Table of Color Constancy Indices and Experimental Methods





Table 1. Levels of color constancy from some experimental studies. Average constancy indices CI and Brunswik ratios BR are tabulated against experimental method, stimulus configuration, illuminants, judgment by subject, experimental apparatus, illuminant change, cues other than those defined by the experimental method, constraints on stimulus variation, the number of subjects N, and source of data. Values of CI and BR are averages over subjects and conditions, with some entries estimated from published figures. Not all entries were calculated exactly as in Section 4.1 of Foster (2011), but they retain the properties that CI values cannot exceed unity and BR values can. 


Experimental method

Stimulus configuration

Illuminants

Judgment

Experimental apparatus

Illuminant change

Other cues

Constraints

N

CI

BR

 

Source





















































Simultaneous asymmetric
 matching


 

 

 

 

 

 

 

 

 

 

 

 

 


 

2D multielement

Daylights

Same paper

Monitor

Spectral product

 

Chromaticity

3

0.52

 

 

Arend and Reeves (1986, Fig. 4)

 

2D multielement

Daylights

Same hue, saturation

Monitor

Spectral product

 

Chromaticity

3

0.20

 

 

Arend and Reeves (1986, Fig. 4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2D patch in surround

Daylights, others

Same hue, saturation

Monitor

Spectral product

 

Chromaticity

4

0.30

 

 

Tiplitz Blackwell and Buchsbaum (1988, Tables 1,3,6,8,10)

 

2D patch in far surround

Daylights, others

Same hue, saturation

Monitor

Spectral product

 

Chromaticity

4

0.15

 

 

Tiplitz Blackwell and Buchsbaum (1988, Tables 1,3,6,8,10)

 

2D multielement

Daylights

Same paper

Monitor

Spectral product

 

 

4

0.44

 

 

Arend et al. (1991, Fig. 7)

 

2D multielement

Daylights

Same hue, saturation,
brightness

Monitor

Spectral product

 

 

4

0.18

 

 

Arend et al. (1991, Fig. 7)

 

2D patch in surround

Daylights

Same paper

Monitor

Spectral product

Gray surround

 

3

0.35

 

 

Arend et al. (1991, Fig. 9)

 

2D patch in surround

Daylights

Same hue, saturation,
brightness

Monitor

Spectral product

Gray surround

 

3

0.11

 

 

Arend et al. (1991, Fig. 9)

 

2D multielement

Colored lights

Same paper[a]

Monitor

von Kries shift

Gray background

Chromaticity

14

0.81

0.82

 

Troost and de Weert (1991, Table 2)


2D multielement

Colored lights

Same hue,
saturation[a]

Monitor

von Kries shift

Gray background

Chromaticity

14

0.46

0.46

 

Troost and de Weert (1991, Table 2)


2D multielement

Daylights

Same paper

Monitor[b]

von Kries shift

 

Chromaticity

5

0.37

 

 

Cornelissen and Brenner (1995, Fig. 4B)


2D multielement

Daylights

Same hue, saturation

Monitor[b]

von Kries shift

 

Chromaticity

5

0.18

 

 

Cornelissen and Brenner (1995, Fig. 4B)


3D room

Colored lights

Undifferentiated color
match

Illuminated surfaces

Physical reflection

Gray room

 

5

0.61

 

 

Brainard et al. (1997, Table 3)

 

2D multielement

Daylights

Same paper

Monitor

Approx. spectral product

 

 

8

0.79

 

 

Bäuml (1999, pp 1537,1541)

 

2D multielement

Daylights

Same hue, saturation,
brightness

Monitor

Approx. spectral product

 

 

6

0.23

 

 

Bäuml (1999, pp 1537,1541)


 

2D multielement

Daylights

Same paper

Monitor

Spectral product

 

 

20

0.60

 

 

Foster, Amano, et al. (2001, Table 2)


 

2D multielement

Daylights

Same paper

Monitor

Spectral product

 

Chromaticity

20

0.66

 

 

Foster, Amano, et al. (2001, Table 2)


 

2D multielement

Daylights

Same paper

Monitor

Spectral product

 

 

11

0.74

 

 

Amano and Foster (2004, Table 1)


 

2D multielement,
transposed test

Daylights

Same paper

Monitor

Spectral product

 

 

11

0.70

 

 

Amano and Foster (2004, Table 1)


 

2D multielement,
permuted

Daylights

Same paper

Monitor

Spectral product

 

 

11

0.75

 

 

Amano and Foster (2004, Table 2)


 

3D tableau

Daylight metamers

Same paper

Illuminated surfaces

Physical reflection

Gray background

 

4

0.86

 

 

de Almeida et al. (2004, Fig. 5)


 

3D tableau

Daylight, colored lights

Undifferentiated
color match

Stereo monitor

Spectral product

Gray background

 

4

0.23

 

 

Delahunt and Brainard (2004, Fig. 11)


 

2D multielement

Daylights

Same paper

Monitor

Spectral product

 

 

6

0.73

 

 

Amano et al. (2005, Table 1)


 

2D pair[c]

Daylights

Same paper

Monitor

Spectral product

 

 

6

0.72

 

 

Amano et al. (2005, Table 1)


 

3D tableau

Colored lights

Physical match

Illuminated surfaces

Physical reflection

 

 

7

 

0.84

 

Granzier et al. (2009, Fig. 7)


 

 

 

 

 

 

 

 

 

 

 

 

 


Dichoptic simultaneous
asymmetric matching


 

 

 

 

 

 

 

 

 

 

 

 

 


 

2D multielement

Daylights, other

Undifferentiated color match

Monitor

Spectral product

 

Chromaticity

3

 

0.89[d]

 

Bramwell and Hurlbert (1996, Table 2)


 

 

 

 

 

 

 

 

 

 

 

 

 


Successive asymmetric matching

 


 

 

 

 

 

 

 

 

 

 

 

 

 


 

2D multielement

Colored lights

Same paper[a]

Monitor

von Kries shift

Gray background

Chromaticity

8

0.59

1.38

 

Troost and de Weert (1991, Table 3)


 

2D multielement

Colored lights

Same hue,
saturation[a]

Monitor

von Kries shift

Gray background

Chromaticity

8

0.41

0.42

 

Troost and de Weert (1991, Table 3)


 

2D multielement

Daylights

Same paper

Monitor

Spectral product

 

 

20

0.69

 

 

Foster, Amano, et al. (2001, Table 2)


 

2D multielement

Daylights

Same paper

Monitor

Spectral product

 

Chromaticity

20

0.75

 

 

Foster, Amano, et al. (2001, Table 2)


 

2D multielement

Daylight, tungsten

Same hue, saturation,
brightness

Monitor

Spectral product

 

Chromaticity

3

 

0.50

 

Barbur et al. (2004, Fig. 2b)


 

2D patch in surround

Daylight, tungsten

Same hue, saturation,
brightness

Monitor

Spectral product

Gray surround

Chromaticity

3

 

0.44

 

Barbur et al. (2004, Fig. 2b)


 

 

 

 

 

 

 

 

 

 

 

 

 


Successive asymmetric
matching with adaptation


 

 

 

 

 

 

 

 

 

 

 

 

 


 

2D multielement

Daylights

Same paper

Illuminated surfaces

Physical reflection

Gray background

 

4

0.69

 

 

Kuriki and Uchikawa (1996, Fig. 6)


 

2D multielement

Daylights

Same hue, saturation,
brightness[a]

Illuminated surfaces

Physical reflection

Gray background

 

4

0.56

 

 

Kuriki and Uchikawa (1996, Fig. 6)


 

2D patch in background

Colored lights

Undifferentiated color match

Illuminated surfaces

Physical reflection

Gray background

 

6

0.46-0.63[e]

 

Kulikowski and Vaitkevicius (1997, Fig. 3)


 

 

 

 

 

 

 

 

 

 

 

 

 


Dichoptic successive
asymmetric matching with
adaptation


 

 

 

 

 

 

 

 

 

 

 

 

 


 

2D multielement

Daylights

Same paper

Illuminated surfaces

Physical reflection

Gray background

 

4

0.77

 

 

Kuriki and Uchikawa (1996, Fig. 8)


 

2D multielement

Daylights

Same hue, saturation,
brightness[a]

Illuminated surfaces

Physical reflection

Gray background

 

4

0.72

 

 

Kuriki and Uchikawa (1996, Fig. 8)


 

2D multielement

Daylights

Same hue, saturation,
brightness

Monitor

Spectral product

 

 

3

0.69

 

 

Lucassen and Walraven (1996, Table 3)


 

2D multielement

Metamers[f]

Same hue, saturation,
brightness

Monitor

Spectral product

 

 

3

0.47

 

 

Lucassen and Walraven (1996, Table 3)


 

 

 

 

 

 

 

 

 

 

 

 

 


Successive asymmetric
memory matching with
adaptation


 

 

 

 

 

 

 

 

 

 

 

 

 


 

2D multielement

Daylights,
other

Physical match

Illuminated surfaces

Physical reflection

Gray background

 

2

0.64[g]

 

 

Uchikawa et al. (1998, Fig. 5)


 

2D multielement

Daylights, others

Same paper[a]

Monitor

Approx. spectral product

 

 

3

<0.44

 

 

Nieves, García-Beltrán, and Romero (2000, p. 55)


 

2D patch in 120-deg background

Daylights,
tungsten

Undifferentiated
color match

Monitor

Spectral product

Gray background

 

4

0.91

 

 

Murray et al. (2006, Fig. 7B)


 

2D patch in background

Daylight metamers, others

Physical match

Illuminated surfaces

Physical reflection

White background

Samples

7

0.92 [a,h]

 

 

Ling and Hurlbert (2008, Table 6)


 

3D tableau

Daylights, others

Same paper

Illuminated surfaces

Physical reflection

White background

Samples

28

 

0.79[i]

 

Hedrich et al. (2009, p. 12)


 

2D multielement

Daylights, others

Same paper

Illuminated surfaces

Physical reflection

 

Samples

28

 

0.58[i]

 

Hedrich et al. (2009, p. 12)


 

 

 

 

 

 

 

 

 

 

 

 

 


Color naming and related
methods


 

 

 

 

 

 

 

 

 

 

 

 

 


 

2D patch in background

Colored lights

From 12 colors

Monitor

von Kries shift

Gray background

 

30

0.65

0.65

 

Troost and de Weert (1991, Table 4)


 

2D multielement

Daylights

From unique hues and gray

Monitor

Spectral product

 

Chromaticity

2

0.66

 

 

Arend (1993, Fig. 8)


 

2D patch in surround

Daylights

From unique hues and gray

Monitor

Spectral product

Gray surround

Chromaticity

2

0.70

 

 

Arend (1993, Fig. 8)


 

2D patch in void

Daylights

From unique hues and gray

Monitor

Spectral product

 

Chromaticity

2

0.63

 

 

Arend (1993, Fig. 8)


 

2D multielement

Daylights

From 4 colors

Monitor

Spectral product

Global illuminant

 

3

 

0.83[j]

 

Smithson and Zaidi (2004, Fig. 5)


 

2D multielement

Daylights

From 4 colors

Monitor

Spectral product

Test illuminant

 

2

 

0.86[j]

 

Smithson and Zaidi (2004, Fig. 12)


 

3D tableau

Daylights, colored lights

From 4 colors,
7 numbers

Stereo monitor

Spectral product

 

 

5

0.70

 

 

Schultz et al. (2006, Table 3)


 

2D patch in background

Neutral and colored lights

From 8 colors

Monitor

Chromatic shift

Gray background

 

11

 

0.99[j]

 

Hansen et al. (2007, Fig. 5b)


 

2D patch in far surround

Neutral and colored lights

From 8 colors

Monitor

Chromatic shift

Gray surround

 

11

 

0.49[k]

 

Hansen et al. (2007, Fig. 5b)


 

2D patch in background

Neutral and colored lights

From 8 colors

Monitor

Spectral product

Gray background

 

4

 

0.75[j]

 

Olkkonen et al. (2009, Fig. 10)


 

2D patch in background

Neutral and colored lights

Gray

Monitor

Spectral product

Gray background

 

4

 

0.94[l]

 

Olkkonen et al. (2009, Fig. 10)


 

2D fruit images

Colored lights

Typical color

Monitor

Chromatic shift

Gray background

Chromaticity

10

 

0.76

 

Olkkonen et al. (2008, Fig. 7A)


 

 

 

 

 

 

 

 

 

 

 

 

 


Achromatic adjustment


 

 

 

 

 

 

 

 

 

 

 

 

 


 

3D room

Colored lights

Achromatic

Illuminated surfaces

Physical reflection

Gray room

 Chromaticity

5

0.85

 

 

Brainard (1998, Table 2)


 

3D tableau

Colored lights

Achromatic

Illuminated surfaces

Physical reflection

Gray chamber

Chromaticity

4

0.83[m]

 

 

Kraft and Brainard (1999, p. 310)


 

3D tableau

Daylight, tungsten

Achromatic

Stereo monitor

Spectral product

Specularity

Chromaticity

3

 

0.45

 

Yang and Shevell (2002, Fig. 8)


 

3D tableau, no stereo

Daylight, tungsten

Achromatic

Stereo monitor

Spectral product

Specularity

Chromaticity

3

 

0.32

 

Yang and Shevell (2002, Fig. 8)


 

3D tableau

Daylight, tungsten

Achromatic

Stereo monitor

Spectral product

 

Chromaticity

3

 

0.28

 

Yang and Shevell (2002, Fig. 8)


 

3D tableau,
complex

Colored lights

Achromatic

Illuminated surfaces

Physical reflection

Gray wall

Chromaticity

10

 

0.86

 

Kraft et al. (2002, p. 255)


 

3D tableau,
simple

Colored lights

Achromatic

Illuminated surfaces

Physical reflection

Gray wall

Chromaticity

10

 

0.87

 

Kraft et al. (2002, p. 255)


 

3D tableau

Daylight, colored lights

Achromatic

Stereo monitor

Spectral product

Gray background

Chromaticity

7

0.73

 

 

Delahunt and Brainard (2004, Fig. 7)


 

2D multielement

Neutral and colored lights

Achromatic

Stereo monitor

Chromatic shift

 

 

2

 

0.69

 

Werner (2006, Fig. 2)


 

2D multielement, test in depth

Neutral and colored lights

Achromatic

Stereo monitor

Chromatic shift

 

 

2

 

0.61

 

Werner (2006, Fig. 2)


 

2D multielement, moving test

Neutral and colored lights

Achromatic

Monitor

Chromatic shift

 

 

3

 

0.82

 

Werner (2007, Fig. 7)


 

2D multielement, static test

Neutral and colored lights

Achromatic

Monitor

Chromatic shift

 

 

3

 

0.63

 

Werner (2007, Fig. 7)
















Successive illuminant-
reflectance-change judgment


 

 

 

 

 

 

 

 

 

 

 

 

 


 

3D object, uniform surround

Daylight metamers

Same material

Illuminated surfaces

Physical reflection

 

Chromaticity

4

0.80

 

 

Nascimento, de Almeida, et al. (2005, Fig. 2b)


 

3D object, complex surround

Daylight metamers

Same material

Illuminated surfaces

Physical reflection

 

Chromaticity

4

0.79[n]

 

 

Nascimento, de Almeida, et al. (2005, Fig. 2b)


 

2D natural scenes

Daylights

Same material

Monitor

Spectral product

Sky, sphere

Chromaticity

12

0.71

 

 

Amano et al. (2006, Fig. 3, 4)


 

2D natural scenes

Daylights

Same material

Monitor

Spectral product

 

 Chromaticity

12

0.69-0.97[o]

 

Foster, Amano, and Nascimento (2006, Fig. 3)


 

2D multielement

Daylights

Illuminant change

Monitor

von Kries shift

 

 

5

0.74[p]

 

 

van Es et al. (2007, p. 151)


 

2D multielement

Daylights

Same hue, saturation,
brightness

Monitor

von Kries shift

 

 

5

0.23[p]

 

 

van Es et al. (2007, p. 151)


 

2D multielement

Daylights

Material appearance

Monitor

Spectral product

 

 Daylight locus

8

0.75

 

 

Reeves et al. (2008, Table 2)


 

2D multielement

Daylights

Hue-saturation
appearance

Monitor

Spectral product

 

 Daylight locus

8

0.35

 

 

Reeves et al. (2008, Table 2)


 

2D multielement

Daylights

Same material

Monitor

Spectral product

 

 Daylight locus

8

0.77

 

 

Reeves et al. (2008, Table 2)


 

 

 

 

 

 

 

 

 

 

 

 

 


 

3D tableau

Daylight metamers

Same material

Illuminated surfaces

Physical reflection

 

Chromaticity

4

0.85

 

 

de Almeida et al. (2010, Fig. 5)


 

2D projection[q]

Daylight metamers

Same material

Illuminated surfaces

Physical reflection

 

Chromaticity

4

0.83

 

 

de Almeida et al. (2010, Fig. 5)





















































[a] Actual definition differs slightly from that used by Arend and Reeves (1986).
[b] Eye movements also recorded.
[c] Same size patches as in multielement array.
[d] Bias-corrected ratio 0.91.
[e] Range over 40 Munsell hues.
[f] Daylights vs. two monochromatic lights.
[g] Excluding data with no illuminant shift.
[h] Eliminates memory shift.
[i] Relative to memory shift; also 40% subjects excluded.
[j] Fitted color-classification boundaries.
[k] Fitted neutral convergence point.
[l] Gray-category centroid.
[m] Control condition.
[n] Average of 2 scene types.
[o] Range over 21 scenes.
[p] Ratio of responses.
[q] 2D collage, without shading.


References

Amano, K., & Foster, D.H. (2004). Colour constancy under simultaneous changes in surface position and illuminant. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, 2319-2326.
Amano, K., Foster, D.H., & Nascimento, S.M.C. (2005). Minimalist surface-colour matching. Perception, 34, 1009-1013.
Amano, K., Foster, D.H., & Nascimento, S.M.C. (2006). Color constancy in natural scenes with and without an explicit illuminant cue. Visual Neuroscience, 23, 351-356.
Arend, L., & Reeves, A. (1986). Simultaneous color constancy. Journal of the Optical Society of America A - Optics Image Science and Vision, 3, 1743-1751.
Arend, L.E. (1993). How much does illuminant color affect unattributed colors? Journal of the Optical Society of America A - Optics Image Science and Vision, 10, 2134-2147.
Arend, L.E., Jr, Reeves, A., Schirillo, J., & Goldstein, R. (1991). Simultaneous color constancy: papers with diverse Munsell values. Journal of the Optical Society of America A - Optics Image Science and Vision, 8, 661-672.
Barbur, J.L., de Cunha, D., Williams, C.B., & Plant, G. (2004). Study of instantaneous color constancy mechanisms in human vision. Journal of Electronic Imaging, 13, 15-28.
Bäuml, K.-H. (1999). Simultaneous color constancy: how surface color perception varies with the illuminant. Vision Research, 39, 1531-1550.
Brainard, D.H. (1998). Color constancy in the nearly natural image.  2.  Achromatic loci. Journal of the Optical Society of America A - Optics Image Science and Vision, 15, 307-325.
Brainard, D.H., Brunt, W.A., & Speigle, J.M. (1997). Color constancy in the nearly natural image.  1.  Asymmetric matches. Journal of the Optical Society of America A - Optics Image Science and Vision, 14, 2091-2110.
Bramwell, D.I., & Hurlbert, A.C. (1996). Measurements of colour constancy by using a forced-choice matching technique. Perception, 25, 229-241.
Cornelissen, F.W., & Brenner, E. (1995). Simultaneous colour constancy revisited: an analysis of viewing strategies. Vision Research, 35, 2431-2448.
de Almeida, V.M.N., Fiadeiro, P.T., & Nascimento, S.M.C. (2004). Color constancy by asymmetric color matching with real objects in three-dimensional scenes. Visual Neuroscience, 21, 341-345.
de Almeida, V.M.N., Fiadeiro, P.T., & Nascimento, S.M.C. (2010). Effect of scene dimensionality on colour constancy with real three-dimensional scenes and objects. Perception, 39, 770-779.
Delahunt, P.B., & Brainard, D.H. (2004). Color constancy under changes in reflected illumination. Journal of Vision, 4, 764-778.
Delahunt, P.B., & Brainard, D.H. (2004). Does human color constancy incorporate the statistical regularity of natural daylight? Journal of Vision, 4, 57-81.
Foster, D.H., Amano, K., & Nascimento, S.M.C. (2001). Colour constancy from temporal cues: better matches with less variability under fast illuminant changes. Vision Research, 41, 285-293.
Foster, D.H., Amano, K., & Nascimento, S.M.C. (2006). Color constancy in natural scenes explained by global image statistics. Visual Neuroscience, 23, 341-349.
Granzier, J.J.M., Brenner, E., & Smeets, J.B.J. (2009). Can illumination estimates provide the basis for color constancy? Journal of Vision, 9(3):18, 1-11.
Hansen, T., Walter, S., & Gegenfurtner, K.R. (2007). Effects of spatial and temporal context on color categories and color constancy. Journal of Vision, 7(4):2, 1-15.
Hedrich, M., Bloj, M., & Ruppertsberg, A.I. (2009). Color constancy improves for real 3D objects. Journal of Vision, 9(4):16, 1-16.
Kraft, J.M., & Brainard, D.H. (1999). Mechanisms of color constancy under nearly natural viewing. Proceedings of the National Academy of Sciences of the United States of America, 96, 307-312.
Kraft, J.M., Maloney, S.I., & Brainard, D.H. (2002). Surface-illuminant ambiguity and color constancy: Effects of scene complexity and depth cues. Perception, 31, 247-263.
Kulikowski, J.J., & Vaitkevicius, H. (1997). Colour constancy as a function of hue. Acta Psychologica, 97, 25-35.
Kuriki, I., & Uchikawa, K. (1996). Limitations of surface-color and apparent-color constancy. Journal of the Optical Society of America A - Optics Image Science and Vision, 13, 1622-1636.
Ling, Y.-Z., & Hurlbert, A. (2008). Role of color memory in successive color constancy. Journal of the Optical Society of America A - Optics Image Science and Vision, 25, 1215-1226.
Lucassen, M.P., & Walraven, J. (1996). Color constancy under natural and artificial illumination. Vision Research, 36, 2699-2711.
Murray, I.J., Daugirdiene, A., Vaitkevicius, H., Kulikowski, J.J., & Stanikunas, R. (2006). Almost complete colour constancy achieved with full-field adaptation. Vision Research, 46, 3067-3078.
Nascimento, S.M.C., de Almeida, V.M.N., Fiadeiro, P.T., & Foster, D.H. (2005). Effect of scene complexity on colour constancy with real three-dimensional scenes and objects. Perception, 34, 947-950.
Nieves, J.L., García-Beltrán, A., & Romero, J. (2000). Response of the human visual system to variable illuminant conditions: An analysis of opponent-colour mechanisms in colour constancy. Ophthalmic and Physiological Optics, 20, 44-58.
Olkkonen, M., Hansen, T., & Gegenfurtner, K.R. (2008). Color appearance of familiar objects: Effects of object shape, texture, and illumination changes. Journal of Vision, 8(5):13, 1-16.
Olkkonen, M., Hansen, T., & Gegenfurtner, K.R. (2009). Categorical color constancy for simulated surfaces. Journal of Vision, 9(12):6, 1-18.
Reeves, A.J., Amano, K., & Foster, D.H. (2008). Color constancy: Phenomenal or projective? Perception & Psychophysics, 70, 219-228.
Schultz, S., Doerschner, K., & Maloney, L.T. (2006). Color constancy and hue scaling. Journal of Vision, 6, 1102-1116.
Smithson, H., & Zaidi, Q. (2004). Colour constancy in context: Roles for local adaptation and levels of reference. Journal of Vision, 4, 693-710.
Tiplitz Blackwell, K., & Buchsbaum, G. (1988). Quantitative studies of color constancy. Journal of the Optical Society of America A - Optics Image Science and Vision, 5, 1772-1780.
Troost, J.M., & de Weert, C.M.M. (1991). Naming versus matching in color constancy. Perception & Psychophysics, 50, 591-602.
Uchikawa, K., Kuriki, I., & Tone, Y. (1998). Measurement of color constancy by color memory matching. Optical Review, 5, 59-63.
van Es, J.J., Vladusich, T., & Cornelissen, F.W. (2007). Local and relational judgements of surface colour: constancy indices and discrimination performance. Spatial Vision, 20, 139-154.
Werner, A. (2006). The influence of depth segmentation on colour constancy. Perception, 35, 1171-1184.
Werner, A. (2007). Color constancy improves, when an object moves: High-level motion influences color perception. Journal of Vision, 7(14):19, 1-14.
Yang, J.N., & Shevell, S.K. (2002). Stereo disparity improves color constancy. Vision Research, 42, 1979-19


(c) D. H. Foster, 2016


d.h.foster@manchester.ac.uk | +44 (0)161 306 3888 | www.eee.manchester.ac.uk/d.h.foster 
School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK