CIVL42002: Computational Hydraulics

SPRING 2024

Module coordinator: Dr David Apsley Other staff: Prof Ben Rogers

CONTENTS

Part 1 (8 weeks) – Dr Apsley

Equations

1. Introduction to computational fluid dynamics (CFD)

- 2. Fluid-flow equations
- 3. Common approximations

Numerical Methods

- 4. The scalar-transport equation
- 5. Pressure and velocity
- 6. Time-dependent methods

Turbulence

- 7. Turbulence and Reynolds averaging
- 8. Introduction to turbulence modelling

CFD Practice

9. Pre- and post-processing

Part 2 (4 weeks) – Prof Rogers

Shallow-water flows

READING LIST

<u>CFD</u>

- Versteeg, H.K. and Malalasekera, W., 2007, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd Edition, Pearson.
- Ferziger, J.H., Peric, M. and Street, 2019, *Computational Methods for Fluid Dynamics*, 4th Edition, Springer-Verlag.

Turbulence modelling

Leschziner, M.A., 2015, Statistical turbulence modelling for fluid dynamics - demystified: an introductory text for graduate engineering students, World Scientific.

Pope, S.B., 2000, *Turbulent flows*, Cambridge University Press.

ASSESSMENT

50% exam (2.5 hours)50% coursework (4 equal-weight exercises)

Coursework exercises:

- 1. Star CCM+ intro (issue week 1, submit week 3)
- 2. STREAM: separated flow (issue week 4, submit week 6)
- 3. Star CCM+ advanced (issue week 7, submit week 9)
- 4. Shallow-water flows (issue week 9, submit week 11)

Exam format:

Answer all 4 questions (3 from Section A, 1 from Section B)

SCHEDULE (*Subject to change*)

Week	Content	
1	Introduction to CFD and the finite-volume method	
	Fluid-flow equations – derivations	
	Fluid-flow equations – alternative forms	
	+ 3-hour cluster session on StarCCM+	Coursework 1 (StarCCM+)
2	Fluid-flow equations – examples	
	Common approximations	
	Common approximations - examples	
3	Scalar-transport equation – diffusion and source	
	Scalar-transport equation – advection	
	Scalar-transport equation – advanced discretisation	
4	Scalar-transport equation – examples	
	Scalar-transport equation – matrix solution	
	Pressure and velocity – coupled equations	Coursework 2 (STREAM)
5	Pressure and velocity – pressure-correction methods	
	Pressure and velocity – examples	
	Time-dependence	
6	Time-dependence	
	Turbulence – introduction	
	Turbulence – modelling	
7	Turbulence – modelling and implementation	
	Turbulence – examples	
	Preprocessing and geometry	
	+ 2-hour cluster session on StarCCM+	Coursework 3 (StarCCM+)
8	Unstructured meshes	
	Postprocessing and flow-visualisation	
	Post-processing – examples	
9-12	Shallow-water flows	Coursework 4 (Shallow-water flow)