;. We define the product A=[];_, A; of the family {4,} as the
fuzzy set in X [T, X; that has membership functlon given by

.u/i(xl Lad] X”) = min{:“/l](xl )»"'a /JA,,(xn) }’ (xl Laad] xn) € X

It follows from the above that if X, has fuzzy topology 7, j=1, 2,..., n, the
product fuzzy topology .7~ on X has as a base the set of product fuzzy sets
of the form [T/_, U,, where U,e 7, j=1,2,.,n

We make use of the following separation property.

DerFINITION 3.8. A fts (X, 7) is called a fuzzy T, space iff every fuzzy
point is a closed fuzzy set.

LEMMA 3.4. A fts (X, T ) is a fuzzy T, space iff for each xe X and each
i€l there exists Be T such that ug(x)=1—4, ug(yv)y=1, for all y # x.

Proof. See [9].

Lemma 3.5 If {(X;, 7))}, j= L, 2., n, is a finite fumily of fis's, each of
which is a fuzzy T, space then the product fts (X, 7)) is a fuzzy T, space.

Proof. Every fuzzy point y;, 0<i<1, in X can be thought of as the
product of fuzzy points (y,);, /=1, 2,..., n, each with suport y; and the same
value 4. By hypothesis each (y,); is closed, whence the product itselfl is
closed (see [12]). 1

4. Fuzzy ToPOLOGICAL VECTOR SPACES

The first part of this section follows Katsaras and Liu [7]. Let £ denote
a vector space over the field K of real or complex numbers.

DerINITION 4.1, Let {4,}, j=1, 2,..., n, be a finite family of fuzzy sets in
a vector space E. The sum A=A, +A,+ - + A, of the family {4},
j=1,2,.,n, is the fuzzy set in E whose membership function is given by

I'I'A(x) = sup min{:uAl(xl )7‘"7 I"A,,(xn)}’ xekE.

R R
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The scalar product o4 of we K and 4 a fuzzy set in E is the fuzzy set in E
that has membership function u,,(x), x € E, given by

Haa{x) = pt4(x/o) for a #0,
= o,(x) for a =0,

where A =sup,. . u (»).

LEMMA 4.1.  Let E, F be vector spaces over K, and let [ be a linear mapp-
ing from E into F. Then, for all fuzzy sets A, B in E and all scalars «,

(i) STA+B]l=f[A1+f[B]
(ii) flad]=af[A]
Proof. See [7].

COROLLARY. o[ A+ Bl=ad+aB for all fuzzy sets A, B in E and all
scalars a.

LEMMA 4.2, If A, B are two fuzzy sets in E and a e K, a #0, then

0Ac B=Ac l/aB.
Proof.  Obvious.

DEeFINITION 4.2, A fuzzy set 4 in a vector space E is said to be balanced
if eA < A for all ae K, |a| < 1.

LEMMA 43. Let A, B be fuzzy sets in E. If A, B are balanced, then the
sum A+ B and the scalar product aA, a € K, are balanced.

Proof. See [7].

LemMA 4.4, If A is a balanced fuzzy set in E, then

Balx)=p, (~x), x€eE.
Proof. Obvious.

LemMA 4.5, If A is a balanced fuzzy set in E then

(1) pa(x) 2 pa(Ex), xeE, for all |&|>1,
(i) ua(0) > palx), xeE.

Proof. Since A is balanced u,(x)> p,4(x), x€ E, for all a, |a| < 1.
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(i) Choose 20 and set £ =1/o. Then p{x) =y 4(x) = p(éx) for
il =1

(i) Choose a=0. Then by Definition 4.1 puq.{x)=po,(x), x€kE,
where A =sup,. p4(y) Thus po,(0)=4>p,(x), xe E, and, since 4 is a
balanced fuzzy set, p,(0)=po4(0) = (x), xe E. |

DEerFINITION 4.3. Let 4 be a fuzzy set in a vector space E. The balanced
hull of A is the intersection of all balanced fuzzy sets in £ which contain A.

LEMMA 4.6. Let A be a fuzzy set in E. Then the balanced hull of A is the
Juzzy set <1 @A
Proof. See [7].

DEFINITION 4.4. A fuzzy topological vector space, or ftvs for short, is a
vector space E over a field K, equipped with a fuzzy topology Z such that
the two mappings

(i) o:(x,y)=x+yof (E,T)x(E, 7)into (E, T ),
(i1) 7 (o, x) = ax of (K, A )x (E, 7 ) into (E, T),

where " is the usual topology on K, are fuzzy continuous.

In the sequel (E, ), or E for short, denotes a ftvs with scalar field K.

PROPOSITION 4.1. For each ae E and each ae K, a#0, the mapping
x—oax+aof (E, ) into (E,7) is a fuzzy homeomorphism.

Proof. The mappings x — (o, x) and x — (x, a) are fuzzy continuous
(see [6]) and the mappings («, x) - ax and (x, a) - x + a are fuzzy con-
tinuous by Definition 4.4. |

The structure of a ftvs places constraints on which fuzzy sets can be
neighbourhoods, as the following lemma shows.

LemMMa 4.7. Let O, be a fuzzy point in E. Let V be a fuzzy set in E con-
taining 0,. If there is a point ae E such that p,(ka)=0, for all nonzero
ke K, then V is not a neighbourhood of 0.

Proof. Suppose that V' is a neighbourhood of 0;, and without loss in
generality that V' is open. Consider the function 7: (k, a) — ka and let a,,
0< <4, be a fuzzy point. For k=0 the point ka;e V. Since = is fuzzy
continuous there is a neighbourhood of (0, a;) such that ., (x) < u,(x),
x € E, for ¢ a nonzero scalar. Set x =¢a. Then p,(a) < p,(ea). But this con-
tradicts the definition of V. |
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Let 0; be a fuzzy point and 4, B be fuzzy sets in a ftvs E. The following
lemmas are needed for Proposition 4.2.

LEMMA 4.8. If' A and B are neighbourhoods of O then the sum A + B and
the scalar product aA, o€ K, a#0, are neighbourhoods of 0.

Proof. 1f A, B are neighbourhoods of 0; there exist two open fuzzy sets
U,Vin Esuch that0,e U, 0,e Vand Uc 4, V< B. The sum U+ V can be
represented as the union |, . (x,+ V), where v=p,(x). But x,+ V is an
open fuzzy set in E since its membership function is given by o (y) =
SUPy, 4+ o=y Min{p (X)), p(xy)} = min{v, py(y —x)} = min{g, (),
Krpv(¥)), veE, where k, is the fuzzy set with constant membership
function and f.: y - y +x, i.e., x, + V is the intersection of two open fuzzy
sets. Since U + V' is the union of open fuzzy sets, it is itself open. Obviously
U+ V<= A+ B The membership function of U+ V is given by

Huwp(x)=sup  min{g,(x,), u(x,)}, X€eE

AVEE SRNIERY

If x;=x,=0, then min{u,(x,), u,(x,)} >4, and, a fortiori,

Hov(0)= sup min{u,(x,), pidxa)} = A

X +x2=90

The second statement of the Lemma is obvious. |

LEMMA 49. If A is a neighbourhood of 0, then there exists a
neighbourhood B of 0, such that B+ Bc A.

Proof. By fuzzy continuity of the sum, for every neighbourhood 4 of 0,
there exist neighbourhoods B,, B, of 0, such that Up + (X)) < p (x), xe E.
Let B=B,n B,. Then g, 5(x) < py 4 5(x), for all xe E.

LemMa 4.10. If' A is a neighbourhood of 0, then there exists a
neighbourhood B of 0; such that aB < A for every ae K, |a| < 1.

Proof. Let A be a neighbourhood of 0;. Since the scalar product is con-
tinuous there exist an ¢>0 and a neighbourhood U of 0, such that for
CeK, (¢l <e u:y(x)<p4(x), xeE By hypothesis |« < 1. Hence |aé| <e
and p,e(x) < p,(x). Set ¢U= B, and the result follows. ||

PROPOSITION 4.2. Let E be a ftvs. For every Juzzy point 0;, 0< i<,
there exists a fundamental system of neighbourhoods (0 ;) in E for which
the following results hold.

(i) For each Ue %(0,) there is a Ve B(0,) with V+ V< U.
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(ii) For each Ue #(0;) there is a Ve #(0,) for which aV <= U for all
anek, |o| <1,

(iit)  Every Ue #(0;) is balanced.

Proof. Let %(0,) be any fundamental system of neighbourhoods. Then
(i) and (ii) are true by Lemmas 4.9 and 4.10, respectively. For (iii) we first
show that the set of balanced hulls of fuzzy sets in #(0,) is itself a fun-
damental system of neighbourhoods of ;. Let W be a neighbourhood of
0,. Then there exists a fuzzy set Ve £(0;) such that u, (x)< uy(x), x€E,
x| £1. The membership function of the balanced hull U of V is
Ho(X)=Sup, <1 Halx), xe E. Hence py(x)= p(x), xe E. We show next
that every U is balanced. Let ¢ be a scalar such that |¢| < 1. Suppose that
Uu(x)=p(x), xe E, for a=0. Then p,,(x)=p,(x). Next suppose that it
is not true that g, (x)=py,(x), xe E. Let ¢#0. Then p, (x)=p (x/e)=
SUD |y <1 Har(X/€) = SUD 4 < | Har(X). Defining xe=¢E, we obtain p, . (x)=
SUP e <o Hep(X) KSUDP o < o) =pp(x). If €=0, then pg,(x) is nonzero
only for x =0. Suppose that u,,(0) > u(0), i.e., there is an x # 0 such that
Ho(x) > p(0). Since pp(x) =sup, < 4, (X), there must exist a nonzero «
such that u,(y)> ., (0) with y = x/a,. But, by the definition of balanced
hull, 1,(0) = pe(0)=sup .., p,(x), ie, p (0)=pu,(y), which contradicts
the initial supposition. ||

5. Fuzzy DIFFERENTIATION

The treatment here is based on the definition given by Lang [13] of the
derivative of a mapping from one topological vector space to another. Let
E, F be two fuzzy topological vector spaces and let ¢ be a mapping from F
into F. Let o(¢) denote any function of a real variable 7 such that lim, _
o(t)/t=0.

DerFiNITION 5.1. The mapping ¢ is said to be tangent to 0 if given a
neighbourhood W of 0, 0 <d <1, in F there exists a neighbourhood V' of
0,, 0< A<, in E such that

gpleV]c=o(t) W,
for some function o(t).

LEMMA 5.1.  If the mapping ¢ is tangent to O, then ¢ is fuzzy continuous
at OeE.

Proof. By Lemma 4.10, for every neighbourhood W of 04, 0 << 1, in
F there exists a neighbourhood W’ such that u,, u(y)<puw(y), yeF,
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lo(2)| < 1. By Definition 5.1, for each W’ there exist neighbourhoods ¥, V7,
V=1V, of 0,, 0<A<d, in E such that Borr1 (V) = tyra (V) S oy ¥),
yeF. |

LEMMA 5.2, If ¢ and § are two mappings tangent to O then their sum
¢+ is a mapping tangent to 0.

Proof.  For every neighbourhood W of 0;, 0 <d<1, in F there exists,
by Lemma 4.9, a neighbourhood W’ such that W'+ W’ < W. Hence,
Bonrw + oty w(¥) = Moiorw + wi(¥) Stoyw(y), yeF, by Corollary to
Lemma 4.1, and Lemma 2.1. By Definition 5.1, there exist two
neighbourhoods ¥V, and V, of 0,, 0< A<, in E such that Uoriva(¥) <
toyw(¥), Buroy(P) Slonyw(y). Set V=V,nV,. Then torn(P) <
Kotnyw (1), Hyror (V) < poyw(p) Whereupon Bt +uron(V) <
Honw(¥) 1

Lemma 5.3. Let E, F, G be fros’s. If ¢ is a mapping of E into F tangent
to 0 and fis a linear mapping of F into G that is fuzzy continuous at 0 € F,
then fo ¢ is tangent to 0. Conversely if f is a linear mapping of E into F,
Juzzy continuous at 0 € E, and ¢ is a mapping of F into G tangent to 0, then
¢ [ is tangent to 0.

Proof. By fuzzy continuity of f, for every neighbourhood W of 0,,
0<v<1, in G there is a neighbourhood ¥ of 0,5, 0 << v, in F such that
Brv1(2) S uulz), ze G. For every such V there exists a neighbourhood U of
0;, 0<Ai<é, in E such that Boro (V)< po(¥), ye€ F. By Lemmas 2.1
and 4.1, prryr011(2) < lstoiv1(2) = Bo 101(2) < oy wl2), 2 € G. The proof
of the second part of the Lemma proceeds in a similar way. ||

COROLLARY. If ¢ is a mapping tangent to O then the scalar product ag is
a mapping tangent to 0.

DEFINITION 5.2. Let E, F be two ftvs’s, each endowed with a T, fuzzy
topology. Let f: E— F be a fuzzy continuous mapping. We say that f is
fuzzy differentiable at a point x € E if there exists a linear fuzzy continuous
mapping u of E into F such that we can write

Sx+y)=f(x)+u(yy+é(y), yekE,

where ¢ is tangent to 0. The mapping u is called the fuzzy derivative of f at
x. We denote the fuzzy derivative by f'(x); it is an element of L(E, F), the
set of all linear fuzzy continuous mappings of E into F.

From this point on we shall suppose that each ftvs is equiped with a T,
fuzzy topology.
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ProOPOSITION 5.1.  The fuzzy derivative f'(x) of a mapping f of E into F
at a point x € E is unique.

Proof. Suppose that the derivative is not unique. Then there exist two
linear fuzzy continuous mappings u,,u, such that u,(y)+d¢(y)=
u(p)+y(y), yeE, where ¢ and ¢ are each tangent to 0. Set
n(y)=u,(y)—uy(y), ye E. Then n(y)=y(y)—¢(y), and, by Lemma 5.2,
n(y) must be tangent to 0. By hypothesis, » is not zero. Let ae E be such
that n(a) =r #0. By Lemma 3.4, for each r#0, re F, there exists an open
fuzzy set B in F such that pz(0)=1 and ug(r)=0. If (0,) is a fundamen-
tal system of balanced neighbourhoods of 0;, 0<Jd <1, in F, there is a
We#(0s) with membership function pu(z)<<ugz(z), zeF, with
U (Z2) Sy dz) for all |e| < 1. If E=1/e for e#0, then uy(ér) < uylr)=0,
[¢] = 1. It follows that for every ' of the form kr, k € K, k #0, there exists ¢
such that pu(&r')=0. Since n is tangent to 0, there must be a
neighbourhood V' of 0;, 0 <A<, in E such that p,,,1(2) < poyulz), z€F,
whence p,;q(2) < p U(,)/,)W( z) by linearity of » and Lemma 4.2. In par-
ticular, setting z=r" and t/o(t)=¢, we have p,rp (r')=sup.c,- 1
1 (x) =0, which implies u,(ka)=0. But, by Lemma 4.7, a fuzzy set V' with
a membership function u,(ka)=0 for all k #0 is not a neighbourhood of
0,. Hence » must be zero. The fuzzy derivative is thus unique. §

PROPOSITION 5.2. A constant function from a ftvs E into a ftus F is fuzzy
differentiable at every point of E.

Proof. Straightforward.

PROPOSITION 5.3.  The fuzzy derivative of a linear fuzzy continuous mapp-
ing u of a ftvs E into a ftvs F exists at every point x € E.

Proof. Straightforward.

PROPOSITION 5.4.  Suppose that F=T1/_, F, is the product ftvs of a finite
Samily of ftvs’s F;, j=1, 2,..., n, and that f'is a fuzzy continuous mapping of E
into F. In order for f to be fuzzy differentiable at x € E, a necessary and suf-
ficient condition is that each p;o f be fuzzy differentiable at x.

Proof. (=) By linearity of the projections p; we can write, for every j,
PASCe+y) = () = pAS"()(»)+ p(#(»). yeE By Definition 37,
p;of'(x) is fuzzy continuous and linear, and, by Lemma 5.3, p,o¢ is
tangent to 0. Since f'(x) is unique p;° f'(x) is unique.

(<) Foreveryjwe can writep,(f(x+y)) p,(f( x))=uly)+¢,(»),
where u; is a linear fuzzy continuous mapping and ¢ is tangent to 0. Let W
be a nelghbourhood of 05, 0<8<1, in F. By the remark following
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Lemma 3.3, W can be expressed without loss in generality as the product
of neighbourhoods W, of 05 in F;, j=1, 2,.., n. By hypothesis, for every W,
there is a neighbourhood V, of 0/, 0< /A<, in E such that R o2 )<
Hoinw(Z)), = GF Setting V N;V;, we have Pator(Z) St (z) <
,uu(l)W,( ) fOI' dll/ BUt .unu)w( ) mm lﬂu(r)w( )l /_ 1 2» * nl Set
¢= H,_| ¢ Then Horin(z )<m1n1,u¢ [,V]( ); Sﬂumw( ), 1.e., ¢ is tangent
to 0. Define f*(x)=TT/_, u;. This mapping is linear and fuzzy continuous
by the fuzzy continuity of the , (see [6]). The uniqueness of 7”(x) follows
by the uniqueness of the u;. ||

PROPOSITION 5.5. Let E, F, G be ftvs's, [ a fuzzy continuous mapping of
E into F, and g a fuzzy continuous mapping of F into G. Let xe E and
y=f(x). If [ is fuzzy differentiable at x and g is fuzzy differentiable ar y,
then the composition h= g- f is fuzzy differentiable at x.

Proof. By hypothesis / and g are fuzzy differentiable. Hence we can
write

JCe+r)—=fC)=1(x)(r) + $(r), rek,
gly+s)—g(y)=g(yNs)+¥(s), seF,

where ¢ and y are each tangent to 0. Defining h=yg-f, we obtdin
after substitution, hx +r)—=hlx) = g (X)) + g (y)br)

w(f( )+ #(r)), reE. By Lemma 53, g'(v) ¢ is tdngent lo O.
Con51der the mdppmg Y (f'(x)+ ¢). For every neighbourhood W of 0,,
O<v<l, in G there is a neighbourhood V of 05, 0<d<v, in F such
that pyr,4(2) < poyulz), z€ G. Given V there exists a neighbourhood V'
of 0, such that V' + V"< V. We can suppose, without loss in generality,
that both ¥ and V' belong to a fundamental system of balanced neigh-
bourhoods 4(0,). By the fuzzy continuity of /'(x) there is a neighbourhood
Aof 0, 0< i<, in E such that Hpceyraq(¥) < py-(y), which implies that
Hopeora)(3) S -3 1€ fpora(¥)<p,-(v), yeF. For every V' there
exists a neighbourhood B of 0; in E for which Mori(¥) < iyyi-(y) and,
for lo(t)/t] <1, wyy(¥)<p,pAy), yeF. Setting U=An B and using
Lemma 2.1, we obtain gy, opoy(V) < s y), which implies that
YLo[tUT+ () [tUTl <y [tV] = o(1) W, ie., the mapping o (f'(x)+ ¢)
from E to G is tangent to 0. Thus at last we can write h(x+r)—/1(x)
g(y)e fr(x)ry+x(r), reE, where g'(y)f'(x) is linear and fuzzy con-
tinuous, and , the sum of two mappings tangent to 0, is tangent to 0. ||

PROPOSITION 5.6. Let f, g be two fuzzy continuous mappings of E into F.
If fand g are fuzzy differentiable at x, so are f + g and of, a e K.

Proof. The mapping f + g is composed of x — (f(x), g(x)) from E into
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Fx Fand of (u,v) > u+v from Fx Finto F. The first is fuzzy differentiable
by Proposition 5.4 and the second by definition of the sum; the result
follows from Proposition 5.5. For of it is sufficient to note that the map-
ping u — ou of F into itself is fuzzy differentiable by Proposition 5.3. ||
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