Fuzzy Topological Groups

DAVID H. FOSTER

Department of Communication, University of Keele, Keele, Staffordshire ST5 5BG, England

Submitted by L. Zadeh

1. Introduction

In his classic paper [1] of 1965, Zadeh introduced the notion of fuzzy sets and fuzzy set operations. Subsequently, Chang [2], Wong [3], Lowen [4] and others applied some basic concepts from general topology to fuzzy sets and developed a theory of fuzzy topological spaces. In an analogous application with groups, Rosenfeld [5] formulated the elements of a theory of fuzzy groups. In the present paper, we bring together the structure of a fuzzy topological space and that of a fuzzy group to form a combined structure, that of a fuzzy topological group. Homomorphic images and inverse images, quotients and products of fuzzy topological groups are also briefly examined. Notation for fuzzy sets follows that of Zadeh [1].

2. Preliminaries

Let X be a set and I the unit interval [0, 1]. A fuzzy set A in X is characterized by a membership function μ_A which associates with each point $x \in X$ its "grade of membership" $\mu_A(x) \in I$.

DEFINITION 2.1. Let A and B be fuzzy sets in X. Then:

$$A = B \Leftrightarrow \mu_A(x) = \mu_B(x)$$
 for all $x \in X$;
 $A \subset B \Leftrightarrow \mu_A(x) \leqslant \mu_B(x)$ for all $x \in X$;
 $C = A \cup B \Leftrightarrow \mu_C(x) = \max\{\mu_A(x), \mu_B(x)\}$ for all $x \in X$;
 $D = A \cap B \Leftrightarrow \mu_D(x) = \min\{\mu_A(x), \mu_B(x)\}$ for all $x \in X$.

More generally, for a family of fuzzy sets $\mathscr{A} = \{A_j \mid j \in J\}$, the union, $C = \bigcup_{j \in J} A_j$, and the intersection, $D = \bigcap_{j \in J} A_j$, are defined by

$$\mu_C(x) = \sup_{j \in J} \mu_{A_j}(x), \qquad x \in X,$$

$$\mu_D(x) = \inf_{j \in J} \mu_{A_j}(x), \qquad x \in X.$$

We denote by k_c the fuzzy set in X with membership function $\mu_{k_c}(x) = c$ for all $x \in X$. The fuzzy set k_1 corresponds to the set X and the fuzzy set k_0 to the empty set \varnothing .

DEFINITION 2.2. Let f be a mapping from a set X to a set Y. Let B be a fuzzy set in Y, with membership function μ_B . Then the *inverse image* of B, written $f^{-1}[B]$, is the fuzzy set in X with membership function defined by

$$\mu_{f^{-1}(B)}(x) = \mu_B(f(x)) \quad \text{for all } x \in X.$$

Conversely, let A be a fuzzy set in X, with membership function μ_A . Then the *image* of A, written f[A], is the fuzzy set in Y with membership function defined by

$$\mu_{f[A]}(y) = \sup_{z \in f^{-1}(y)} \mu_A(z)$$
 if $f^{-1}(y)$ is nonempty,
= 0 otherwise,

for all $y \in Y$, where $f^{-1}(y) = \{x \mid f(x) = y\}$.

PROPOSITION 2.1. Let f be a mapping from a set X to a set Y, and let $\{A_j\}$, $j \in J$, be a family of fuzzy sets in X and $\{B_j\}$, $j \in J$, a family of fuzzy sets in Y. Then:

- (i) $f^{-1}[\bigcup_{j\in J}B_j]=\bigcup_{j\in J}f^{-1}[B_j],$
- (ii) $f^{-1}[\bigcap_{j\in J} B_j] = \bigcap_{j\in J} f^{-1}[B_j],$
- (iii) $f[\bigcup_{j\in J} A_j] = \bigcup_{j\in J} f[A_j],$
- (iv) $f[\bigcap_{i\in J} A_i] \subset \bigcap_{i\in J} f[A_i]$.

Proof. (i), (ii), and (iii) follow immediately from the definitions.

(iv) The membership function of $f[\bigcap_{i \in J} A_i]$ is given by

$$\mu_{f[\bigcap_{j\in J}A_j]}(y) = \sup_{z\in f^{-1}(y)} \inf_{j\in J} \mu_{A_j}(z) \leqslant \inf_{j\in J} \sup_{z\in f^{-1}(y)} \mu_{A_j}(z)$$
$$= \mu_{\bigcap_{z\in f}A_z]}$$

for all $y \in Y$; hence the assertion.

3. FUZZY TOPOLOGICAL SPACES AND SUBSPACES

The following definition of a fuzzy topological space is due to Lowen [4].

DEFINITION 3.1. A fuzzy topology on a set X is a family \mathcal{F} of fuzzy sets in X which satisfies the following conditions:

- (i) For all $c \in I$, $k_c \in \mathcal{F}$.
- (ii) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
- (iii) If $A_j \in \mathcal{F}$ for all $j \in J$, then $\bigcup_{j \in J} A_j \in \mathcal{F}$.

The pair (X, \mathcal{F}) is called a fuzzy topological space, or fts for short, and the members of \mathcal{F} are called \mathcal{F} -open fuzzy sets, or, when there is no risk of confusion, simply open fuzzy sets.

In the definition of a fuzzy topology by Chang [2], the condition (i) is just

(i)'
$$k_0$$
, $k_1 \in \mathcal{T}$.

The necessity for the inclusion in \mathcal{F} of all fuzzy sets with constant membership functions will become apparent later.

DEFINITION 3.2. Let A be a fuzzy set in X and \mathcal{F} a fuzzy topology on X. Then the *induced fuzzy topology* on A is the family of fuzzy subsets of A which are the intersections with A of \mathcal{F} -open fuzzy sets in X. The induced fuzzy topology is denoted by \mathcal{F}_A , and the pair (A, \mathcal{F}_A) is called a *fuzzy subspace* of (X, \mathcal{F}) .

Note that the induced fuzzy topology does not in general satisfy condition (i) of Definition 3.1. Condition (ii), however, is satisfied, and so is condition (iii). Thus, if $U_j' \in \mathscr{T}_A$ for all $j \in J$, then there exist $U_j \in \mathscr{T}$, $j \in J$, such that $U_j' = U_j \cap A$ for each $j \in J$. The union $U' = \bigcup_{j \in J} U_j' = \bigcup_{j \in J} (U_j \cap A)$ has membership function $\mu_{U'}$, given by

$$\mu_{U'}(x) = \sup_{j \in J} \mu_{U'_j}(x) = \sup_{j \in J} \min\{\mu_{U_j}(x), \mu_A(x)\} = \min\{\sup_{j \in J} \mu_{U_j}(x), \mu_A(x)\}$$
$$= \mu_{(U_j \in J} U_j) \cap A(x),$$

for all $x \in X$. Hence $U' = (\bigcup_{j \in J} U_j) \cap A$ and is therefore in \mathcal{T}_A .

DEFINITION 3.3. Let (X, \mathcal{F}) , (Y, \mathcal{U}) be two fts's. A mapping f of (X, \mathcal{F}) into (Y, \mathcal{U}) is fuzzy continuous iff for each open fuzzy set V in \mathcal{U} the inverse image $f^{-1}[V]$ is in \mathcal{F} . Conversely, f is fuzzy open iff for each open fuzzy set U in \mathcal{F} , the image f[U] is in \mathcal{U} .

If (A, \mathcal{F}_A) , (B, \mathcal{U}_B) are fuzzy subspaces of fts's (X, \mathcal{F}) , (Y, \mathcal{U}) respectively, and f is a mapping of (X, \mathcal{F}) into (Y, \mathcal{U}) , then we say that f is a mapping of (A, \mathcal{F}_A) into (B, \mathcal{U}_B) if $f[A] \subset B$.

DEFINITION 3.3'. Let (A, \mathcal{F}_A) , (B, \mathcal{U}_B) be fuzzy subspaces of fts's (X, \mathcal{F}) , (Y, \mathcal{U}) respectively. Then a mapping f of (A, \mathcal{F}_A) into (B, \mathcal{U}_B) is relatively fuzzy continuous iff for each open fuzzy set V' in \mathcal{U}_B , the intersection $f^{-1}[V'] \cap A$ is in \mathcal{F}_A . Conversely, f is relatively fuzzy open iff for each open fuzzy set U' in \mathcal{F}_A , the image f[U'] is in \mathcal{U}_B .

PROPOSITION 3.1. Let (A, \mathcal{T}_A) , (B, \mathcal{U}_B) be fuzzy subspaces of fts's (X, \mathcal{T}) , (Y, \mathcal{U}) respectively, and let f be a fuzzy continuous mapping of (X, \mathcal{T}) into (Y, \mathcal{U}) such that $f[A] \subset B$. Then f is a relatively fuzzy continuous mapping of (A, \mathcal{T}_A) into (B, \mathcal{U}_B) .

Proof. Let V' be open in \mathscr{U}_B . Then there exists $V \in \mathscr{U}$ such that $V' = V \cap B$. The inverse image $f^{-1}[V]$ is open in \mathscr{F} . Hence, $f^{-1}[V'] \cap A = f^{-1}[V] \cap f^{-1}[B] \cap A = f^{-1}[V] \cap A$ is open in \mathscr{F}_A .

A bijective mapping f of a fts (X, \mathcal{F}) into a fts (Y, \mathcal{U}) is a fuzzy homeomorphism iff it is fuzzy continuous and fuzzy open. A bijective mapping f of a fuzzy subspace (A, \mathcal{F}_A) of (X, \mathcal{F}) into a fuzzy subspace (B, \mathcal{U}_B) of (Y, \mathcal{U}) is a relative fuzzy homeomorphism iff f[A] = B and f is relatively fuzzy continuous and relatively fuzzy open.

PROPOSITION 3.2. Let f be a fuzzy continuous (resp. fuzzy open) mapping of a fts (X, \mathcal{F}) into a fts (Y, \mathcal{U}) , and g a fuzzy continuous (resp. fuzzy open) mapping of (Y, \mathcal{U}) into a fts (Z, \mathcal{V}) . Then the composition $g \circ f$ is a fuzzy continuous (resp. fuzzy open) mapping of (X, \mathcal{F}) into (Z, \mathcal{V}) .

Proof. Obvious.

PROPOSITION 3.2'. Let (A, \mathcal{T}_A) , (B, \mathcal{N}_B) , (C, \mathcal{V}_C) be fuzzy subspaces of fts's (X, \mathcal{T}) , (Y, \mathcal{U}) , (Z, \mathcal{V}) respectively. Let f be a relatively fuzzy continuous (resp. relatively fuzzy open) mapping of (A, \mathcal{T}_A) into (B, \mathcal{U}_B) and g a relatively fuzzy continuous (resp. relatively fuzzy open) mapping of (B, \mathcal{N}_B) into (C, \mathcal{V}_C) . Then the composition $g \circ f$ is a relatively fuzzy continuous (resp. relatively fuzzy open) mapping of (A, \mathcal{F}_A) into (C, \mathcal{V}_C) .

Proof. Let W' be open in \mathscr{V}_C . Then $g^{-1}[W'] \cap B$ is open in \mathscr{U}_B and $f^{-1}[g^{-1}[W'] \cap B] \cap A$ is open in \mathscr{T}_A . But $(g \circ f)^{-1}[W'] \cap A = f^{-1}[g^{-1}[W'] \cap B] \cap A$, since $f[A] \subset B$, and so $g \circ f$ is relatively fuzzy continuous. The proof in the case of relatively fuzzy open mappings is trivial.

DEFINITION 3.4. Let \mathcal{F} be a fuzzy topology on a set X. A subfamily \mathcal{B} of \mathcal{F} is a *base* for \mathcal{F} iff each member of \mathcal{F} can be expressed as the union of members of \mathcal{B} .

DEFINITION 3.4'. Let \mathcal{T} be a fuzzy topology on a set X and \mathcal{T}_A the induced fuzzy topology on a fuzzy subset A of X. A subfamily \mathcal{B}' of \mathcal{T}_A is a base for \mathcal{T}_A iff each member of \mathcal{T}_A can be expressed as the union of members of \mathcal{B}' .

Note that if \mathcal{B} is a base for a fuzzy topology \mathcal{T} on a set X, then $\mathcal{B}_A = \{U \cap A \mid U \in \mathcal{B}\}$ is a base for the induced fuzzy topology \mathcal{T}_A on the fuzzy subset A.

PROPOSITION 3.3. Let f be a mapping from a fts (X, \mathcal{T}) to a fts (Y, \mathcal{U}) . Let \mathcal{B} be a base for \mathcal{U} . Then f is fuzzy continuous iff for each B in \mathcal{B} the inverse image $f^{-1}[B]$ is in \mathcal{T} .

Proof. Straightforward.

PROPOSITION 3.3'. Let (A, \mathcal{T}_A) , (B, \mathcal{U}_B) be fuzzy subspaces of fts's (X, \mathcal{T}) , (Y, \mathcal{U}) respectively. Let \mathcal{B}' be a base for \mathcal{U}_B . Then a mapping f of (A, \mathcal{T}_A) into (B, \mathcal{U}_B) is relatively fuzzy continuous iff for each B' in \mathcal{B}' the intersection $f^{-1}[B'] \cap A$ is in \mathcal{T}_A .

Proof. Straightforward.

DEFINITION 3.5. Given two fuzzy topologies \mathcal{T}_1 , \mathcal{T}_2 on the same set X, we say that \mathcal{T}_1 is *finer* that \mathcal{T}_2 (and that \mathcal{T}_2 is *coarser* that \mathcal{T}_1) if the identity mapping of (X, \mathcal{T}_1) into (X, \mathcal{T}_2) is fuzzy continuous.

DEFINITION 3.6. Let f be a mapping of a set X into a set Y, and let $\mathscr U$ be a fuzzy topology on Y. The coarsest fuzzy topology $\mathscr T$ on X for which f is fuzzy continuous is called the *inverse image under f of* $\mathscr U$. The $\mathscr T$ -open fuzzy sets in X are the inverse images of $\mathscr U$ -open fuzzy sets in Y.

DEFINITION 3.7. Let f be a mapping of a set X into a set Y, and let \mathcal{F} be a fuzzy topology on X. The finest fuzzy topology \mathcal{U} on Y for which f is fuzzy continuous is called the *image under* f of \mathcal{F} . A fuzzy set U in Y is \mathcal{U} -open iff $f^{-1}[U]$ is a \mathcal{F} -open fuzzy set in X.

DEFINITION 3.8. Given a family $\{(X_j, \mathcal{F}_j)\}, j \in J$, of fts's, we define their product $\prod_{j \in J} (X_j, \mathcal{F}_j)$ to be the fts (X, \mathcal{F}) , where $X = \prod_{j \in J} X_j$ is the usual set product and \mathcal{F} is the coarsest topology on X for which the projections p_j of X onto X_j are fuzzy continuous for each $j \in J$. The fuzzy topology \mathcal{F} is called the *product fuzzy topology* on X, and (X, \mathcal{F}) a *product* fts.

PROPOSITION 3.4. Let $\{(X_j, \mathcal{T}_j)\}$, $j \in J$, be a family of fts's and (X, \mathcal{T}) the product fts. The product fuzzy topology \mathcal{T} on X has as a base the set of finite intersections of fuzzy sets of the form $p_j^{-1}[U_j]$, where $U_j \in \mathcal{T}_j$, $j \in J$.

Proof. See [3].

Let $\{X_j\}$, j=1, 2, ..., n, be a finite family of fuzzy sets and for each j=1, 2, ..., n, let A_j be a fuzzy set in X_j . We define the *product* $A=\prod_{j=1}^n A_j$ of the family $\{A_j\}$, j=1, 2, ..., n, as the fuzzy set in $X=\prod_{j=1}^n X_j$ that has membership function given by

$$\mu_A(x_1,...,x_n) = \min\{\mu_{A_1}(x_1),...,\mu_{A_n}(x_n)\},\$$

for all $(x_1,...,x_n) \in X$. Notice that for each j=1,2,...,n, $p_j[A] \subseteq A_j$, since the membership function of $p_j[A]$ is given by

$$\mu_{p_{j}[A]}(x_{j}) = \sup_{\substack{(z_{1},...,z_{n}) \in p_{j}^{-1}(x_{j}) \\ (z_{1},...,z_{n}) \in p_{j}^{-1}(x_{j})}} \mu_{A}(z_{1},...,z_{n})$$

$$= \sup_{\substack{(z_{1},...,z_{n}) \in p_{j}^{-1}(x_{j}) \\ (z_{1},...,z_{n}) \in p_{j}^{-1}(x_{j})}} \min\{\mu_{A_{1}}(z_{1}),...,\mu_{A_{n}}(z_{n}),...,\sup_{z_{n} \in X_{n}} \mu_{A_{n}}(z_{n})\}$$

$$\leq \mu_{A}(x_{j}),$$

for all $x_i \in X_i$.

It follows from the above that if X_j has fuzzy topology \mathcal{F}_j , j=1,2,...,n, the product fuzzy topology \mathcal{F} on X has as a base the set of product fuzzy sets of the form $\prod_{j=1}^n U_j$, where $U_j \in \mathcal{F}_j$, j=1,2,...,n.

PROPOSITION 3.4'. Let $\{(X_j, \mathcal{F}_j)\}$, j=1, 2, ..., n, be a finite family of fts's and (X, \mathcal{F}) the product fts. For each j=1, 2, ..., n, let A_j be a fuzzy set in X_j and A the product fuzzy set in X. Then the induced fuzzy topology \mathcal{F}_A on A has as a base the set of product fuzzy sets of the form $\prod_{j=1}^n U'_j$, where $U'_j \in (\mathcal{F}_j)_{A_j}$, j=1, 2, ..., n.

Proof. In accordance with the preceding remarks, $\mathcal F$ has a base

$$\mathscr{B} = \left\langle \prod_{j=1}^{n} U_{j} \mid U_{j} \in \mathscr{T}_{j}, j = 1, 2, ..., n \right\rangle.$$

A base for \mathcal{T}_A is therefore given by

$$\mathscr{B}_A = \left\{ \left(\prod_{j=1}^n U_j\right) \cap A \mid U_j \in \mathscr{T}_j, j=1, 2, ..., n \right\}.$$

But $(\prod_{j=1}^n U_j) \cap A = \prod_{j=1}^n (U_j \cap A)$. The proposition follows with $U'_j = U_j \cap A$, j = 1, 2, ..., n.

By an abuse of notation, we denote the fuzzy subspace (A, \mathcal{T}_A) by $\prod_{j=1}^n (A_j, (\mathcal{T}_j)_{A_j})$.

PROPOSITION 3.5. Let $\{(X_j, \mathcal{T}_j)\}, j \in J$, be a family of fts's, (X, \mathcal{T}) the product fts, and f a mapping of a fts (Y, \mathcal{U}) into (X, \mathcal{T}) . Then f is fuzzy continuous iff $p_j \circ f$ is fuzzy continuous for each $j \in J$.

Proof. See [3].

COROLLARY. Let $\{(X_j, \mathcal{T}_j)\}$, $\{(Y_j, \mathcal{U}_j)\}$, $j \in J$, be two families of fts's and (X, \mathcal{T}) , (Y, \mathcal{U}) the respective product fts's. For each $j \in J$, let f_j be a mapping of

 (X_j, \mathcal{T}_j) into (Y_j, \mathcal{U}_j) . Then the product mapping $f = \prod_{j \in J} f_j : (x_j) \to (f_j(x_j))$ of (X, \mathcal{T}) into (Y, \mathcal{U}) is fuzzy continuous if f_j is fuzzy continuous for each $j \in J$.

Proof. The mapping f can be written as $x \to (f_j(p_j(x)))$, where $x = (x_j)$, and is therefore fuzzy continuous by Proposition 3.5.

PROPOSITION 3.5'. Let $\{(X_j, \mathcal{T}_j)\}$, j=1, 2, ..., n, be a finite family of fts's and (X, \mathcal{T}) the product fts. For each j=1, 2, ..., n, let A_j be a fuzzy set in X_j and A the product fuzzy set in X. Let (Y, \mathcal{U}) be a fts, B a fuzzy set in Y, and f a mapping of the fuzzy subspace (B, \mathcal{U}_B) into the fuzzy subspace (A, \mathcal{F}_A) . Then f is relatively fuzzy continuous iff $p_j \circ f$ is relatively fuzzy continuous for each j=1, 2, ..., n.

Proof. (\Rightarrow) By Proposition 3.1, the fuzzy continuity of p_j implies the relative fuzzy continuity of p_j for each j = 1, 2, ..., n. The composition $p_j \circ f$ is therefore relatively fuzzy continuous for each j = 1, 2, ..., n.

(\Leftarrow) Let $U' = U'_1 \times \cdots \times U'_n$, where $U'_j \in (\mathcal{T}_j)_{A_j}$, j = 1, 2, ..., n. By Proposition 3.4', the set of such U' forms a base for \mathcal{F}_A . Since

$$f^{-1}[U'] \cap B = f^{-1}[p_1^{-1}[U'_1] \cap \dots \cap p_n^{-1}[U'_n]] \cap B = \bigcap_{j=1}^n ((p_j \circ f)^{-1}[U'_j] \cap B)$$

is open in \mathcal{U}_B , as $p_j \circ f$ is relatively fuzzy continuous for each j = 1, 2, ..., n, it follows from Proposition 3.3' that f is relatively fuzzy continuous.

COROLLARY. Let $\{(X_j, \mathcal{T}_j)\}$, $\{(Y_j, \mathcal{U}_j)\}$, j=1,2,...,n, be two finite families of fts's and (X,\mathcal{F}) , (Y,\mathcal{U}) the respective product fts's. For each j=1,2,...,n, let A_j be a fuzzy set in X_j , B_j a fuzzy set in Y_j , and f_j a mapping of the fuzzy subspace $(A_j, (\mathcal{T}_j)_{A_j})$ into the fuzzy subspace $(B_j, (\mathcal{U}_j)_{B_j})$. Let $A=\prod_{j=1}^n A_j$, $B=\prod_{j=1}^n B_j$ be the product fuzzy sets in X, Y respectively. Then the product mapping $f=\prod_{j=1}^n f_j$: $(x_1,...,x_n) \to (f_1(x_1),...,f_n(x_n))$ of the fuzzy subspace (A,\mathcal{F}_A) into the fuzzy subspace (B,\mathcal{U}_B) is relatively fuzzy continuous if f_j is relatively fuzzy continuous for each j=1,2,...,n.

Proof. Analogous to the proof of the Corollary to Proposition 3.5.

PROPOSITION 3.6. Let $\{(X_j, \mathcal{T}_j)\}$, $\{(Y_j, \mathcal{U}_j)\}$, j = 1, 2, ..., n, be two finite families of fts's and (X, \mathcal{T}) , (Y, \mathcal{U}) the respective product fts's. For each j = 1, 2, ..., n, let f_j be a mapping of (X_j, \mathcal{T}_j) into (Y_j, \mathcal{U}_j) . Then the product mapping $f = \prod_{j=1}^n f_j$: $(x_1, ..., x_n) \to (f_1(x_1), ..., f_n(x_n))$ of (X, \mathcal{T}) into (Y, \mathcal{U}) is fuzzy open if f_j is fuzzy open for each j = 1, 2, ..., n.

Proof. Let U be open in \mathcal{F} . Then there exist open fuzzy sets $U_{jm} \in \mathcal{F}_j$, $m \in M$, j = 1, 2, ..., n, such that

$$U = \bigcup_{m \in M} \prod_{j=1}^n U_{jm} .$$

The image f[U] of U has membership function $\mu_{f[U]}$, where, for all $y \in Y$,

$$\mu_{f[U]}(y) = \mu_{\bigcup_{m \in M} f[\prod_{j=1}^{n} U_{jm}]}(y) = \sup_{m \in M} \sup_{z \in f^{-1}(y)} \mu_{\prod_{j=1}^{n} U_{jm}}(z)$$

$$= \sup_{m \in M} \sup_{z_{1} \in f^{-1}_{1}(y_{1})} \cdots \sup_{z_{n} \in f^{-1}_{n}(y_{n})} \min\{\mu_{U_{1m}}(z_{1}), ..., \mu_{U_{nm}}(z_{n})\}$$

$$= \sup_{m \in M} \min\{\sup_{z_{1} \in f^{-1}_{1}(y_{1})} \mu_{U_{1m}}(z_{1}), ..., \sup_{z_{n} \in f^{-1}_{n}(y_{n})} \mu_{U_{nm}}(z_{n})\}$$

$$= \sup_{m \in M} \min\{\mu_{f_{1}[U_{1m}]}(y_{1}), ..., \mu_{f_{n}[U_{nm}]}(y_{n})\}^{-1}$$

$$= \mu_{\bigcup_{m \in M} \prod_{j=1}^{n} (f_{1}[U_{1m}])(y_{j})}$$

Thus $f[U] = \bigcup_{m \in M} \prod_{j=1}^{n} (f_j[U_{jm}])$. Since f_j is fuzzy open for each j = 1, 2, ..., n, f[U] is open in \mathscr{U} .

PROPOSITION 3.6'. Let $\{(X_j, \mathcal{F}_j)\}, \{(Y_j, \mathcal{U}_j)\}, j=1, 2, ..., n, be$ two finite families of fts's and $(X,\mathcal{F}), (Y,\mathcal{U})$ the respective product fts's. For each j=1,2,...,n, let A_j be a fuzzy set in X_j , B_j a fuzzy set in Y_j , and f_j a mapping of the fuzzy subspace $(A_j, (\mathcal{F}_j)_{A_j})$ into the fuzzy subspace $(B_j, (\mathcal{U}_j)_{B_j})$. Let $A=\prod_{j=1}^n A_j$, $B=\prod_{j=1}^n B_j$ be the product fuzzy sets in X, Y respectively. Then the product mapping $f=\prod_{j=1}^n f_j$: $(x_1,...,x_n) \to (f_1(x_1),...,f_n(x_n))$ of the fuzzy subspace (A,\mathcal{F}_A) into the fuzzy subspace (B,\mathcal{U}_B) is relatively fuzzy open if f_j is relatively fuzzy open for each j=1,2,...,n.

Proof. Let U' be open in \mathcal{F}_A . By Proposition 3.4', there exist open fuzzy sets $U'_{jm} \in (\mathcal{F}_j)_{A_j}$, $m \in M$, j = 1, 2, ..., n, such that

$$U' = \bigcup_{m \in M} \prod_{j=1}^n U'_{jm}$$
.

As in the proof of Proposition 3.6, it follows that

$$f[U'] = \bigcup_{m \in M} \prod_{j=1}^n (f_j[U'_{jm}]).$$

Since f_j is relatively fuzzy open for each j = 1, 2, ..., n, f[U'] is open in \mathcal{U}_B .

PROPOSITION 3.7. Let (X_1, \mathcal{T}_1) , (X_2, \mathcal{T}_2) be fts's and (X, \mathcal{T}) the product fts. Then for each $a_1 \in X_1$, the mapping $i: x_2 \to (a_1, x_2)$ of (X_2, \mathcal{T}_2) into (X, \mathcal{T}) is fuzzy continuous.

Proof. The constant mapping $i_1: x_2 \to a_1$ of (X_2, \mathcal{F}_2) into (X_1, \mathcal{F}_1) is fuzzy

continuous, for, if U_1 is open in \mathcal{T}_1 , the inverse image $i_1^{-1}[U_1]$ has membership function given by

$$\mu_{i_1^{-1}[U_1]}(x_2) = \mu_{U_1}(a_1) = \mu_{k_c}(x_2)$$

for all $x_2 \in X_2$, where k_c is the open fuzzy set in X_2 which has constant membership function with value $c = \mu_{U_1}(a_1)$. Since the identity mapping $i_2 \colon x_2 \to x_2$ of (X_2, \mathscr{T}_2) into itself is fuzzy continuous, the mapping i is fuzzy continuous by Proposition 3.5.

PROPOSITION 3.7'. Let $(X_1\,,\,\mathcal{T}_1),\,(X_2\,,\,\mathcal{T}_2)$ be fts's and $(X,\,\mathcal{T})$ the product fts. Let $A_1\,,\,A_2$ be fuzzy sets in $X_1\,,\,X_2$ respectively, and A the product fuzzy set in X. Then for each $a_1\in X_1$ such that $\mu_{A_1}(a_1)\geqslant \mu_{A_2}(x_2)$ for all $x_2\in X_2$, the mapping $i\colon x_2\to (a_1\,,\,x_2)$ of the fuzzy subspace $(A_2\,,\,(\mathcal{T}_2)_{A_2})$ into the fuzzy subspace $(A,\,\mathcal{T}_A)$ is relatively fuzzy continuous.

Proof. We see that $i[A_2] \subseteq A$, since the membership function of $i[A_2]$ is given by

$$\mu_{i[A_2]}(x_1, x_2) = \mu_{A_2}(x_2)$$
 if $x_1 = a_1$, $= 0$ otherwise,

and that of A by

$$\mu_{A}(x_{1}, x_{2}) = \min\{\mu_{A_{1}}(x_{1}), \mu_{A_{2}}(x_{2})\}$$

$$\geqslant \mu_{A_{2}}(x_{2})$$

for all $(x_1, x_2) \in X$. The proof of the relative fuzzy continuity of i is analogous to the proof of the fuzzy continuity of i in Proposition 3.7.

4. Fuzzy Groups

Definition 4.1. Let X be a group and G a fuzzy set in X with membership function μ_G . Then G is a fuzzy group in X iff the following conditions are satisfied:

- (i) $\mu_G(xy) \geqslant \min\{\mu_G(x), \mu_G(y)\}\$, for all $x, y \in X$;
- (ii) $\mu_G(x^{-1}) \geqslant \mu_G(x)$, for all $x \in X$.

Note that Rosenfeld [5] refers to G as a fuzzy subgroup.

Proposition 4.1. G is a fuzzy group in X iff

$$\mu_G(xy^{-1}) \geqslant \min\{\mu_G(x), \mu_G(y)\}, \quad \text{for all } x, y \in X.$$

Proof. See [5].

PROPOSITION 4.2. Let X, Y be groups and f a homomorphism of X into Y. Let G be a fuzzy group in Y. Then the inverse image $f^{-1}[G]$ of G is a fuzzy group in X.

Proof. For all $x, y \in X$,

$$\begin{split} \mu_{f^{-1}[G]}(xy^{-1}) &= \mu_{G}(f(xy^{-1})) = \mu_{G}(f(x)(f(y))^{-1}) \\ &\geqslant \min\{\mu_{G}(f(x)), \mu_{G}(f(y))\} \\ &= \min\{\mu_{f^{-1}[G]}(x), \mu_{f^{-1}[G]}(y)\}. \quad \blacksquare \end{split}$$

For images, we need the following property [5]. A fuzzy set A in X is said to have the *sup property* if, for any subset $T \subset X$, there exists $t_0 \in T$ such that $\mu_A(t_0) = \sup_{t \in T} \mu_A(t)$.

PROPOSITION 4.3. Let X, Y be groups and f a homomorphism of X into Y. Let G be a fuzzy group in X that has the sup property. Then the image f[G] of G is a fuzzy group in Y.

Proof. Let $u, v \in Y$. If either $f^{-1}(u)$ or $f^{-1}(v)$ is empty, then the inequality in Proposition 4.1 is trivially satisfied. Suppose neither $f^{-1}(u)$ nor $f^{-1}(v)$ is empty. Let $r_0 \in f^{-1}(u)$, $s_0 \in f^{-1}(v)$ be such that

$$\mu_G(r_0) = \sup_{t \in f^{-1}(u)} \mu_G(t), \qquad \mu_G(s_0) = \sup_{t \in f^{-1}(v)} \mu_G(t).$$

Then,

$$\mu_{f[G]}(uv^{-1}) = \sup_{w \in f^{-1}(uv^{-1})} \mu_G(w) \geqslant \min\{\mu_G(r_0), \mu_G(s_0)\}$$

$$= \min\{\mu_{f[G]}(u), \mu_{f[G]}(v)\}.$$

We say that the membership function μ_G of a fuzzy group G in a group X is f-invariant [5] if, for all x_1 , $x_2 \in X$, $f(x_1) = f(x_2)$ implies $\mu_G(x_1) = \mu_G(x_2)$. Clearly, a homomorphic image f[G] of G is then a fuzzy group.

PROPOSITION 4.4. If G is a fuzzy group in a group X, then $\mu_G(x^{-1}) = \mu_G(x)$ and $\mu_G(e) \geqslant \mu_G(x)$ for all $x \in G$, where e is the identity element of G.

Proof. See [5].

Given a fuzzy group G in a group X, let G_e denote the set $\{x \mid \mu_G(x) = \mu_G(e)\}$. It follows that G_e is a subgroup of X. For $a \in X$, let $\rho_a \colon x \to xa$ and $\lambda_a \colon x \to ax$ denote, respectively, the right and left translations of X into itself.

Proposition 4.5. Let G be a fuzzy group in a group X. Then, for all $a \in G_e$, $\rho_a[G] = \lambda_a[G] = G$.

Proof. (Compare [5]). Let $a \in G_e$. Then the membership function of $\rho_a[G]$ is given by

$$\mu_{\nu_a[G]}(x) = \mu_G(xa^{-1}) \geqslant \min\{\mu_G(x), \mu_G(e)\} = \mu_G(x)$$

$$= \mu_G(xa^{-1}a) \geqslant \min\{\mu_G(xa^{-1}), \mu_G(e)\} = \mu_G(xa^{-1}) = \mu_{a,[G]}(x),$$

for all $x \in X$. The proof for λ_a is similar.

5. Fuzzy Topological Groups

Suppose G is a fuzzy group in a group X. Let α denote the mapping $(x,y)\to xy$ $X\times X$ into X, and β the mapping $x\to x^{-1}$ of X into itself. The image $\alpha[G\times G]$ of the product fuzzy set $G\times G$ has membership function $\mu_{\alpha[G\times G]}$, where

$$\begin{split} \mu_{\alpha[G\times G]}(x) &= \sup_{\substack{(z_1,z_2) \in \alpha^{-1}(x) \\ = \sup_{(z_1,z_2) \in \alpha^{-1}(x)} \min\{\mu_G(z_1), \mu_G(z_2)\} \\ \leqslant \sup_{\substack{(z_1,z_2) \in \alpha^{-1}(x) \\ (z_1,z_2) \in \alpha^{-1}(x)}} \mu_G(z_1z_2) &= \mu_G(x), \end{split}$$

for all $x \in X$. Hence $\alpha[G \times G] \subset G$. By Proposition 4.4, $\mu_G(x) = \mu_G(x^{-1})$, for all $x \in X$. Hence $\beta[G] \subset G$. Next, note that if X is given a fuzzy topology \mathscr{F} , then G acquires an induced fuzzy topology \mathscr{F}_G . By definition, (G, \mathscr{F}_G) is a fuzzy subspace of the fts (X, \mathscr{F}) and $(G, \mathscr{F}_G) \times (G, \mathscr{F}_G)$ a fuzzy subspace of the product fts $(X, \mathscr{F}) \times (X, \mathscr{F})$.

DEFINITION 5.1. Let X be a group and \mathcal{F} a fuzzy topology on X. Let G be a fuzzy group in X and let G be endowed with the induced fuzzy topology \mathcal{F}_G . Then G is a fuzzy topological group in X iff it satisfies the following two conditions:

- (i) The mapping $\alpha: (x, y) \to xy$ of $(G, \mathcal{F}_G) \times (G, \mathcal{F}_G)$ into (G, \mathcal{F}_G) is relatively fuzzy continuous.
- (ii) The mapping $\beta: x \to x^{-1}$ of (G, \mathcal{T}_G) into (G, \mathcal{T}_G) is relatively fuzzy continuous.

A fuzzy group structure and an induced fuzzy topology are said to be *compatible* if they satisfy (i) and (ii).

PROPOSITION 5.1. Let X be a group having fuzzy topology \mathcal{F} . A fuzzy group G in X is a fuzzy topological group iff the mapping $\gamma: (x, y) \to xy^{-1}$ of $(G, \mathcal{F}_G) \times (G, \mathcal{F}_G)$ into (G, \mathcal{F}_G) is relatively fuzzy continuous.

- *Proof.* (\Rightarrow) The mapping $(x, y) \rightarrow (x, y^{-1})$ of $(G, \mathcal{F}_G) \times (G, \mathcal{F}_G)$ into itself is relatively fuzzy continuous by the Corollary to Proposition 3.5'. Hence, the composition $(x, y) \rightarrow (x, y^{-1}) \rightarrow xy^{-1}$ is relatively fuzzy continuous.
- (\Leftarrow) By Proposition 4.4, $\mu_G(e) \geqslant \mu_G(x)$, for all $x \in X$, and therefore by Proposition 3.7' the canonical injection $i: y \to (e, y)$ of (G, \mathcal{T}_G) into $(G, \mathcal{T}_G) \times (G, \mathcal{T}_G)$ is relatively fuzzy continuous. Hence the composition $\beta: y \to (e, y) \to ey^{-1}$ is relatively fuzzy continuous. The mapping $\alpha: (x, y) \to xy$ of $(G, \mathcal{T}_G) \times (G, \mathcal{T}_G)$ into (G, \mathcal{T}_G) is relatively fuzzy continuous since it is the composition $(x, y) \to (x, y^{-1}) \to x(y^{-1})^{-1}$ of relatively fuzzy continuous mappings.

If G is a fuzzy topological group in a group X carrying fuzzy topology \mathscr{T} , then, in general, the translations ρ_a , λ_a , $a \in X$, are not relatively fuzzy continuous mappings of (G, \mathscr{T}_G) into itself. We do, however, have the following special case. Recall that $G_e = \{x \mid \mu_G(x) = \mu_G(e)\}$.

PROPOSITION 5.2. Let X be a group having fuzzy topology \mathcal{F} , and let G be a fuzzy topological group in X. For each $a \in G_e$, the translations ρ_a , λ_a are relative fuzzy homeomorphisms of (G, \mathcal{F}_G) into itself.

Proof. From Proposition 4.5, we note that $\rho_a[G] = G$ and $\lambda_a[G] = G$, for all $a \in G_e$. The mapping λ_a is the composition of the injection $i \colon y \to (a,y)$ and the mapping $\alpha \colon (x,y) \to xy$. Since $\mu_G(a) \geqslant \mu_G(y)$ for all $y \in Y$, it follows from Proposition 3.7' that i is a relatively fuzzy continuous mapping of (G, \mathcal{F}_G) into $(G, \mathcal{F}_G) \times (G, \mathcal{F}_G)$. The mapping α is relatively fuzzy continuous by hypothesis. Hence, λ_a is relatively fuzzy continuous, and therefore $\lambda_a^{-1} = \lambda_{a^{-1}}$ also. The relative fuzzy continuity of ρ_a and ρ_a^{-1} is shown similarly.

6. Homomorphisms

Suppose that X and Y are groups and that f is a homomorphism of X into Y. Let Y have fuzzy topology $\mathscr U$ and let G be a fuzzy topological group in Y. The mapping f gives rise to a fuzzy topology $\mathscr T$ on X, the *inverse image* under f of $\mathscr U$, and, by Proposition 4.2, it also gives rise to a fuzzy group in X, the inverse image $f^{-1}[G]$ of G. The following proposition shows that the induced fuzzy topology on $f^{-1}[G]$ and the fuzzy group structure are compatible.

PROPOSITION 6.1. Given groups X, Y, a homomorphism f of X into Y, and a fuzzy topology $\mathcal U$ on Y, let X have fuzzy topology $\mathcal T$, where $\mathcal T$ is the inverse image under f of $\mathcal U$, and let G be a fuzzy topological group in Y. Then the inverse image $f^{-1}[G]$ of G is a fuzzy topological group in X.

Proof. We have to show that the mapping $\gamma_X: (x_1, x_2) \to x_1 x_2^{-1}$ of $(f^{-1}[G], \mathcal{T}_{f^{-1}[G]}) \times (f^{-1}[G], \mathcal{T}_{f^{-1}[G]})$ into $(f^{-1}[G], \mathcal{T}_{f^{-1}[G]})$ is relatively fuzzy continuous. Let U' be an open fuzzy set in the induced fuzzy topology $\mathcal{T}_{f^{-1}[G]}$ on $f^{-1}[G]$. Note that since f is a fuzzy continuous mapping of (X, \mathcal{T}) into (Y, \mathcal{U}) it is, by Proposition 3.1, a relatively fuzzy continuous mapping of $(f^{-1}[G], \mathcal{T}_{f^{-1}[G]})$ into (G, \mathcal{U}_G) . Note also that there exists an open fuzzy set V' in \mathcal{U}_G such that $f^{-1}[I''] = U'$. The membership function of $\gamma_X^{-1}[U']$ is given by:

$$\mu_{_{Y_{1}^{\vee}^{1}\mid U^{\prime}\mid}}(x_{_{1}}\,,\,x_{_{2}})=\mu_{_{U^{\prime}}}(x_{_{1}}x_{_{2}}^{-1})=\mu_{_{f^{-1}\mid V^{\prime}\mid}}(x_{_{1}}x_{_{2}}^{-1})=\mu_{_{V^{\prime}}}(f(x_{_{1}})\,(f(x_{_{2}}))^{-1}),$$

for all $(x_1, x_2) \in X \times X$. By hypothesis, the mapping γ_Y : $(y_1, y_2) \to y_1 y_2^{-1}$ of $(G, \mathcal{U}_G) \times (G, \mathcal{U}_G)$ into (G, \mathcal{U}_G) is relatively fuzzy continuous, and, by the Corollary to Proposition 3.5', so is the product mapping $f \times f$ of $(f^{-1}[G], \mathcal{T}_{f^{-1}[G]}) \times (f^{-1}[G], \mathcal{T}_{f^{-1}[G]})$ into $(G, \mathcal{U}_G) \times (G, \mathcal{U}_G)$. But,

$$\mu_{_{V'}}(f(x_1)\,(f(x_2))^{-1}) = \mu_{_{Y_1^{-1}[\,V']}}(f(x_1),f(x_2)) = \mu_{_{(f\times f)^{-1}[_{Y_1^{-1}[\,V']}]}}(x_1\,,\,x_2),$$

for all $(x_1, x_2) \in X \times X$. Hence, $\gamma_X^{-1}[U'] \cap (f^{-1}[G] \times f^{-1}[G]) = (f \times f)^{-1} [\gamma_Y^{-1}[V']] \cap (f^{-1}[G] \times f^{-1}[G])$ is open in the induced fuzzy topology on $f^{-1}[G] \times f^{-1}[G]$.

The next proposition shows that for some homomorphic images a similar situation holds.

PROPOSITION 6.2. Given groups X, Y, a homomorphism f of X into Y, and a fuzzy topology \mathcal{T} on X, let Y have fuzzy topology \mathcal{U} , where \mathcal{U} is the image under f of \mathcal{T} , and let G be a fuzzy topological group in X. If the membership function μ_G of G is f-invariant, then the image f[G] of G is a fuzzy topological group in Y.

Proof. In accordance with the remark following Proposition 4.3, f[G] is a fuzzy group. We have to show that the mapping $\gamma_Y \colon (y_1\,,\,y_2) \to y_1y_2^{-1}$ of $(f[G],\,\mathcal{U}_{f[G]}) \times (f[G],\,\mathcal{U}_{f[G]})$ into $(f[G],\,\mathcal{U}_{f[G]})$ is relatively fuzzy continuous. Note that f is fuzzy open, for if $U \in \mathcal{T}$, then $f[U] \in \mathcal{U}$, since the inverse image $f^{-1}[f[U]]$ is the union of open fuzzy sets (Prop. 5.2) and thus open in \mathcal{T} . It follows that f is relatively fuzzy open, since if $U' \in \mathcal{T}_G$, there exists $U \in \mathcal{T}$ such that $U' = U \cap G$ and, by the f-invariance of μ_G , $f[U'] = f[U] \cap f[G] \in \mathcal{U}_{f[G]}$. By Proposition 3.6', the product mapping $f \times f$ is a relatively fuzzy open mapping of $(G,\,\mathcal{T}_G) \times (G,\,\mathcal{T}_G)$ into $(f[G],\,\mathcal{U}_{f[G]}) \times (f[G],\,\mathcal{U}_{f[G]})$.

Let V' be an open fuzzy set in $\mathscr{U}_{f[G]}$. The membership function of $(f \times f)^{-1} [\gamma_{Y}^{-1}[V']]$ is given by

$$\mu_{\scriptscriptstyle (f\times f)^{-1}[\gamma_Y^{-1}[\,V'\,]]}(x_1\,,\,x_2) = \mu_{\scriptscriptstyle V'}(f(x_1)\,(f(x_2))^{-1}) = \mu_{\scriptscriptstyle (\gamma_X^{-1}\circ f^{-1})[\,V'\,]}(x_1\,,\,x_2),$$

for all $(x_1, x_2) \in X \times X$, where $\gamma_X: (x_1, x_2) \to x_1 x_2^{-1}$. But, by hypothesis, γ_X is a relatively fuzzy continuous mapping of $(G, \mathcal{T}_G) \times (G, \mathcal{T}_G)$ into (G, \mathcal{T}_G) , and f

is a relatively fuzzy continuous mapping of (G, \mathcal{T}_G) into $(f[G], \mathcal{U}_{f[G]})$. Hence, by the f-invariance of μ_G ,

$$(f \times f)^{-1} [\gamma_Y^{-1}[V'] \cap (f[G] \times f[G])] = (f \times f)^{-1} [\gamma_Y^{-1}[V']] \cap (G \times G)$$

is open in the induced fuzzy topology on $G \times G$. As $f \times f$ is relatively fuzzy open,

$$(f \times f)(f \times f)^{-1}[\gamma_Y^{-1}[V'] \cap (f[G] \times f[G])] = \gamma_Y^{-1}[V'] \cap (f[G] \times f[G])$$

is open in the induced fuzzy topology on $f[G] \times f[G]$.

7. QUOTIENTS AND PRODUCTS

Given a group X carrying a fuzzy topology \mathcal{F} , and G a fuzzy topological group in X, let N be a normal subgroup of X, and let ϕ be the canonical homomorphism of X onto the quotient group X/N. If the membership function μ_G of G is constant on N, then μ_G is ϕ -invariant, and the image $\phi[G]$ is accordingly a fuzzy group in X/N. We call $\phi[G]$ a quotient fuzzy group and denote it by G/N.

Proposition 7.1. Let X be a group having fuzzy topology \mathcal{T} , G a fuzzy topological group in X and N a normal subgroup of X. Let the quotient group X|N be given the fuzzy topology which is the image of \mathcal{T} under the canonical homomorphism ϕ . Then, if the membership function μ_G of G is constant on N, the quotient fuzzy group G|N is a fuzzy topological group in X|N.

Proof. Apply Proposition 6.2.

We refer to the above fuzzy topology on the quotient group X/N as the quotient fuzzy topology and to G/N as a quotient fuzzy topological group.

PROPOSITION 7.2. Let X, Y be groups, and f a homomorphism of X onto Y. Let \mathcal{T} be a fuzzy topology on X, \mathcal{U} a fuzzy topology on Y, and f both fuzzy continuous and fuzzy open. Let G be a fuzzy topological group in X such that its membership function μ_G is constant on the kernel $f^{-1}(e)$ of f. Let the quotient group $X/f^{-1}(e)$ have the quotient fuzzy topology. Then:

- (i) The fuzzy groups $G/f^{-1}(e)$ and f[G] are fuzzy topological groups in $X/f^{-1}(e)$ and Y respectively.
- (ii) The canonical isomorphism f of $X/f^{-1}(e)$ onto Y is a relative fuzzy homeomorphism of $G/f^{-1}(e)$ onto f[G].
- *Proof.* (i) That $G/f^{-1}(e)$ is a fuzzy topological group in $X/f^{-1}(e)$ follows immediately from Proposition 7.1. Since f is both fuzzy continuous and fuzzy

open, the image under f of \mathcal{F} coincides with \mathcal{U} . For, if V is a fuzzy set in Y such that $f^{-1}[V]$ is open in \mathcal{F} , $f[f^{-1}[V]] = V$ is open in \mathcal{U} , and, conversely, if V is open in \mathcal{U} , then $f^{-1}[V]$ is open in \mathcal{F} . By Proposition 6.2, the image f[G] is therefore a fuzzy topological group in Y.

(ii) Let V' be an open fuzzy set in the induced fuzzy topology $\mathscr{U}_{f[G]}$ on f[G], and let ϕ be the canonical homomorphism of X onto $X/f^{-1}(e)$. Then $f^{-1}[V'] = \phi^{-1}[f^{-1}[V']]$ is open in \mathscr{T}_G , since f is relatively fuzzy continuous, and therefore $f^{-1}[V']$ is open in the induced fuzzy topology on $G/f^{-1}(e)$, since ϕ is relatively fuzzy open. Conversely, if U' is an open fuzzy set in the induced fuzzy topology on $G/f^{-1}(e)$, then $\phi^{-1}[U'] = f^{-1}[f[U']]$ is open in the induced fuzzy topology on G, which implies that f[U'] is open in $\mathscr{U}_{f[G]}$ since f is relatively fuzzy open.

We now briefly discuss products of fuzzy topological groups. Let $\{X_j\}$, j=1,2,...,n, be a finite family of groups, and X the product group. For each j=1,2,...,n, let X_j have fuzzy topology \mathscr{T}_j , and let G_j be a fuzzy topological group in X_j . The product fuzzy set $G=\prod_{j=1}^n G_j$ in X has membership function μ_G given by

$$\mu_G(x) = \min\{\mu_{G_1}(x_1), \dots, \mu_{G_n}(x_n)\},\$$

where $x = (x_1, ..., x_n)$. It follows that G is a fuzzy group in X, since, for all $x, y \in X$,

$$\begin{split} \mu_G(xy^{-1}) &= \mu_G(x_1y_1^{-1}, \dots, x_ny_n^{-1}) = \min\{\mu_{G_1}(x_1y_1^{-1}), \dots, \mu_{G_n}(x_ny_n^{-1})\} \\ &\geqslant \min\{\min\{\mu_{G_1}(x_1), \mu_{G_1}(y_1)\}, \dots, \min\{\mu_{G_n}(x_n), \mu_{G_n}(y_n)\}\} \\ &= \min\{\min\{\mu_{G_1}(x_1), \dots, \mu_{G_n}(x_n)\}, \min\{\mu_{G_1}(y_1), \dots, \mu_{G_n}(y_n)\}\} \\ &= \min\{\mu_G(x), \mu_G(y)\}. \end{split}$$

We call G the product of the fuzzy groups G_j , j = 1, 2, ..., n.

The product group X has associated with it the product fuzzy topology. The next proposition shows that the induced fuzzy topology on G and the product fuzzy group structure are compatible.

PROPOSITION 7.3. Let $\{X_j\}$, j=1,2,...,n, be a finite family of groups and, for each j=1,2,...,n, let \mathcal{T}_j be a fuzzy topology on X_j , and G_j a fuzzy topological group in X_j . Let the product group $X=\prod_{j=1}^n X_j$ have the product fuzzy topology \mathcal{T} . Then the product fuzzy group $G=\prod_{j=1}^n G_j$ is a fuzzy topological group in X.

Proof. The mapping $\gamma: (x, y) \to xy^{-1}$ of $(G, \mathcal{F}_G) \times (G, \mathcal{F}_G)$ into (G, \mathcal{F}_G) may be written as the composition of $\gamma_1: (x, y) = ((x_1, ..., x_n), (y_1, ..., y_n)) \to ((x_1, y_1), ..., (x_n, y_n))$ and $\gamma_2: ((x_1, y_1), ..., (x_n, y_n)) \to (x_1y_1^{-1}, ..., x_ny_n^{-1})$. By Propositions 3.5 and 3.1, γ_1 is relatively fuzzy continuous, and, by the Corollary to Proposition 3.5', γ_2 is relatively fuzzy continuous; hence γ is relatively fuzzy continuous.

We refer to $G = \prod_{j=1}^{n} G_j$ as a product fuzzy topological group. The results of Propositions 7.1 and 7.3 may be combined to yield the following.

PROPOSITION 7.4. Let $\{X_j\}$, j=1,2,...,n, be a finite family of groups and, for each j=1,2,...,n, let \mathcal{F}_j be a fuzzy topology on X_j , N_j a normal subgroup of X_j , and G_j a fuzzy topological group in X_j such that its membership function μ_{G_j} is constant on N_j . Let the quotient groups X/N, where $N=\prod_{j=1}^n N_j$, and X_j/N_j , j=1,2,...,n, have the respective quotient fuzzy topologies, and the product groups $X=\prod_{j=1}^n X_j$ and $\prod_{j=1}^n (X_j/N_j)$ the respective product fuzzy topologies. Let $G=\prod_{j=1}^n G_j$ be the product fuzzy topological group in X. Then the canonical isomorphism ι of X/N onto $\prod_{j=1}^n (X_j/N_j)$ is a relative fuzzy homeomorphism of the quotient fuzzy topological group G/N onto the product fuzzy topological group $\prod_{j=1}^n (G_j/N_j)$.

Proof. Let ϕ be the canonical homomorphism $x \to [x]$ of X onto X/N, and, for each j=1,2,...,n, let ϕ_j be the canonical homomorphism $x_j \to [x_j]$ of X_j onto X_j/N_j . Let $\prod_{j=1}^n \phi_j$ be the product mapping of X onto $\prod_{j=1}^n (X_j/N_j)$. Thus, $\iota \circ \phi = \prod_{j=1}^n \phi_j$. Note that for each $[x] \in X/N$,

$$\begin{split} \mu_{G/N}([x]) &= \mu_G(x) = \mu_{\prod_{j=1}^n G_j}(x_1, ..., x_n) \\ &= \min\{\mu_{G_1}(x_1), ..., \mu_{G_n}(x_n)\} \\ &= \min\{\mu_{G_1/N_1}([x_1]), ..., \mu_{G_n/N_n}([x_n])\} \\ &= \mu_{\prod_{j=1}^n (G_j/N_j)}(\iota([x])). \end{split}$$

By Propositions 7.1 and 7.3, G/N and $\prod_{j=1}^n (G_j/N_j)$ are fuzzy topological groups. Let V' be open in the induced fuzzy topology on $\prod_{j=1}^n (G_j/N_j)$. Then $\phi^{-1} \circ \iota^{-1}[V'] = (\prod_{j=1}^n \phi_j)^{-1}[V']$ is open in the induced fuzzy topology on G, since, by Propositions 3.5 and 3.1, $\prod_{j=1}^n \phi_j$ is relatively fuzzy continuous. Thus, $\iota^{-1}[V']$ is open in the induced fuzzy topology on G/N, since ϕ is relatively fuzzy open. Hence ι is relatively fuzzy continuous. Conversely, let U' be open in the induced fuzzy topology on G/N. Then $\phi^{-1}[U']$ is open in the induced fuzzy topology on G, and therefore $(\prod_{j=1}^n \phi_j) (\phi^{-1}[U']) := \iota[U']$ is open in the induced fuzzy topology on $\prod_{j=1}^n (G_j/N_j)$, since $\prod_{j=1}^n \phi_j$ is the product of relatively fuzzy open mappings and is therefore relatively fuzzy open by Proposition 3.6'. Hence ι is relatively fuzzy open.

REFERENCES

- 1. L. A. ZADEH, Fuzzy sets, Inform. Contr. 8 (1965), 338-353.
- 2. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- C. K. Wong, Fuzzy topology: Product and quotient theorems, J. Math. Anal. Appl. 45
 (1974), 512-521.
- R. LOWEN, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), 621-633.
- 5. A. ROSENFELD, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.