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The bootstrap method provides a powerful, general procedure for estimating the variance of a
parameter ofa function. The parametric version ofthe method was used to estimate the standard
deviation of a threshold from a psychometric function and the standard deviation of its slope.
Bootstrap standard deviations were compared with those obtained by a classical incremental
method and by the asymptotic method of probit analysis. Twelve representative experimental
conditions were tested in Monte Carlo studies, each of 1,000 data sets. All methods performed
equally well with large data sets, but with small data sets the bootstrap was superior in both
percentage bias and relative efficiency.

There are many occasions in which it is desirable to measure
the strength of a stimulus in terms of its response in an organ
ism. Typically, different levels ofa known treatment are applied
to subjects and the effects of that treatment are recorded at each
level. Thus, in psychophysics, one might construct a psychomet
ric ./imction, which describes the relationship between the level
ofa stimulus and the probability ofa subject making a particu
lar response at that level (Falmagne, 1982). In a biological or
medical assay, one might determine a stimulus-response curve
or dose-response curve, which relates the dosage of a drug or
poison and the proportion of subjects that on average are af
fected at that dosage (Finney, 1978).

In practice, the potency ofa stimulus may need to be charac
terized by a single number that corresponds to a particular
criterion level of efficacy. For a psychometric function, this
stimulus level is the threshold value of the stimulus, for that
particular criterion. In a simple "yes-no" detection task, per
centage of successes might be recorded at a number of testing
levels and a theoretical function in the form, for example, ofa
normal probability integral function fitted to those data. The
situation is illustrated in Figure la. Threshold would be defined
for a criterion performance level of 50%. For a two-alternative
forced-choice task, where theoretical performance ranges from
50% to 100%, the criterion level could be 75%. For a dose-re
sponse curve, the situation is similar. The criterion level ofeffi
cacy would be the median (or mean) effective dose, symbolized
by ED50, which on average produces a response in 50% ofsub
jects. Similarly, ED75 is the dose that produces a response in
75% of subjects.
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How stimulus levels should be sampled to best obtain a
threshold estimate has been the subject ofsome attention in the
literature (see, e.g., Emerson, 1984; Shelton, Picardi, & Green,
1982; Taylor, Forbes, & Creelman, 1983, for reviews ofadaptive
and other methods in psychophysics; see Finney, 1978, for dis
cussion of methods relevant to medical and biological assay).
Less attention has been directed to the problem of estimating
the reliability of a threshold or a median-effective-dose esti
mate. In some circumstances, the question may be resolved
empirically: The experiment is repeated a number of times and
the precision of an individual estimate or mean ofestimates is
estimated from the sample variance. In other circumstances,
repeating the experiment may be impossible or impracticable.
It may stilI be important, however, to obtain information about
the reliability of a single estimate, for example, when judging
whether the estimate is significantly different from another ob
tained from a different subject or under different experimental
conditions. The question has particular significance in assay .
work when deciding on the minimum number ofsubjects from
which an acceptably precise ED50 may be calculated.

Probit analysis has been the traditional method for estimat
ing the variance or standard deviation of a threshold estimate
from a psychometric function (Finney, 1952, 1971). The bino
mial scores at each testing level are transformed (by the inverse
of the normal probability integral), a straight line is fitted by a
weighted linear regression, and a threshold (ED50) computed.
The probit method has been very popular. There have been
over 2,300 citations ofFinney's Probit Analysis (1947,1952, and
1971 editions) over the 10-year period from 1978 to 1988. In the
method, the standard deviation of the threshold estimate is
obtained by classical asymptotic theory. The trustworthiness of
the estimate, however, is uncertain when sample sizes are not
large (Finney, 1952, pp. 250-251; 1971, p. 57), and examples of
substantial errors have been reported (Foster & Bischof, 1987;
McKee, Klein, & Teller, 1985).

The bootstrap procedure (Efron, 1982; Efron & Tibshirani,
1986) for estimating the standard deviation ofa point estimate



BOOTSTRAP THRESHOLD VARIANCE ESTIMATES 153

(a) Sample set (b) Replicate 1 (c) Replicate 2

I
3.0

m*=-0.10
9*=1.16

I
o
x

o ~--
/ .... -0,,,

p,,,
9"0

i C i
-3.0

x

0'-..-,,,
0/0

o ~/ "r*=0.34
" g*=1.57

...::.h,./---r--r---.
I "-'I i I

-3.0 0 3.0

model
estimate

'0 100
2!...
0
0

"E 50
m=O.31Ql

0
9=1.16Q.;

a.. 0
-3.0 0 3.0

x

20
(d) Estimated midpoint

distribution
(e) Estimated slope

distribution

s''oSOOT=O.25

2X (9)=7.5

16

c
:0 12

~
'""E
5 8
o

4

o
o 1.0 o 1.0

s''oSOOT=O.27

X2(9)=18.2

2.0

m* 9*

Figure 1. Bootstrap standard deviations from a psychometric function: (a) Model psychometric function
(continuous curve) with a sample set ofdata (open symbols), based on Equation I with m= O,g= I, n,= n=
10, and maximum likelihood estimates of the psychometric function (broken curve) and ofthe midpoint
mand slope g; (b) and (c) are bootstrap replicates generated from the sample set in (a); (d) and (e) are
histograms of the 100 bootstrap replicates m* and g*. (The smooth curves are normal distributions with
the same means and standard deviations as the bootstrap histograms. Goodness of fit is shown by the
chi-squared values.)

(or any other aspect of a distribution) is essentially a Monte
Carlo sampling technique. The following is an example (Efron
& Gong, 1983) used to illustrate the bootstrap. Consider IS
pairs of average test scores from 15 law schools, each pair of
scores comprising two different measures of subject perfor
mance (the average undergraduate grade-point average and the
average score on the law school admission test). The observed
Pearson correlation coefficient r for these IS pairs was.776.
The bootstrap estimate of the precision of this estimate is ob
tained as follows. The original 15 pairs are each copied a very
large number of times (say one billion) and mixed together.
Samples of size 15 are then selected at random and values of r
calculated for each sample. A typical bootstrap sample might
consist of2 copies of the first pair oforiginal values, acopies of
the second pair, I copy of the third pair, and so forth, the total

number summing to 15. This process is repeated a large number
oftimes, say 1,000, to obtain 1,000 bootstrap estimates ofr. The
standard deviation of these 1,000 estimates constitutes the
bootstrap estimate of the standard deviation. For the law
school data, the bootstrap standard deviation was .127, which
may be compared with the normal theory estimate of .115
(Efron & Gong, 1983).

The application of the bootstrap procedure in the present
context is similar. A large number of samples is randomly
drawn, with replacement, from the original set of data values
giving response as a function of stimulus level. (This sampling
process may be improved by using "smoothed" versions of the
original data estimated from the fitted psychometric function.)
Each of these bootstrap samples is fitted by the psychometric
function and a threshold estimate calculated. The standard de-
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Estimation o/Standard Deviation by Incremental Method

where L is the likelihood. Equations 2a and 2b lead (Finney, 1952,
1971 ) to the following computational expressions for the estimated
standard deviations SDpRoB

Consider the functions in and f" defined by In = j;n(Y" Y2,· .. , Y,)
and g = j~(Y" Y2, . .. , Y,). Suppose that the estimated variances .1/ of
the Y, are not too large (see Lindley, 1965). The estimated standard
deviations SD,NC are then given approximately by the first terms ofa
Taylor series expansion

I, by an iterative procedure (the Newton-Raphson method). Let Z, =

z, + (Y, - y, )/(ay;/az,), where z, = 4>-' (Y,) and 4>-1 is the inverse of the
normal probability integral 4> of Equation la. In each iteration a
weighted linear regression of Z, on x, is computed, with weights n,w"
w, = (ay;/azY I(y, (I - y,)). The estimated variances Vare given by the
asymptotic formulae

(3a)

(3b)

(2a)

(2b)

V(m) = - I l(a2Llam 2),

V(g) = -I/WLlag 2),

SD1Ndm) = [L,(aj;"layy .1/)'/2,

SDINdg) = [L,(af"laY,)2 a? )'/2,

where the partial derivatives a.;;nlay" a.f"lay, are evaluated at (Y
"

Y2,
... , YI ) (Foster, 1986). The a} are given by the usual binomial formula
Y, (I - Y,) In,. This method belongs to the classical study ofthe "Combi
nation of Observations" (Lindley, 1965). To avoid spuriously small
standard deviation estimates from sample sets in which several of the
Y, were 0 or I, the actual sample data values Y

"
Y2, ... , YI were

smoothed by replacing each Y, by y, estimated from the fitted curve of
Equations Ia and Ib. 2 This is the parametric version of the incremental
method (Efron, 1982).

SDPROB(m) = [(l/L,n,"j + (m - x)2/L,n,"j(x, - x)2)lg2)'/2,

SDPROB(g) = [I IL ,n,lij (x, - X)2)'/2,

where x = L,n,"jx,IL,n,lIj. Details are given in Finney (1952,1971).
Note that Equations 2a and 2b relate properly to large samples. This
iterative weighted regression is not essential to the probit method, and
Finney (1971. sections 5.4, 6.6) has advocated a direct approach to the
maximization of the likelihood. The asymptotic formulae (Equations
2a and 2b) remain unaltered. The principle of the probit method itself
may be traced back to Fech ner (1860).'

Method

Let Y" Y2, ... , YI be an observed set of scores measured at I test
levels, X,, X2,'" , x" of the stimulus. Each score Y, represents the pro
portion of r, successes out ofn, trials, Y, = r;/n,. The underlying psycho
metric function is assumed to have the form ofthe normal probability
integral

y = 4>(z) = (21lT '/2 fooexP(-1I2/2)dll, (Ia)

z=(x-m)·g, (Ib)

where the constants m and g define the midpoint of the function and
the gradient or slope at the midpoint (except for the factor (21lT'/2).
The symbol g should not be confused with the symbol defined by
Finney (1971, p. 78) for another purpose. The observed scores Y, are
assumed to be generated from rescaled binomial distributions

viation of the resulting distribution of bootstrap estimates of
the threshold is used to estimate the standard deviation of the
threshold obtained from the original data set.

As Efron (1982) emphasized, the success of the bootstrap
method depends on replacing traditional theoretical analysis
by computing effort. It requires few modeling assumptions and
little theoretical analysis. One of its advantages in the present
context is its potential small-sample accuracy (Hinkley, 1988).

The purpose of the present study was to compare the probit
and bootstrap methods and a third, incremental method·(Fos
ter, 1986) based on the use of a Taylor-series expansion of the
threshold estimate as a function of the empirical data. The
variables of interest were the standard deviation of the mid
point of the estimated psychometric function (corresponding
to the threshold test level) and the standard deviation of the
slope ofthe estimated psychometric function at its midpoint. A
representative range of experimental conditions was defined,
with different spacings of the test levels and different numbers
of trials per level. For each experimental condition, 1,000
Monte Carlo sets of data were generated, to which each of the
three methods for estimating the standard deviation was ap
plied. The performance of each of the methods was judged by
two statistics: the percentage bias ofthe standard deviation esti
mator and the relative efficiency of the standard deviation esti
mator. The bootstrap method was found to be superior to the
probit and incremental methods, particularly in the analysis of
small data sets.

Y, - Bi(n" y,)ln" i = 1,2, ... , I, (I c) Estimation o/Standard Deviation by Bootstrap Method

where y, = yat X = x,. This analysis is not especially dependent on the
choice of the normal probability integral function, and other func
tions, such as the logistic function, would be acceptable; see Finney
(1971) and Cox (1970).

In Figure la, the continuous curve shows an example of the model
function of Equations Ia and Ib, with m = 0, g = I, the open symbols a
sample set generated from Equation Ic with n, = 10,1 = 5, the broken
curve the maximum likelihood estimate ofEquations la and Ib, and m
and g the maximum likelihood estimates of m and g respectively.

Estimation ojStandard Deviation by Probit Method

In the original probit method, maximllm likelihood estimates m
and gofm and g are obtained from the observed scores Y" i = 1,2, ... ,

Consider the empirical distribution of(Y
"

Y2 , ••• , Y,), that is the
distribution obtained by placing the rescaled binomial Bi(n" Y;)ln,at
each level x" i = I, 2, ... , I, of the empirical data set. As in the incre
mental method, the parametric version of the bootstrap method
(Efron, 1982) was used to avoid the effects ofseveral of the Y, beingOor
I. Thus the actual sample data values Y, in Bi(n" Y, )In, were replaced

, See Fechner (1860), Chapter 8, Section Id, "Specielles zur Meth
ode der richtigen und falschen Faelle" (special [comments) on the
method of correct and incorrect cases). Fechner's calculations were
verified by Moebius.

2 When Y, = 0 or I, the estimated standard deviations .1/ = 0 and
contribute nothing to the estimates SD(m) and SD(g).
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Table I
Comparison ofBootstrap, Incremental, and Probit Estimators for the Standard Deviation q(the Estimated
Midpoint (m) and Gradient (i) for Model Function (Equation 1)
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Bootstrap estimate Incremental estimate Probit estimate

(SDBOOT) (SD1Nd (SDpRoa)

True Standard % Relative Standard % Relative Standard %
Parameter Sd Average deviation bias· efficiencyb Average deviation bias· efficiencyd Average deviation bias'

Total trials I:;lIi = N = 15, trials per level II; = 5

Model function I:
levels Xi -I, 0, I

m 0.481 0.474 0.162 -1.4 6.8 0.606 4.01 25.9 0.011 0.517 0.423 6.3
g 0.395 0.376 0.041 -4.8 5.9 0.501 0.065 26.6 2.4 0.522 0.100 32.0

Total trials I:ill i = N = 30, trials per level II; = 10

Model function 2:
levels X; = -1, 0, I

In 0.296 0.322 0.159 8.6 1.4 0.331 0.973 11.8 0.038 0.291 0.191 -1.8

15 0.371 0.352 0.043 -5.0 2.7 0.378 0.083 1.9 0.72 0.370 0.070 -0.2

Total trials I:;II; = N 300, trials per level II; = 100

Model function 3:
levels Xi = -I. 0, I

In 0.0824 0.0799 0.0090 -3.0 0.60 0.0819 0.0069 -0.61 1.04 0.0817 0.0070 -0.89
g 0.107 0.105 0.0094 -1.7 0.24 0.108 0.0046 1.3 1.01 0.108 0.0046 0.69

Nole. m = 0, g I. number of levels (I) = 3.
a % bias = [(Ave(SOaOOT) - Sd)/Sdj· 100, where Sd = "true Sd." b Relative effici~cy = Var(SOPROB)/Var(SOaooT)' C % bias = [(Ave(SOINd -

Sd)/Sdj· 100. d Relative efficiency = Var(SOPROa)/Var(SOINd. • % bias = [(Ave(SOPROB) - Sd)/Sd]· 100.

by their smoothed values )'i estimated from the fitted curve of Equa
tions Ia and Ib. Let F be the distribution with the resealed binomial
Bi(lIi • .fi )/Ili at each level Xi' i = 1.2.... , I. Draw a bootstrap sample
(n. n .. '" Y1) from l(the same size as the original data set) and fit
the function of Equations la and 1b by maximizing the likelihood to
obtain new estimates In* and g* (illustrated in Figure Ib and again in
Figure Ie). Repeat this last stepa large number Boftimes, to obtain B
estimates 1/1i. l1Ji • ...• ,i1~, and B estimates.~i. g!, .... g~. The boot
strap estimates of the standard deviations SDaooT are given by the
sample standard deviations

where 1/1* = 2.::=tIJ1h/B and g~ = 'L:=,gh/B. Figures Id and Ie show
histograms for I00 bootstrap replications from the sample set in Figure
Ia, and the calculated bootstrap standard deviations. See Efron (1982)
for further details.

Data Sets

The three methods for estimating standard deviations were each
applied in 12 experimental conditions, with different numbers and
spacings of the test levels Xi and numbers II; of trials per level i = I, 2,
... , I. For each experimental condition, 1,000 sample sets ofdata (Y1,
Y2 , ••• , YI ) were generated. (Note that there were two levels of Monte
Carlo: The 1,000 sample sets (Y1, Y2 , ••• , Y,) for each condition and the
B bootstrap samples (Yf, n, ... ,Yi) generated with each (Y" Y2 , ••• ,

Y,) held fixed; Efron & Tibshirani, 1986.) With small data sets, there

was an increased risk that estimated values of iiI and g would take
extreme values; in particular, 111 could become infinite and gnegative,
zero. or positive infinite. Because extreme values would have had a
destabilizing effect on the computation ofthe standard deviation. sam
ple data sets yielding values of in or g-' greater than 20 times the
stimulus range were excluded. as a priori were those data sets that were
degenerate. for example, when the Yi were all identical or when the sets
were of the form (a, a, . .. , a, b, boo . .• b). O:s a, b:s I. In an exhaustive
analysis (Foster & Bischof, 1987) of one such case, where all 1,878
distinct positive pairs 111 and Ii were generated from Equation I with
m = 0, g= I. Xi = -2, -1. ... ,2, and "i = fI = 5, the proportion of pairs
that was found to be inadmissible was 4.2%.

For each experimental condition. "true" values of the standard de
viations. Sd(m) and Sd(g), were calculated by generating either 5,000
or 10,000 admissible data sets.

It should be noted that the parametric bootstrap and incremental
methods may be applied to data sets in which the levels Xi arc un
equally spaced. the numbersflioftrials at each Xi arc unequal, and II, = I
for one or more Xi'

Performance ofStandard Deviation Estimators

The principal measure of performance for the probit. incremental,
and bootstrap estimators in each condition was the percentage bias.
defined as the difference between the average of the estimate SO
(taken over 1,000 samples) and the true value Sd, expressed as a per
centage of the true value. For example. for the bootstrap estimate
SOaoOT (In) ofthe standard deviation ofthe estimated midpoint m, the
percentage bias was

[(Ave(SDaOOT(ri'l» Sd (111»/Sd (11J)] ·100.
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Table 2
Comparison ofBootstrap. Incremental. and Probit Estimators for the Standard Deviation o/the Estimated
Midpoint (m) and Gradient (g) for Model Function (Equation I)

Bootstrap estimate Incremental estimate Probit estimate
SDBooT SOlNe SOPROB

True Standard % Relative Standard % Relative Standard %
Parameter Sd Average deviation bias' efficiencyb Average deviation biasc efficiencyd Average deviation biase

Total trials !,ini ~ N = 25, trials per level n i 5

Model function 4:
levels Xi ~ -2, 1,0, 1,2

m 0.356 0.330 0.089 -7.4 0.62 0.324 0.084 -9.1 0.70 0.337 0.070 -5.3
g 0.319 0.298 0.033 -6.4 16.4 0.385 0.087 20.7 2.33 0.387 0.132 21.6

Model function 5:
levels Xi ~ -1, -0.5,0,0.5, I

rn 0.357 0.389 0.265 9.0 5.5 0.497 2.17 39.2 0.082 0.366 0.621 2.6
g 0.536 0.524 0.110 -2.3 1.5 0.554 0.198 3.3 0.46 0.472 0.135 -12.0

Total trials !,ini ~ N ~ 50, trials per level n i ~ 10

Model function 6:
levels Xi = - 2, I, O. 1,2

In 0.246 0.229 0.037 -7.2 0.79 0.231 0.039 -6.2 0.74 0.232 0.033 -5.7
g 0.285 0.281 0.048 -1.5 3.5 0.297 0.094 4.1 0.94 0.271 0.091 -4.7

Model function 7:
levels XI = -I, -0.5.0,0.5, I

In 0.213 0.234 0.143 9.9 0.39 0.224 0.233 5.3 0.15 0.211 0.090 -1.1
g 0.328 0.340 0.077 3.9 0.32 0.323 0.068 -1.4 0.41 0.309 0.043 -5.7

Total trials !,Ini ~ N ~ 500, trials per level n i ~ 100

Model function 8:
levels Xi ~ -2, -I, 0, 1,2

117 0.0759 0.0723 0.0061 -4.7 0.26 0.0749 0.0031 1.7 0.98 0.0748 0.0031 -1.4
g 0.0744 0.0728 0.0087 ·-2.3 0.51 0.0738 0.0068 -0.9 0.82 0.0733 0.0062 -1.5

Model function 9:
levels XI = -I, -0.5. 0, 0.5, I

In 0.0623 0.0599 0.0063 -3.9 0.58 0.0614 0.0048 1.3 1.02 0.0615 0.0048 -1.3
g 0.0938 0.0904 0.0076 -3.6 0.13 0.0932 0.0028 -0.6 0.96 0.0929 0.0027 -0.9

Notc.m 0, g ~ I, number of levels (/) ~ 5.
• ')" bias [(Ave(SDBoOT) - Sd)/Sd] . 100, where Sd ~ "true Sd." b Relative efficiency ~ Var(SDpROB)/Var(SDBOOT)' C % bias ~ [(Ave(SD,Ncl-

~ ~

e % bias = [(Ave(SDpRoB ) - Sd)/Sd] . 100.Sd)/Sd], 100. d Relative efficiency ~ Var(SDpROB)/Var(SDINe).

A second measure of performance was the re/ath'c ('{ficienc.l' of the
bootstrap and incremental estimator with respect to the probit estima
tor. defined as the inverse ratio of the variances of the estimates.
Hence. li)r the bootstrap estimate SDBoOT (l/l). the relative efficiency
was

Var(SDpROB (m))/Var(SOBOOT(Ii'1)).

Both SDBOOT (n"7) and SD1NC(li'1) behaved as consistent estimators.

Procedure

For the probit method, maximum likelihood estimates were calcu
lated by iterative regression, as described in Finney (1952,1971), with
a maximum 01'50 cycles ofthe iteration and a convergence tolerance of
10-4

• For the incremental method, the partial derivatives in Equations
3a and 3b were each estimated by finite-difference approximations.
The bootstrap estimates ofthe standard deviation were each based on
100 bootstrap replications (B = 100). (The effect of B on the variance
ofthe bootstrap estimate of the standard deviation is considered later.)

For the incremental and bootstrap methods a nonlinear optimization
technique modified from the simplex. method (Nelder& Mead, 1965)
was used to fit the model function to the data, Because of the sensitiv
ity of the bootstrap standard deviation to occasional ex.treme values of
rn* and i*, each distribution of rn* and g* generated from a sample set
was symmetrically two-fold Winsorized (Foster & Bischof, 1987).

Computations were carried out in FORTRAN on two mainframe
computers, a Cyber 176 and a CDC 7600, each with floating-point
precision of 15 significant decimal digits. The NAG routine G05EYF
was used to generate pseudorandom integers (Numerical Algorithms
Group, 1984). The two machines were used to spread the computa
tionalload, and in a number ofcontrol measurements produced iden
tical results.

Results

The results of the Monte Carlo studies are shown in Tables
1-3 with the data grouped according to the number ofstimulus
levels and trials per level in the model psychometric functions.
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Table 3
Comparison ofBootstrap, Incremental, and Probit Estimators for the Standard Deviation ofthe Estimated
Midpoint (m) and Gradient (g) for Model Function (Equation I)
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Bootstrap estimate Incremental estimate Probit estimate

SDOOOT WINe W PROO

True Standard % Relative Standard % Relative Standard %
Parameter Sd Average deviation bias' efficiencyb Average deviation bias· efficiencl Average deviation bias'

Total trials ~inj = N = 45, trials per level ni = 5

Model function 10:
levelsxj = -2, -1.5, -I,
-0.5, 0, 0.5, I, 1.5, 2

m 0.250 0.233 0.050 -6.5 0.70 0.230 0.043 -7.7 0.92 0.235 0.042 -5.6
g 0.361 0.378 0.125 4.5 1.l 0.404 0.192 11.6 0.45 0.296 0.129 -18.1

Total trials ~inj = N = 90, trials per level ni = 10

Model function II:
levelsxj = -2, -1.5, -I,
-0.5, 0, 0.5, I, 1.5, 2

In 0.174 0.163 0.023 -6.3 0.71 0.167 0.019 -4.0 0.99 0.168 0.019 -3.2
g 0.203 0.215 0.065 6.0 0.39 0.209 0.057 3.1 0.52 0.186 0.041 -8.4

Total trials ~ini = N = 900, trials per level ni = 100

Model function 12:
levels Xi = -2, -1.5, -I,
-0.5,0, 0.5, I, 1.5, 2

m 0.0540 0.0517 0.0040 -4.4 0.19 0.0536 0.0018 -0.8 0.97 0.0536 0.0018 -0.8
g 0.0546 0.0532 0.0051 -2.6 0.31 0.0545 0.0030 -0.2 0.87 0.0544 0.0028 -0.3

No/e. m = 0, g =J.., number of levels (I) = 9.
• % bias = [(Ave(SD1Ncl-• % bias = [(Ave(SDoooT) - Sd)/Sdj· 100, where Sd = "true Sd." b Relative efficiency = Var(SDpROO)/Var(SDooOT)'

Sd)/Sdj· 100. d Relative efficiency = Var(SDpRoo)/Var(SDINcl. • % bias = [(Ave(SDpRoo) - Sd)/Sdj· 100.

For each condition, summary data are shown for the bootstrap,
incremental, and probit estimators. Figure 2 shows the effect of
bootstrap replication number B on the variance of the estima
tors SDBOOT(m) and SDBOOT(g). The broken lines are linear
least squares regressions.

Discussion

The bootstrap estimator was clearly the best estimator in
each one of the three tables. In Table I the maximum magni
tude of the percentage bias for the bootstrap estimator SDBOOT
was 8.6%, for the incremental estimator SDINe 26.6%, and for
the probit estimator SDPROB 32.0%; in Table 2, the maximum
percentage biases were 9.9%, 39.2%, and 21.6%, respectively;
and in Table 3, 6.5%, 11.6%, and 18.1 %, respectively. The superi
ority of the bootstrap is most evident when the total number of
trials in the sample is less than about 50 (model psychometric
functions I, 4, 5, and 10 in Tables 1-3), although the distribu
tion of trials over levels was also important. The relative effi
ciency of the bootstrap estimator was also high when the total
number of trials was small and generally exceeded the relative
efficiency of the incremental estimator. Thus, in Model Func
tion I (Table I), where the total number of trials was 15, the
relative efficiency of the bootstrap estimator for the standard
deviation of the estimated midpoint was 6.8, and in Model
Function 5 (Table 2), where the total number of trials was 25, it

was 5.5. When the total number of trials was about 90 or more,
all three estimators performed about the same, although, as is
made clear later, the efficiency of the bootstrap could have
been improved further.

The largest percentage biases in the probit estimator oc
curred in the estimation of the standard deviation of the esti
mated slope of the psychometric function. The performance of
the probit estimator for both the standard deviation ofthe slope
and of the midpoint may worsen with smaller numbers of trials
or with asymmetric psychometric functions, ranging, for exam
ple, over 50-100% rather than over 0-100% (Foster & Bischof,
1987; McKee et aI., 1985). Thus, in a separate simulation,
Model Function 4 (Table 2) ranging over 50-100% yielded a
bias for the probit estimator of the standard deviation of the
estimated midpoint 4.4 times higher than that for the bootstrap
estimator.

Effect ofReplication Number B

It has been suggested that B = 100 is usually sufficient for
estimating standard deviations (Efron, 1982; Hinkley, 1988). In
Figure 2, the dependence of the variance of SDBOOT on I /B is
approximately linear. Increasing B from 100 to 200 reduced the
variance in SDBOOT (rn) by about 40%, but increasing B again
from 200 to 400 only reduced the variance by a further 20%.
When the number oftrials per level ni was reduced (in Figure 2,
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Figure 2. Variance of the bootstrap standard deviation estimate as a
function ofthe bootstrap replication number B. (The data were gener
ated from Equation 1 with m = 0, g = I, 1= 5, ni = n = 100.)

Experimental Implications

When are standard deviation estimates of the kind consid
ered here likely to be important? First, in some experiments it

may be desirable to use no more than the minimum number of
trials necessary to achieve a prescribed level of precision in a
threshold estimate. Reliable standard deviation estimates are a
prerequisite for such judgments and in medical assay are an
essential adjunct to the specification ofdrug potencies in terms
of mean-effective-dose (ED50) values. Second, in some psy
chophysical experiments, it may be difficult to repeat measure
ments. Thresholds may be changing rapidly, as in some sensory
adaptation and recovery paradigms, or the total time available
for obtaining data may be severely constrained, as in some clin
ical situations. Third, in such situations, estimates of the slope
of a function and its precision may have diagnostic relevance
for individual subjects. Although there have been suggestions
to the contrary (e.g., Watson & Pelli, 1983), the slope of a psy
chometric function is not always invariant under changes in
adaptation level, and a significant reduction in the magnitude
ofthe slope may indicate pathology ofsensory function (Patter
son, Foster, & Heron, 1980). Slope precision is ofcourse critical
in medical assays when potency of a drug is being assessed in
terms of the gradient of a dose-response relation (slope ratio
assay; Finney, 1978). Fourth, even when repetition of measure
ments is feasible, estimatesofthe standard deviations ofindivid
ual parameter estimates may still be useful in forming the best
(minimum variance) estimate of the parameter, or in assessing
the contribution of potential outliers to the mean. Finally, the
magnitude of the estimated standard deviation may itself be
used to decide among a number ofcompeting parameters, such
as midpoint, slope, and spread, each offering a summary of
overall stimulus-response performance.

The present analysis assumed a standard form for the psycho
metric function, a requirement imposed by the use ofthe tradi
tional probit method. Suppose that the form of the psychomet
ric function is unknown. Both the bootstrap and incremental
methods can be used to obtain distribution-free estimates of
the standard deviation of a threshold estimate, but, as Efron
and Gong (1983) noted, a good parametric analysis, when ap
propriate, can be more efficient than the nonparametric coun
terpart. The smoothed versions ofthe bootstrap and incremen
tal methods were introduced here to improve efficiency, but
smoothing was not essential, and the variance of the estimates
could have been reduced by some of the stabilization tech
niques cited earlier.

For large samples, the probit method is likely to continue as
the method of choice, but, for medium-to-small samples, the
use of formulae from classical asymptotic theory should be
viewed with caution. In discussing maximum likelihood meth
ods, Finney (1952, p. 246) was careful to emphasize that "the
known optimal properties of maximum likelihood estimation
relate to large samples, and some alternative may be superior in
samples offinite size." The simulations that were presented here
were intended to span a representative variety of data sets of
finite size that might occur in adaptive or fixed-levels designs
(method of constant stimuli). Because of the effects ofstimu
Ius-level spacing it is not possible to give a general lower limit on
sample size for which probit analysis gives inappropriate stan
dard deviation estimates. A conservative recommendation
might be to consider use of the bootstrap method as an alterna
tive when the total number of trials falls somewhat below 100,
but this figure may have to be revised upward when the psycho-
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nj = 100), the effect of B was found to be less important, and
bootstrap relative efficiencies were generally higher (Tables
1-3). The decrease in SDBOOT with increase in B suggests that
SDBOOT was being destabilized by a few outlying bootstrap repli
cations not trapped by the Winsorization, and a more robust
procedure may be preferred for the calculation ofSDBooT •

In practice, when only modest numbers ofdata sets have to be
analyzed rather than the many thousands considered here, it
should be possible to afford large values of B. The efficiency of
the bootstrap simulation itself may also be improved by incor
porating variance-reduction techniques, including balanced
sampling, which may lead to substantial reductions in the value
of B for a given level of simulation error (Davison, Hinkley, &
Schechtman, 1986; Hinkley, 1988). Hall (1989) has provided an
analysis of three efficient bootstrap algorithms.

If confidence intervals rather than standard deviations were
of interest, the minimum value ofB would have to be increased
by about a factor of I0 (Efron & Tibshirani, 1986). Some rele
vant methodological issues have been discussed by DiCiccio
and Romano (I 988), DiCiccio and Tibshirani (I 987), Hall
(1986), and Tibshirani (I 988). Confidence intervals may be
preferred when the bootstrap distribution is skewed or strongly
non-normal and the standard deviation no longer provides a
good indication of the precision of the point estimate.
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metric function is asymmetric or the spacing oftest levels is not
optimum.3

3 A FORTRAN listing of the main programs used in this study is
available on request from David H. Foster.
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