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This tutorial offers an introduction to terrestrial and close-range hyperspectral imaging and some of its uses in
human color vision research. The main types of hyperspectral cameras are described together with procedures for
image acquisition, postprocessing, and calibration for either radiance or reflectance data. Image transformations
are defined for colorimetric representations, color rendering, and cone receptor and postreceptor coding. Several
example applications are also presented. These include calculating the color properties of scenes, such as gamut
volume and metamerism, and analyzing the utility of color in observer tasks, such as identifying surfaces under
illuminant changes. The effects of noise and uncertainty are considered in both image acquisition and color vision
applications.
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1. INTRODUCTION

Hyperspectral imaging combines spatial and spectral data in
such a way that each pixel of an image of a scene or object
represents a continuous radiance or reflectance spectrum [1].
Terminology in spectral imaging is not standardized [2], but
can be indicative. Thus hyperspectral imaging differs from mul-
tispectral imaging, where spectral sampling takes place over
multiple nonadjacent wavelength bands or is relatively coarse
within a band so that some spectral information is lost. In turn,
multispectral imaging differs from conventional trichromatic
or RGB color imaging, where spectral sampling is reduced
to just three components, from the long-, medium-, and short-
wavelength regions of the visible spectrum.

Hyperspectral imaging is relevant to research in vision, es-
pecially vision in natural scenes, because hyperspectral images
capture the full spatial and spectral properties of the light signal,
thereby preserving the relevant degrees of freedom. In the main,
these signals are spatially and spectrally complex [3]. Figure 1
shows radiance spectra reflected from individual pixels in a
hyperspectral image of a flower scene.

Natural scenes are interpreted broadly to include both
undeveloped and developed land cover [6,7]. Specifically,
scenes may be predominantly vegetated, containing woodland,
shrubland, herbaceous vegetation, and cultivated land, or pre-
dominantly nonvegetated, containing barren land, urban devel-
opment, as well as farm outbuildings and painted or treated
surfaces [8]. Importantly, they embody the everyday visual

environment, unlike some arrays and tableaux used in labora-
tory studies.

In addition to enabling visual function to be realistically
analyzed and computationally modeled in the natural world,
hyperspectral imaging allows more accurate testing of colori-
metric and color appearance formulas and more faithful render-
ing of scene data on color display devices, for both laboratory
research and its practical applications.

Unavoidably, the technical literature spans multiple
disciplines. The aim, therefore, of this tutorial is to provide
an integrated introduction to terrestrial and close-range hyper-
spectral imaging and some of its uses in human color vision
research.

Section 2 describes the main types of hyperspectral cameras
and procedures for image acquisition, postprocessing, and
calibration. Section 3 compares spectral radiance and reflec-
tance images and the effects of real and simulated illumi-
nation changes. Sections 4 and 5 present image transformations
for colorimetric representations, color rendering, and cone
receptor and postreceptor coding. Sections 6 and 7 contain
example applications. These include the calculation of color
gamut, color constancy, and metamerism, and an analysis of
the utility of color in tasks requiring an observer to distinguish
surfaces or identify them under illuminant changes. Notation
is guided by [9–13] but amended where necessary for clarity
or consistency with previous work. As with other tutorials
[14], no attempt is made at a comprehensive review of the
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field or to report novel research findings. Citations may not
reflect priority.

General introductions to hyperspectral imaging can be
found in Refs. [15–17] and to color vision and colorimetry
in Refs. [18–22]. Other sources are cited at points in the text.
Advice on different aspects of camera calibration is available in
Refs. [23–30], and material on photon transfer, radiometry,
and reflectance in Refs. [9,10,31,32]. Image quality assessment
that takes into account visual performance is considered in
Ref. [33]. Applications concerning artwork and vision are ex-
plored in Refs. [34–36]. A list of close-range hyperspectral im-
age datasets relevant to vision research is available in Ref. [37];
see also Ref. [38]. Various hyperspectral image-compression
techniques are proposed in Refs. [39–41].

The color images and associated data in this article are from
hyperspectral images acquired with an in-house wavelength-
scanning hyperspectral camera, which provided images of size
1344 × 1024 pixels over a spectral range 400–720 nm in
10 nm steps [8]. Apart from material in Section 2, however,
where different camera types are described, none of this tutorial
is specific to any one imaging system.

2. HYPERSPECTRAL IMAGING

A hyperspectral image can be treated as a three-dimensional set
of data, sometimes called a datacube or hypercube, with values
representing a spectroradiometric quantity, such as spectral ra-
diance or spectral reflectance, indexed by spatial coordinates u,
v and wavelength λ. A two-dimensional section of the datacube,
known as a slice, can be defined for a particular passband center
wavelength λ, or for a particular spatial coordinate u or v, to
within the sensor resolution of the camera. Figure 2 shows

an array of wavelength slices. Each is a grayscale intensity image
at wavelengths of 400 nm, 410 nm,…, 720 nm making up
the hyperspectral radiance image of the flower scene in
Fig. 1. The different spectral reflecting properties of the surfaces
are evident, with, e.g., the flowers on the left of the scene ap-
pearing brighter in the grayscale images from around 600 nm
onward.

Depending on the hyperspectral camera, images can be ac-
quired a slice at a time or in a single operation. Significant post-
processing of the raw signal is required either internally by
embedded hardware or externally by the user in order to reduce
the effects of noise and to obtain accurate radiance or reflec-
tance estimates.

A. Hyperspectral Cameras

In the present context, which hyperspectral cameras are the
most suitable for scene imaging? Systems based on wavelength
scanning, line scanning, and non-scanning, single-shot imaging
are all popular [16,17,42]. Non-scanning systems offer greater
efficiencies than scanning systems [43] but may entail com-
promises in resolution.

Active hyperspectral imaging, such as terrestrial laser scan-
ning, delivers only reflectance data [44].

1. Wavelength Scanning

In wavelength-scanning imaging, also known as area or focal-
plane scanning, or front staring imaging, the incident light
passes through a tunable spectral filter placed in front of the
camera lens or between the camera lens and camera sensor.

Spectral sampling may be achieved with a fixed number of
mechanically interchangeable bandpass filters [45–47], or with
an electronically tunable liquid crystal or acousto-optical filter
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Fig. 1. Examples of reflected radiance spectra from a flower scene. Data are from a hyperspectral radiance image of size 1344 × 1024 pixels,
corresponding to approximately 14 × 11 deg visual angle at the camera, with spectra sampled at 400 nm, 410 nm,…, 720 nm. The plots show
radiance spectra at individual pixels (radiance scales adjusted for range). The small light-gray sphere near the top of the scene is covered in Munsell
N7 matte paint [4], and the reflected spectrum (top right plot) follows the typically uneven spectrum of light from the sun and sky [5]. The long,
thin, light-gray rectangular plate at the bottom of the scene is a reference reflectance surface. The hyperspectral image of the scene was acquired on
October 10, 2003, from a garden in Sameiro in the Minho region of Portugal.
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or an interferometer [17,42,48,49]. The image is constructed
either directly, one wavelength at a time, or indirectly from the
interferogram.

Wavelength-scanning systems have the advantage that
with well-corrected optics, they preserve the geometry of the
scene or object during spectral sampling, and exposure time
can be adjusted with wavelength according to the spectral prop-
erties of the scene. They have the disadvantage that acquisition
time can be prolonged at low light levels and that spatial res-
olution is limited by the size of the sensor array. Additionally,
scene movement may generate chromatic artifacts in the ren-
dered image.

2. Line Scanning

With a line-scanning or pushbroom hyperspectral camera, the
incident light is focused by a lens onto a slit aperture from
which the light is spectrally dispersed by a grating or other de-
vice [50] and then focused onto the camera sensor. The image
of the scene is thus constructed a row (or equivalently a col-
umn) at a time, and at every point along the row, a complete
spectrum, indexed by wavelength λ, is recorded [51]. Successive
rows, indexed by spatial coordinate v, may be acquired with a
moving mirror or by rotating the whole camera [16].

Line-scanning systems have the advantage that spatial sam-
pling in the other spatial dimension u is, in principle, unlim-
ited, but the disadvantage that asymmetric sampling may lead
to distortion [52]. Exposure time cannot be adjusted with
wavelength in the same way as with wavelength-scanning sys-
tems, and large variations in incident radiance with wavelength
can prove a challenge [53]. Line-scanning systems are also
vulnerable to scene movement.

3. Single Shot

With a single-shot or snapshot hyperspectral camera, the inci-
dent light is divided simultaneously over multiple spectrally se-
lective sensor arrays, or it is optically coded and spectrally
dispersed over a single sensor array, or imaged on a single spec-
trally patterned sensor array, analogous to the Bayer filter mo-
saic in a conventional color camera [2,54,55].

Single-shot systems have the advantage that complete spatial
and spectral data are acquired simultaneously, but the disad-
vantage that there is a tradeoff between the number of spatial
and spectral samples according to how the incident light is
divided or coded [2,43,54,56,57]. As the number of spectral
samples increases, the number of sensor elements allocated

to a particular wavelength generally decreases. The alternative
of increasing the size of the sensor array can lead to longer in-
tegration or readout times. Other relevant issues include spatial
and spectral aliasing [2,58], demosaicing artifacts [56,59], and,
with spectrally patterned arrays, the consistency of wavelength
tuning across corresponding sensor elements.

B. Image Acquisition

The workflow for image acquisition outdoors depends on the
choice of hyperspectral camera, viewing geometry, and whether
spectral radiance or reflectance data are required. The following
steps are typical for a spectroradiometrically uncalibrated
scanning system [8,16,25,32,50,60,61]:

1. Adjust the camera position and focus for the scene (or
region or object).

2. To aid later spectral calibration (Sections 2.C.5, 2.C.6),
introduce into the scene or field of view one or more small,
spectrally neutral, reference surfaces, e.g., a barium sulfate plug
or a Munsell gray sphere or plate [4], as in Fig. 1, or a multi-
color chart (e.g., ColorChecker, X-Rite Pantone, Grand Rapids
MI, USA) for additional control measurements [62,63]. Ensure
that the reference surface is oriented correctly with respect to
the camera axis and incident illumination. Insert or identify any
structures in the scene that can provide fiducial marks for later
spatial calibration and image registration in postprocessing
(Section 2.C.4).

3. Adjust the aperture of the camera, and, if necessary, es-
timate the exposure timing in a trial acquisition sequence,
avoiding point specularities.

4. Acquire a hyperspectral image of the scene.
5. If the image is to be processed as a spectral radiance im-

age rather than a reflectance image, record the spectral radiance
reflected from the reference surface or surfaces in the scene or
field of view with a calibrated spectroradiometer or telespectror-
adiometer

6. Acquire a hyperspectral image of a uniform, neutral,
matte, flat, reflecting plate placed in front of the camera to
cover the field of view. This flat-field image is used to estimate
fixed-pattern noise (Section 2.C.1), although its effects are
more systematic than random. As a spatial measurement, it
is distinct from the spectral measurements with the reference
surface in steps 2 and 5. Flat-field images can also be obtained
in the laboratory from a full spectrum source with an isotropic
diffuser placed in front of the camera or with an integrating
sphere [32,64].

Fig. 2. Grayscale wavelength slices from the hyperspectral radiance image of the flower scene in Fig. 1, with wavelength indicated in nm at the top
left of each slice. The intensity range in each slice image has been stretched for illustration. As evident from the spectral radiance plots in Fig. 1, the
surfaces in the scene reflect little energy at very short wavelengths.
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7. Acquire a hyperspectral image with the lens covered but
with the same exposure timing as for the scene image and at the
same temperature. This dark-field image is used to estimate the
combined effects of dark-current noise, bias, and readout noise.

8. If necessary, repeat the scene image acquisition to
reduce uncorrelated image noise by subsequent averaging.
Photon noise can be a major source of error. Both flat-field
and dark-field image acquisitions should also be repeated sev-
eral times [32]. The plate used for flat-fielding may be moved a
little between acquisitions to ensure the uniformity of the
estimate.

Image sequences should be examined for defects, most often
movement artifacts and sensor element saturation resulting
from transient point specularities. Defective sequences may
need to be discarded. If the imaging conditions are constant,
then common flat-field images and common dark-field images
may be used. Details of the scene and imaging conditions
should be recorded as part of the acquisition documentation.

C. Image Postprocessing

After acquisition, images obtained with an uncalibrated system
need to be corrected for noise errors and other systematic errors
and then calibrated spatially to give angular subtense and spec-
trally to give spectral radiance or reflectance [8]. Correcting for
achromatic geometric errors and spatial blurring are considered
in Refs. [65,66] and for spectral blurring in Refs. [67,68].
Notation here differs somewhat from that in Refs. [10,13].

1. Noise Errors

Errors due to noise can be divided into non-imaging and
imaging errors. Non-imaging noise errors include camera
dark-current noise, which increases with exposure duration
and temperature; bias, which provides a constant offset; and
readout noise. The main imaging noise error is fixed-pattern
noise, which includes non-uniformity in the sensor array re-
sponse, i.e., pixel-to-pixel variation in quantum efficiency, gain,
and dust [10,31,69], and off-axis vignetting, i.e., darkening at
the corners and edges of the image [27,64]. These and other
sources of noise are analyzed in Refs. [28,31,32].

Let I S�u, v; λ� be the scene image intensity indexed by spa-
tial coordinates u, v, and wavelength λ; let IF�u, v; λ� be the
corresponding flat-field image intensity; and let ID�u, v; λ�
be the corresponding dark-field image intensity (independent
estimates of dark-current noise, bias, and readout noise are usu-
ally unneeded [32]). The approximately corrected scene image
intensity ICS�u, v; λ� is then given [32,70] by

ICS�u, v; λ� �
I S�u, v; λ� − ID�u, v; λ�
IF�u, v; λ� − ID�u, v; λ�

: (1)

This expression assumes that after subtraction of dark-field im-
age noise ID�u, v; λ�, the response of each sensor element is
linear. Both CCD and sCMOS sensors can deliver an approx-
imately linear response to light over several decades [32,69],
and any departures from linearity can be accommodated by
adding correction terms to Eq. (1).

Fluctuations in the recorded values of ID�u, v; λ� may lead
to the corrected scene image intensity ICS�u, v; λ� in Eq. (1)
taking on numerically small, negative values at some points.

These values may be set either to zero or to some mean estimate
derived from other areas of the image.

A correction for stray light or light scatter within the camera
may also be applied [29,71,72], but in practice, it is necessary
only if there are locally very bright reflecting or emissive sur-
faces within the scene.

Notice that values of ICS�u, v; λ� do not represent spectror-
adiometric quantities until the image is calibrated for spectral
radiance or reflectance (Sections 2.C.5, 2.C.6).

2. Wavelength Errors

Errors in the nominal passband center wavelength setting of the
system can be quantified with a calibrated precision monochro-
mator. Errors in the passband center wavelength across the field
of view can be quantified by repeating a flat-field measurement
in which the illumination is from spectral line sources [64].
Both kinds of wavelength error ought to be small and capable
of being accommodated by corrections to Eq. (1).

3. Spectral Sampling and Out-of-Band Transmission

The wavelength sampling interval of the imaging system is usu-
ally larger than the passband width, so sampling can be approxi-
mated by a delta function [28]. Alternatively, a routine
correction can be applied for bandpass error [13,73].

Spectral leakage, i.e., transmission at wavelengths outside
the selected passband of the system [10,25,64], may need to
be considered. It may be extremely small, several orders of mag-
nitude less than maximum transmission [74], yet, in principle,
its effects can be cumulative at long wavelengths where the ra-
diant energy of the sun is greater, vegetated surfaces reflect more
strongly (the “red edge”), and the quantum efficiency of the
camera sensor is higher. A correction for spectral leakage can
be made as follows.

Let t�λ0, λ� be the spectral transmission of the system as a
function of wavelength λ at each passband center wavelength
λ0. The in-band portion of this function can be measured with
a calibrated precision monochromator, but the residual out-of-
band transmission may need other methods. Let I�u, v; λ� and
Ĩ�u, v; λ� be the respective image spectral intensities at the point
�u, v� before and after spectral sampling. Then,

Ĩ�u, v; λ0� �
Z
t�λ0, λ�I�u, v; λ� dλ: (2)

The tilde symbol signifies that Ĩ�u, v; λ� is an approximation to
I�u, v; λ�. The discretized form of Eq. (2) can be solved by ma-
trix methods to yield the required estimate of I�u, v; λ�, with
due attention paid to the accuracy of the numerical data for t
and the stability of the solution.

In practice, with an infrared-blocking filter in place, the cor-
rection is usually very small and may be omitted under good
imaging conditions. Nevertheless, one or more calibrated sur-
faces that reflect predominantly at long wavelengths, e.g.,
Munsell 10YR [4], may be included in the scene to monitor
the extent of long-wavelength leakage.

4. Image Registration

Longitudinal chromatic aberration of the optical system
and consequent chromatic image blur are reduced with achro-
matic or apochromatic lenses [75]. Even so, lateral chromatic
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aberration, i.e., variation in optical image size with wavelength,
may still be visible at the extremes of the spectrum, resulting in
misalignments of several pixels across the full image width.
Figure 3, top left, shows a color image of a stone cottage ren-
dered from a hyperspectral radiance image with an enlarged
copy of the square area marked in white, bottom left. The color
fringing on the drainpipe is obvious, but also detectable on the
branches of trees and the walls of buildings.

The principle of image registration is to take one wavelength
slice as a reference or base image, usually from the middle of
the spectrum, and apply operations such as scaling and trans-
lation to the other wavelength slices to optimize the alignment,
quantified, e.g., by an areal measure such as normalized cross
correlation [76]. Figure 3, top right, shows the effect of regis-
tration. An enlarged copy of the square area marked in white is
shown bottom right. The color fringing is eliminated.

As an alternative to areal registration, image features such as
edges or corners may be identified and local edge fitting applied
to define control points for a single scaling and translation
operation [76]. Non-Euclidean transformations may also be
applied [77].

The method of registration needs to be chosen with refer-
ence to the composition of the scene, since regions of the image
may reverse contrast from one part of the spectrum to another.
The effect is evident in Fig. 2. At 520 nm, the flower on the
lower right of the scene appears darker than the leaf beneath it
in the grayscale image, but at 550 nm, it appears brighter, with

the result that the correlation between the slices changes sign.
In these parts of the spectrum, regions, edges, and corners may
lose their identity or shift spatially.

The problem of aligning wavelength slices differing signifi-
cantly in structure can be avoided by applying registration iter-
atively, each slice being compared with the next [78], though
with the risk that errors may accumulate across the spectrum.

Whichever method is chosen, the edge of the registered im-
age may need to be trimmed to eliminate pixel artifacts with
zero or replicated padded values.

5. Spectral Radiance Calibration

A spectral radiance image can be obtained from the corrected
scene image by exploiting flat-field data (Section 2.B), but the
calculation requires additional measurements and contains un-
certainties. A more robust way to proceed is to use the spectral
radiance data recorded independently from the reference sur-
face or surfaces in the scene or field of view (Section 2.B).

Suppose that l0�λ� is the spectral radiance recorded from a
reference surface at a point �u0, v0� as a function of wavelength
λ. Then, for the selected viewing geometry, the spectral radi-
ance L�u, v; λ� at the point �u, v� is estimated by

L̂�u, v; λ� � ICS�u, v; λ�
l 0�λ�

ICS�u0, v0; λ�
: (3)

This estimate, signified by the hat symbol, is called a one-point
calibration [26]. It can be improved by using data from several

Fig. 3. Effect of registration across wavelength. The color images of the stone cottage are rendered from a hyperspectral radiance image without
registration, top left, and with registration, top right. Color fringing due to lateral chromatic aberration and its removal by registration can be seen
more easily in the enlarged copies of the square areas marked in white, bottom left and bottom right, respectively. The long, thin, light-gray
rectangular plate at the bottom of the full scene is a reference reflectance surface. The hyperspectral image of the cottage was acquired on
June 4, 2003, under an overcast sky in Ruivães in the Minho region of Portugal.
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reference surfaces [70]. Suppose that l0�λ�, l1�λ�,…, l n�λ�
are the spectral radiances recorded from these surfaces at the
n� 1 points �u0, v0�, �u1, v1�,…, �un, vn�. Perform an mth-
order regression of l0�λ�, l 1�λ�,…, l n�λ� on ICS�u0, v0; λ�,
ICS�u1, v1; λ�,…, ICS�un, vn; λ�, where 1 ≤ m ≤ n. Thus, if
m � 1 and the estimated regression coefficients are k̂0�λ�
and k̂1�λ�, then

L̂�u, v; λ� � k̂0�λ� � k̂1�λ�ICS�u, v; λ�:
Notice the dependence of the coefficients k̂0�λ� and k̂1�λ� on λ;
i.e., the regression is performed at each wavelength. The good-
ness of the fit can be tested by cross-validation against known
reflecting surfaces in the scene. The offset term k̂0�λ� ought to
be unnecessary if the estimate of the dark-field image intensity
ID�u, v; λ� in Eq. (1) is correct.

6. Spectral Reflectance Calibration

The procedure for obtaining a spectral reflectance image from
the corrected scene image ICS�u, v; λ� is analogous to that for
obtaining a spectral radiance image. But only the spectral re-
flectance r0�λ� at a point �u0, v0� on the reference surface is
required as a function of wavelength λ, not its spectral radiance
l 0�λ�. For the selected viewing geometry, the spectral reflec-
tance R�u, v; λ� at the point �u, v� is estimated by

R̂�u, v; λ� � ICS�u, v; λ�
r0�λ�

ICS�u0, v0; λ�
:

This scaling of ICS�u, v; λ� by r0�λ�∕ICS�u0, v0; λ�, unlike scal-
ing for spectral radiance in Eq. (3), may amplify image errors at
short wavelengths, when the incident illumination is weak. But
as with spectral radiance estimates, this one-point calibration
can be improved by using data from several reference surfaces
and performing an mth-order regression of spectral reflectances
r0�λ�, r1�λ�,…, rn�λ� on ICS�u0, v0; λ�, ICS�u1, v1; λ�,…,
ICS�un, vn; λ�. If m � 1 and the estimated regression coeffi-
cients are k̂0�λ� and k̂1�λ�, then

R̂�u, v; λ� � k̂0�λ� � k̂1�λ�ICS�u, v; λ�:
As with the spectral radiance calibration, the offset term k̂0�λ�
ought to be unnecessary if the estimate of the dark-field image
intensity ID�u, v; λ� in Eq. (1) is correct.

7. Spatial Subsampling

Even after registration, data from adjacent pixels in the hyper-
spectral image of a scene are likely to be correlated because of
the limited resolution of the camera optical system. The point-
spread function (PSF), which in general varies with wavelength,
provides a useful guide. It can be estimated by methods using
point imaging [79], edge imaging [80], and random-noise im-
aging [81]. If the PSF is much larger than the pixel spacing, the
spectral radiance image L�u, v; λ� or spectral reflectance image
R�u, v; λ� may need to be spatially subsampled before being
used in analysis and modeling.

3. RADIANCE AND REFLECTANCE ESTIMATES

Given the procedural similarities in calibrating for spectral radi-
ance and spectral reflectance, which of the two representations
is themore appropriate? It depends on how the data are used, the

differences between real and simulated illumination changes,
and the variations in natural reflected spectra.

A. Effective Reflectances and Global Illuminants

Recall from Section 2.C.6 that a spectral reflectance image
R�u, v; λ�, indexed by spatial coordinates u, v and wavelength
λ, is obtained by scaling the corrected scene image ICS�u, v; λ�
by the spectral reflectance of one or more reference surfaces in
the scene. It is strictly an effective reflectance in the sense that it
represents the scene for the selected viewing geometry as if it
consists of planar Lambertian reflecting surfaces illuminated by
a spatially uniform or global illuminant E�λ�, which need not
coincide with the true illumination on the scene [8].

More precisely, suppose, again, that l0�λ� is the spectral ra-
diance recorded at a point �u0, v0� on a reference surface in the
scene or field of view (Section 2.C.5) and that r0�λ� is the
known spectral reflectance of that surface (Section 2.C.6).
Then, the global illuminant E�λ� is defined by

E�λ� � l 0�λ�∕r0�λ�:
The reflected spectral radiance L�u, v; λ� may then be repre-
sented as the product of E�λ� and the effective spectral reflec-
tance R�u, v; λ�; thus,

L�u, v; λ� � E�λ�R�u, v; λ�: (4)

It is immaterial whether the reflected spectral radiance is esti-
mated directly by Eq. (3) or indirectly through Eq. (4), since
the outcome is the same. Effective spectra are sometimes re-
ferred to as apparent [82] or equivalent [83,84].

Any nonlinear contributions to Eq. (4) from processes such
as mutual reflection and fluorescence are assumed to be neg-
ligible. Mutual reflection, where light reflected from one surface
illuminates a second [85], also referred to as mutual illumina-
tion or interreflection [86], depends on the proximity and ori-
entation of the surfaces in the scene [87,88]. Fluorescence,
which is commonly associated with vegetation [89], accounts
for perhaps 4%–15% of the nominal reflectance in the 670–
690 nm region of the spectrum [90]. Both contributions,
which are difficult to predict for the general case, are probably
outweighed by other factors, as illustrated in Section 3.B.

These specific nonlinearities aside, the reflected radiance
L�u, v; λ� is the result of a fundamentally more complicated in-
teraction than that summarized by Eq. (4), since it involves the
bidirectional reflectance distribution function (BRDF) [9,91].
With an abuse of notation, let E�θ,φ; u, v; λ� be the incident
spectral irradiance at the point �u, v� in the direction �θ,φ� at
wavelength λ, where the polar and azimuthal angles θ and φ are
defined with respect to a fixed directional coordinate system.
Likewise, let R�θ0,φ0; θ,φ; u, v; λ� be the bidirectional spectral
reflectance distribution function at �u, v� in the direction �θ,φ�
at wavelength λ, for the viewing direction �θ0,φ0�, where the
points of incidence and reflection are assumed to be the same
[9]. The reflected spectral radiance L�u, v; λ� in the direction
�θ0,φ0� is then given by

L�u, v; λ� �
Z
2π
E�θ,φ; u, v; λ�R�θ,φ; u, v; λ� dω, (5)

where dω is the solid angle element in the direction �θ,φ�, and
the explicit dependence on �θ0,φ0� is suppressed.
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The role of direction of incidence �θ,φ� and position
�u, v� in E�θ,φ; u, v; λ� and R�θ,φ; u, v; λ� is nontrivial. In
the product of effective quantities in Eq. (4), the variation
in the incident spectral irradiance is absorbed into the effective
spectral reflectance, whose magnitude may exceed unity at
some points because the reference surface is oriented with
its normal to the camera and at an angle to the sun. These un-
real values of R�u, v; λ� lose their significance when multiplied
by E�λ� in Eq. (4) to form the reflected spectral radiance
L�u, v; λ�.

It is emphasized that in practice the effective spectral reflec-
tance R�u, v; λ� recorded from a physical matte object whose
spectral reflectance is nominally constant across its surface
can still vary markedly from pixel to pixel. In addition to pho-
ton and acquisition noise identified in Sections 2.B and 2.C,
there are multiple other sources of noise associated with physi-
cal surfaces under natural illumination. These sources are enu-
merated in Section 3.C.

B. Real and Simulated Illumination Changes

Whether a reflected spectral radiance can be represented as a
product of a global illuminant and an effective spectral reflec-
tance, as in Eq. (4), depends on the separability of the integrand
in Eq. (5), i.e., with a further abuse of notation, whether
E�θ,φ; u, v; λ� can be approximated as the product of spatial
and spectral factors:

E�θ,φ; u, v; λ� ≈ E�θ,φ; u, v�E�λ�:
In that event, the expression in Eq. (5) for the reflected spectral
radiance L�u, v; λ� becomes

L�u, v; λ� ≈ E�λ�
Z
2π
E�θ,φ; u, v�R�θ,φ; u, v; λ� dω,

where the explicit dependence of L�u, v; λ� and R�θ,φ; u, v; λ�
on �θ0,φ0� is again suppressed. This equation reduces to
Eq. (4). The approximation can be usefully tested with two
kinds of natural illumination change, one mainly spectral,
the other mainly geometric.

1. Spectral Illumination Changes

An example of where spectral illumination effects dominate is
shown in Figs. 4(a) and 4(b). The color images are rendered
from time-lapse hyperspectral radiance images of a rock face
acquired in the late afternoon, about 25 min apart.
Although there are small differences in the distribution of shad-
ows in (a) and (b), the obvious change is in the shift of the mean
scene color towards red, reflecting the change in prevailing
illumination.

The color of the illumination is usually identified with its
correlated color temperature in kelvin [13,92], where 4000 K
typifies the yellow-orange of the setting sun and 25,000 K the
blue of the north or polar sky. For the scene in Fig. 4, the spec-
trum of the direct illumination on the scene can be calculated

(a) 18:15 (b) 18:40 (c) Simulated 18:40

(d) 13:21 (e) 15:15 (f) Simulated 15:15

Fig. 4. Real and simulated changes in illumination on a rock face. The color images in (a) and (b) are rendered from two time-lapse hyperspectral
radiance images acquired at 18:15 and 18:40 [93]. The image in (c) is rendered from a simulated version of the spectral radiance image in (b) in
which a global illuminant is applied to an effective spectral reflectance image derived from the spectral radiance image in (a). The real image in
(b) and the simulated one in (c) are closely similar. The images in (d), (e), and (f ) are analogous, except that (d) and (e) are from earlier in the day, at
13:21 and 15:15, and show marked changes in the distribution of shadows. The real image in (e) and the simulated one in (f ) are clearly different.
The small light-gray rectangular plate at the bottom of the scene, arrowed in (a), is a reference reflectance surface. The hyperspectral images of the
rock face were acquired on October 6, 2003, in Sete Fontes in the Minho region of Portugal [93].
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from the hyperspectral image radiance at the small neutral
matte Munsell N7 rectangular plate at the bottom right of
the scene, arrowed in (a). The correlated color temperature
of the incident light changes from 4180 K at 18:15 in (a)
to 3350 K at 18:40 in (b). For later reference, notional average
daylight D65 has a correlated color temperature of approxi-
mately 6500 K [22], which on a reciprocal color temperature
scale [92], falls roughly midway between 4000 K and
25,000 K.

Can the reflected spectral radiances in Figs. 4(a) and 4(b) be
adequately represented as products, as in Eq. (4), with a
common effective spectral reflectance? Suppose that E1�λ�
and E2�λ� are global illuminant spectra with correlated color
temperatures 4180 K and 3350 K, respectively, and that
L1�u, v; λ� and L2�u, v; λ� are the corresponding spectral
radiances reflected from the scene. Suppose further that
R1�u, v; λ� is an effective spectral reflectance defined by
R1�u,v;λ��L1�u,v;λ�∕E1�λ�. The approximation L̃2�u, v; λ�
for L2�u, v; λ� is then given by

L̃2�u, v; λ� � E2�λ�R1�u, v; λ�: (6)

Figure 4(c) shows the color image rendered from L̃2�u, v; λ�
according to Eq. (6). This simulated image and the real one
in Fig. 4(b) are closely similar, though there are small
differences in the shadows. The normalized root mean square
deviation between the spectral radiances is 1.9%, where nor-
malization is with respect to the range.

2. Geometric Illumination Changes

More frequently, it is geometric effects that dominate natural
illumination changes, as illustrated in Figs. 4(d) and 4(e). The
color images are rendered from time-lapse hyperspectral radi-
ance images of the same rock face as in (a) and (b) but acquired
at two earlier times of day. The correlated color temperature of
the light incident on the rectangular plate at the bottom right of
the scene, arrowed in (a), decreases from 5700 K at 13:21 in (d)
to 5510 K at 15:15 in (e). The spectral difference is negligible,
but there are marked changes in the distribution of shadows.

Can the reflected spectral radiances in Figs. 4(d) and 4(e), like
those in Figs. 4(a) and 4(b), still be adequately represented as
products with a common effective spectral reflectance? The
analysis follows Section 3.B.1. Suppose that E1�λ� and E2�λ�
are global illuminant spectra with correlated color temperatures
5700 K and 5510 K, respectively, and that L1�u, v; λ� and
L2�u, v; λ� are the corresponding reflected spectral radiances.
Again, R1�u, v; λ� is defined by R1�u, v; λ� � L1�u, v; λ�∕E1�λ�.

Figure 4(f ) shows the color image rendered from the appro-
ximation L̃2�u, v; λ� for L2�u, v; λ� according to Eq. (6). The
simulated image in (f ) and the real one in (e) are now clearly
different. The normalized root mean square deviation between
the spectral radiances is 13.7%, about seven times larger than in
(b) and (c).

Although the assumption of a common effective spectral re-
flectance R1�u, v; λ� for the two images is here unsafe, some
local statistical properties may nonetheless be preserved [93].

Methods for segmenting the effects of multiple illuminants
are described in Refs. [94,95].

C. Variations in Natural Spectra

Reflected spectra recorded outdoors may show much greater
variation than in the laboratory for several reasons:

1. Inorganic and organic materials have significant micro-
structure, which combined with dirt, weathering, biological
degradation, and moisture can give non-Lambertian behavior
[3], including specularities [96,97].

2. Foliage and flowers contain mixtures of pigments such
as chlorophylls, carotenoids, flavonoids, and anthocyanins,
which have multiple absorbance peaks [98,99]. Isotropies in
reflectance and transmittance spectra are especially complex
[100–102].

3. Natural illumination is inconstant. In a clear sky with
no visible cloud, the primary source of variation is solar eleva-
tion, but unobservable cirrus clouds and aerosols can be highly
inhomogeneous, leading to additional variation in the solar
beam. Average minute-to-minute temporal fluctuations in irra-
diance can be on the order of 0.1% around midday and much
more around sunrise and sunset (data provided by A. R. D.
Smedley and A. R. Webb, University of Manchester). The an-
gular and spectral distributions of light from the sun and sky are
also very different [5], and the balance between the direct beam
and diffuse radiation and the radiance distribution across the
sky change with solar elevation. Nearer to the scene being im-
aged, object occlusions, mutual reflections between surfaces,
and transilluminance all contribute to further variation in
the incident light [103].

4. Reflected spectra from adjacent surfaces in scenes suffer
local mixing at the camera because of the resolution of the op-
tical system and sensor array. Mixing adds to the variation in
the estimated surface spectral reflectances [104,105].

On the other hand, in the laboratory, reflection spectra are
typically recorded from relatively homogenous materials with a
non-imaging device such as a reflection spectrophotometer,
which averages over extended areas under controlled illumina-
tion. Where materials and imaging conditions coincide, how-
ever, closely similar spectral estimates ought to be obtainable
from a correctly calibrated hyperspectral imaging system and
a non-imaging spectroradiometer [8, Fig. 1].

4. COLORIMETRIC REPRESENTATION

For colorimetric calculations, psychophysical measurements,
image display, or other related purposes, hyperspectral radiance
images may be mapped into a variety of color spaces. How,
then, to decide on which space? Factors to consider include
the effect of different scene illuminants in the space, the uni-
formity of the space, i.e., whether equal distances correspond to
equal color differences, and adjustments for the characteristics
of any display device. Color spaces modeled on physiological
data are discussed in Section 5.

In colorimetric applications, it is conventional to generate an
intermediate representation expressed in CIE XYZ tristimulus
values [21,22]. Thus, let x̄�λ�, ȳ�λ�, z̄�λ� be the CIE XYZ [13]
color-matching functions for the 2° standard observer, and let
L�u, v; λ� be a spectral radiance image, indexed by spatial co-
ordinates u, v and wavelength λ. The tristimulus values X , Y , Z
at each point or pixel �u, v� are given by
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X �u, v� � k
Z
L�u, v; λ�x̄�λ� dλ,

Y �u, v� � k
Z
L�u, v; λ�ȳ�λ� dλ,

Z �u, v� � k
Z
L�u, v; λ�z̄�λ� dλ, (7)

where the constant k is chosen so that Y � 100 for a perfectly
white surface under full illumination. Because of this normali-
zation, the CIE XYZ representation of the image requires only
relative not absolute spectral radiance values [21].

There is generally no easy relationship between the RGB
values of a scene recorded by a color camera and the corre-
sponding CIE XYZ values. The camera spectral sensitivities
would need to be linear transformations of the CIE color-
matching functions, i.e., meet the Luther condition [21,106].

To simplify notation, the explicit dependence of X , Y , Z on
position (u, v) is suppressed.

A. Compensating for Different Illuminations

Given a trichromatic representation of a scene, a color image, it
is possible to compensate approximately for a pure spectral
change in illumination by transforming the representation.
The transformation, traditionally called a chromatic adaptation
transform, transforms the colors of the scene under one illumi-
nant, referred to as the test, to the corresponding colors under
another illuminant, the reference, so that, ideally, they have the
same color appearance [21,22,107].

Historically, chromatic adaptation transforms are based on
von Kries scaling [22,92]. The idea is to compensate for a shift
in the color of the illumination, e.g., towards long wavelengths,
by reducing the gain of the appropriate cone receptor class, here
the long-wavelength-sensitive cones. This adjustment is inde-
pendent of any adjustments to the medium- and short-wave-
length-sensitive cones. In matrix notation, it is a diagonal
matrix transformation [108].

In practice, with color images represented by their CIE XYZ
tristimulus values, additional transformations are needed to
convert the tristimulus values to cone responses or some sharp-
ened version [109] for von Kries scaling and then back again.
Such a transformation is incorporated into the standard chro-
matic adaptation transform CMCCAT2000, which takes as
parameters the tristimulus values of the test and reference illu-
minants X t,Y t,Z t and X r,Y r,Z r, along with some other op-
tional parameters [110]. Routines for performing chromatic
adaptation transforms are available from several sources,
e.g., Ref. [21].

The reason that chromatic adaptation can compensate only
approximately for illuminant changes is that for most scenes, the
number of degrees of freedom for surface reflectance and illumi-
nation spectra is greater than for their trichromatic representa-
tions. Chromatic adaptation transforms can, though, be
optimized for particular sets of reflecting surfaces. These are
often manufactured sets, such as textiles and Munsell papers
[110]. But unlike hyperspectral reflectance data, they do not
capture the distributions of spectral reflectances in the
natural world.

B. Representing Hyperspectral Images in Uniform
Color Spaces

Although CIE XYZ tristimulus values allow the equality of im-
age colors to be decided under the same conditions, equal
differences in tristimulus values need not correspond to equal
differences in discriminability or color appearance. What is re-
quired is a uniform color space, i.e., one in which equally
spaced points correspond to equal perceptual color differences
[92,111]. Standard examples include the approximately uni-
form color space CIELAB [13] and the more uniform space
CIECAM02 [12], used here as a color space, not an appearance
model. The coordinates of CIELAB space are L�, a�, b�, where
L� represents lightness, ranging from 0 to 100, and a� and b�

represent nominally red–green and yellow–blue chromatic
components, respectively. The corresponding coordinates of
CIECAM02 space are J , aC, bC [21,22].

It is straightforward to map a hyperspectral radiance image
into CIELAB space. Let X , Y , Z be the tristimulus values at
each point �u, v� and X t,Y t,Z t be the tristimulus values of the
scene illuminant at the reference surface, the illuminant
being assumed global. The transformation of X , Y , Z to
CIELAB values L�, a�, b� with respect to X t,Y t,Z t is defined
[13] as follows:

L� � 116f �Y ∕Y t� − 16,
a� � 500�f �X ∕X t� − f �Y ∕Y t��,
b� � 200�f �Y ∕Y t� − f �Z∕Z t��, (8)

where f is a compressive function of its argument r, i.e.,

f �r� �
�
r1∕3 if r > �6∕29�3;
�841∕108�r � 4∕29 otherwise:

The color difference ΔE across two points �u1, v1� and �u2, v2�
is defined by the Euclidean metric; i.e., if ΔL�,Δa�,Δb� are
the respective individual differences in the components
L�1 , a

�
1 , b

�
1 and L�2 , a

�
2 , b

�
2 at �u1, v1� and �u2, v2�, then

ΔE � ��ΔL��2 � �Δa��2 � �Δb��2�1∕2. The chromatic pro-
jections a�, b� may be converted into the more intuitive polar
form, with chroma C�

ab � ��a��2 � �b��2�1∕2 and hue angle
hab � tan−1�b�∕a��, where 0° corresponds to the red end of
the red–green axis and 90° to the yellow end of the yellow–blue
axis.

As an illustration, the CIELAB hue angles of the selected
samples from the flower scene in Fig. 1 are 140° and 114°
for the green leaves, left and top; 49° for the orange flower, left;
305° (i.e., −55°) for the purple flower; and 71° for the yellow
flower, right. Further discussion can be found in Refs. [21,22].

Somewhat inconveniently, CIELAB space is not suited to
comparing differences ΔE between surfaces under illuminants
other than average daylight [13,22]. The reason is that in
Eq. (8) the illuminant appears in a quotient of tristimulus val-
ues, whereas to accurately accommodate chromatic adaptation,
the quotient should be of cone responses (Section 4.A). The
formula delivers what is sometimes called the wrong von
Kries transformation [108].

A better procedure [13,22] for comparing color differences
under changes in illuminant is to first apply an accurate chro-
matic adaptation transform with respect to some standard
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reference illuminant (not to be confused with the actual illu-
minant at the reference surface in the scene) and then transform
the result to CIELAB coordinates. The chromatic adaptation
transform CMCCAT2000 is used in this analysis, but recall
from Section 4.A that chromatic adaptation can compensate
only approximately for illuminant changes.

As before, let X , Y , Z be the tristimulus values at each
point �u, v� and X t, Y t,Z t be the tristimulus values of the scene
illuminant at the reference surface. Then:

1. Let X r, Y r,Z r be the tristimulus values of the reference
illuminant, e.g., an equi-energy illuminant or standard daylight
with correlated color temperature of 6500 K.

2. Apply a chromatic adaptation transform such as
CMCCAT2000 with parameters X t,Y t,Z t and X r, Y r,Z r

to transform X , Y , Z to corresponding values X̃ , Ỹ , Z̃ under
the reference illuminant.

3. Transform X̃ , Ỹ , Z̃ to CIELAB values L̃�, ã�, b̃� with
respect to X r, Y r,Z r.

The procedure is the same for any other scene illuminant. The
separate issue of the approximate uniformity of CIELAB space
can be accommodated by replacing the Euclidean metric with
a more accurate color-difference formula, e.g., CIEDE2000
[13,112,113].

For CIECAM02 space, color differences ΔE are defined
by the Euclidean metric, i.e., ΔE � ��ΔJ�2 � �ΔaC�2�
�ΔbC�2�1∕2, or some other orthogonal combination [114].
But the comparison of color differences across scene illumi-
nants is simpler than with CIELAB space because an accurate
chromatic adaptation transform is built into CIECAM02
space. Its uniformity is also greater than that of CIELAB space,
although it too can be improved [115].

C. Color Rendering Hyperspectral Images

To present a spectral radiance image on a display device
requires a color space for rendering and some knowledge of
the display device [116]. Color rendering for image illustration
can be treated as a form of spectral visualization [117].

With the default RGBcolor space sRGB [118], rendering pro-
ceeds as follows. First, radiance values are converted to CIE XYZ
tristimulus values X ,Y ,Z according to Eq. (7), but rescaled to

range from 0 to 1 rather than the default from 0 to 100.
Next, sRGB tristimulus values R,G,B are obtained by linear
transformation:2

64
R

G

B

3
75 �

2
64

3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.0415

0.0557 −0.2040 1.0570

3
75
2
64
X

Y

Z

3
75:

Finally, to satisfy range constraints, sRGBvalues less than 0 are set
to 0 and sRGB values greater than 1 set to 1.

A nonlinear correction can be applied to compensate
approximately for the input–output function of the display
device, sometimes referred to as gamma encoding [116],
despite its ambiguity [118]. A typical approximate correction
has the form

R 0 � R0.4, G 0 � G0.4, B 0 � B0.4:

More accurate and comprehensive corrections, including
an offset for black, are described in Refs. [21,116,119].
A key distinction between these transformations and those
in Section 4.B is that color rendering transformations depend
on the characteristics of the display device.

Figure 5, left, shows an sRGB rendering of a hyperspectral
radiance image of a yellow flower (adapted from [120]). The
image appears dark because the exposure timing used during
image acquisition was limited by the specular highlight from
the shiny leaf at the top right of the scene. To improve appear-
ance, the sRGB levels of the image can be clipped to the level of
a less specular but still bright region, such as the arrowed area
on the light-gray sphere in the left image [121,122], and then
scaled. Thus if c is the maximum of the sRGB values in the
arrowed area, the clipped and scaled sRGB values at each point
are given by

Rc � minfR, cg∕c,
Gc � minfG, cg∕c,
Bc � minfB, cg∕c:

The result is shown in Fig. 5, right. The detail in the darker
areas is now much clearer. Clipping affects about 1% of the
pixels in this scene. Clipping can, however, lead to artifacts,

Fig. 5. Color rendering of a hyperspectral radiance image of a yellow flower. An sRGB image is shown left and a clipped and scaled version shown
right, with the clip level taken from the arrowed area on the light-gray sphere in the left image. The percentage of clipped pixels is about 1%. The
hyperspectral image of the flower was acquired on July 31, 2002, in Gualtar in the Minho region of Portugal.
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and more nuanced approaches exploit gamut-mapping algo-
rithms to preserve the relationships between colors [122]
and tone-mapping algorithms to preserve the detail in both
light and dark regions [116].

5. RECEPTOR AND POSTRECEPTOR CODING

Estimating cone receptor and postreceptor responses to a spec-
tral radiance image is more complicated than mapping points
into a color space. The receptor mosaic is spatially non-uni-
form; preceptor absorption in the ocular media varies between
individuals and with age; and chromatic adaptation and post-
receptor coding take place at multiple levels. Calculations may,
though, be simplified with the use of standardized observer data
and viewing conditions [13].

As with colorimetric representations, there is generally no
easy relationship between the RGB image of a scene recorded
by a color camera and the corresponding receptor or postrecep-
tor responses, standardized or not.

To simplify notation, the explicit dependence of cone
signals on position (u, v) is suppressed.

A. Receptor Responses

For a 2° standard observer [13], the calculation of normalized
cone excitations is exactly analogous to the calculation of CIE
XYZ tristimulus values (Section 4), since both are transforms of
the color-matching functions.

Let L�u, v; λ� be a spectral radiance image, indexed by spatial
coordinates u, v and wavelength λ. If SL�λ�, SM�λ�, SS�λ� are
the long-, medium-, and short-wavelength-sensitive cone spec-
tral sensitivities, measured at the cornea, i.e., incorporating pre-
ceptor absorption, then at each point �u, v�, the corresponding
cone excitations qL, qM, qS are given by

qL �
Z
L�λ�SL�λ� dλ,

qM �
Z
L�λ�SM�λ� dλ,

qS �
Z
L�λ�SS�λ� dλ:

The spectral sensitivities SL�λ�, SM�λ�, SS�λ� are usually nor-
malized to a maximum of unity on a linear energy (or quantal)
scale [123]. Cone excitations may instead be calculated by
linear transformation of the corresponding XYZ tristimulus val-
ues [19,21].

Individual differences in observer preceptor effects may be
accommodated by replacing cone spectral sensitivities mea-
sured at the cornea by pigment spectral sensitivities combined
with individual lens absorption and macular pigment data, as
described in Refs. [124,125].

Because of the variation in receptor density and receptor
type across the retina, assumptions may need to be made about
how the gaze of the observer samples the spectral radiance
image. For vision outside the central fovea, the intrusion of
rod signals [126,127] and melanopsin-generated signals from
intrinsically photosensitive retinal ganglion cells [128,129]
may also need to be considered.

B. Postreceptor Transformations

The cone excitations estimated at each point �u, v� may be
transformed in several ways, according to the requirements
of the simulation or analysis and whether cone-opponency
or color-opponency is relevant [130].

Given the large overlap in long- and medium-wavelength-
sensitive cone spectral sensitivities, a frequent computational
objective is to reduce redundancy. Other objectives may be
to optimize chromatic adaptation or to maximize the informa-
tion that can be extracted from scenes. The postreceptor trans-
formations are often assumed to be linear, albeit sometimes
preceded by a nonlinear stage [131].

An early study by Buchsbaum and Gottschalk [132] pro-
vided an influential model [133]. The postreceptor transforma-
tion is designed to linearly decorrelate cone signals qL, qM, qS in
response to random combinations of monochromatic spectra.
Cone spectral sensitivities are from the Vos-Walraven funda-
mentals [134], which differ a little from those due to
Stockman and Sharpe [124,125]. The result is an achromatic
response rA, a red–green chromatic response rRG, and a yellow–
blue chromatic response rYB; thus,2

64
rA
rRG
rYB

3
75 �

2
64
0.887 0.461 0.0009

−0.46 0.88 0.01

0.004 −0.01 0.99

3
75
2
64
qL
qM
qS

3
75:

The terms “red–green” and “yellow–blue” are used generically
in this context. The number of significant figures in the matrix
entries follows author usage.

In Ref. [109], the postreceptor transformation maximally
constrains responses to narrow bands of wavelengths. These
sharpened spectral sensitivities improve the action of von
Kries scaling in compensating for the effects of illuminant
changes with Munsell reflectance spectra. The cone fundamen-
tals are derived from [134–136]. The postreceptor responses
r#L, r

#
M, r

#
S are given by2
64
r#L
r#M
r#S

3
75 �

2
64

2.46 −1.98 0.100

−0.58 1.52 −0.14

0.07 −0.13 1.0

3
75
2
64
qL
qM
qS

3
75:

In Ref. [137], the postreceptor transformation maximizes the
Shannon information available from natural scenes under simu-
lated daylight changes. Responses are assumed to be subjected
to von Kries scaling and values are therefore normalized to a
mean of 1.0. The cone fundamentals are from [124,125].
The postreceptor responses r#L, r

#
M, r

#
S are given by2

64
r#L
r#M
r#S

3
75 �

2
64

1 −0.931 0.066

−0.259 1 −0.156

0.003 −0.035 1

3
75
2
64
qL
qM
qS

3
75:

Unsurprisingly, these postreceptor transformations are only
loosely correlated with neural function [138,139]. Still, with
variable coefficients, they enable performance to be optimized
with respect to specific functional objectives.

By contrast, simpler, fixed, postreceptor transformations
may be used to explore possible psychophysical implications
of the data, e.g., by mapping cone excitations into a particular
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color space such as the MacLeod–Boynton chromaticity
diagram [140] or the color space due to Derrington,
Krauskopf, and Lennie [141], as illustrated in Refs.
[18,138]. The same caveat about neural correlates applies [19].

6. PROPERTIES OF SCENE COLORS

Some of the most basic color properties of a scene have to do
with the existence and stability of colors, e.g., how many dis-
tinguishable colors it contains, the constancy of its colors under
changes in illumination, and the presence of aliased colors, i.e.,
metamerism.

Since color is used here as a proxy for spectral reflectance
or radiance, there is no reference to the spatial characteristics
of the scene, at least explicitly, though procedures intended to
compensate for illumination changes may well do so. Critically,
these color properties set a least upper bound on what observers
can infer about scenes from surface color alone.

Elsewhere, interest may be in color phenomena that do re-
late to spatial characteristics. For example, an extension of
CIELAB known as S-CIELAB [142,143] incorporates prepro-
cessing by the approximate spatial contrast sensitivity functions
of achromatic and chromatic visual pathways. Some of the
relationships between the chromatic and spatial properties of
natural scenes are analyzed in Refs. [144–147].

The material in this section is based partly on [148].

A. Number of Distinguishable Colors

Because natural spectra come from a restricted population of
reflecting surfaces and illuminants, the number of distinguish-
able colors in any one scene is likely to be very much smaller
than the maximum of 1.7–2.3 million associated with an ideal-
ized population, the theoretical object color solid [149–152].

How, then, to estimate the number of distinguishable col-
ors, N say, in a given scene? With an approximately uniform
color space such as CIELAB or CIECAM02 and a nominal
observer threshold color difference, ΔE thr say, an estimate of
N can be obtained from a hyperspectral radiance image, or
from a reflectance image in combination with a global illumi-
nant, as follows:

1. Map each point of the scene into the color space.
2. Segment the color space into unit cells, most simply

cubes of side equal to the threshold interval ΔE thr.
3. Count the number of occupied cells.

Crucially, this estimate of N takes no account of how often
each color appears or where it comes from in the scene. All that
is required is that a cell in the color space is occupied [35,153].
The number of occupied cells defines the number of points that
on average are separated by at least ΔE thr.

The estimate ofN does, of course, depend on themetric used
to define distances in the color space, the size of the discrimina-
tion threshold ΔE thr, and the method used to define the unit
cell. In traditional color discriminationmeasurements, represen-
tative values for ΔE thr are typically 1.0 for CIELAB [154,155]
and 0.5–0.6 with the more accurate color-difference formula
CIEDE2000 [156,157]. In practical applications, though, rep-
resentative values may be set several times larger. Unit cells may
be cubes, spheres, or dodecahedra [158], and the distribution of

cells need not form a regular array [159]. More realistically,
thresholds may be defined probabilistically [153].

Incidentally, nomenclature in this area varies. Along
with colors being said to be distinguishable [152], they may
also be called distinct [160], discernible [149,159], and
discriminable [148,161]. Their description here as distinguish-
able is for compatibility with more general applications in
information theory [162].

Based on 50 close-up and distant hyperspectral radiance im-
ages of rural and urban scenes, the average number of distin-
guishable colors per scene is found to be approximately
2.7 × 105 [159], for spherical unit cells and the color-difference
formula CIEDE2000 with discrimination threshold
ΔE thr � 0.6. This average number is almost an order of mag-
nitude smaller than with the theoretical object color solid.
Similar calculations can be performed with other kinds of
hyperspectral images, e.g., of artworks [35].

Where illumination can be controlled, the number of
distinguishable colors can be evaluated under different illumi-
nants, e.g., incandescent, fluorescent, and metal halide lamps,
and LED sources [34], which can be optimized for observers
with color deficiency [163].

B. Gamut Volume

The range or gamut of the colors in a scene can be quantified by
the number of colors distinguishable by an observer. This mea-
sure is dimensionless but dependent on the size of the threshold
color difference ΔE thr, as explained in Section 6.A. More com-
monly, however, the color gamut is expressed as a volume in a
color space [122]. Other issues need then to be addressed such
as whether points are treated as members of a discrete or con-
tinuous set and whether the boundary of the set should form a
convex hull. Several estimation methods are available
[122,164].

Values of the gamut volume also depend on the dimensions
of the chosen color space, typically CIELAB or CIECAM02
space [165]. In CIECAM02 space, gamut volume is measured
in cubic CIECAM02 �J , aC, bC� units [122].

Given an independent estimate V of the gamut volume for
some scene, the number of distinguishable colors N may be
estimated not by the cell-counting method in Section 6.A,
but by dividing V by the volume of the unit cell, in the same
color space; i.e., if the unit cell is a cube of side ΔE thr, then

N � V
�ΔE thr�3 : (9)

A way of interpreting N and V to accommodate the relative
frequencies with which colors occur is developed in
Section 7.A.

C. Color Constancy

Color constancy refers to the effect whereby the perceived or
apparent color of a surface remains constant despite changes in
the intensity and spectral composition of the illumination
[120,166,167]. This definition is not the same as that some-
times used in computational color science, where it refers to the
estimation of a representative illuminant on the scene [84,168],
i.e., a global illuminant. The difference between real illumination
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changes and their approximation by global illuminants is dis-
cussed in Section 3.B.

1. Colorimetric Approaches

Consider the scene in Fig. 6. It shows a color rendering of a
hyperspectral reflectance image of a terrace with flowers under
a 4000 K daylight, top left, and under a 6500 K daylight, top
right. Enlarged copies of the square areas marked in white are
shown bottom left and bottom right. Suppose that under the
4000 K daylight, the sample point on the flower, arrowed in
yellow, bottom left, has CIE tristimulus values X 1, Y 1,Z 1 and
that under the 6500 K daylight, the same point arrowed in yel-
low, bottom right, has tristimulus values X 2,Y 2,Z 2 (the white
arrowed points are discussed later). Suppose, next, that as the
result of some color-constancy operation applied to a trichro-
matic representation of the scene under the 4000 K daylight,
the sample point takes on tristimulus values X̃ 2, Ỹ 2, Z̃ 2 under
the 6500 K daylight. In general, these values only approximate
the true values X 2,Y 2,Z 2. To quantify the error (Section 4.B),
transform X̃ 2, Ỹ 2, Z̃ 2 and X 2,Y 2,Z 2 to corresponding
CIELAB values L̃�2 , ã�2 , b̃

�
2 and L�2 , a

�
2 , b

�
2 with respect to the

6500 K daylight and evaluate the color difference
ΔE between L̃�2 , ã�2 , b̃

�
2 and L�2 , a

�
2 , b

�
2 , possibly with a color-

difference formula such as CIEDE2000. The color difference
ΔE is sometimes called the color inconstancy index [169].

How good is the color constancy of the sample point on the
flower if the constancy operation is supplied by the chromatic
adaptation transform CMCCAT2000? The CIELAB color dif-
ferenceΔE under the 6500Kdaylight is 2.2, which is larger than
the representative CIELAB threshold value of 1.0. With the
color-difference formula CIEDE2000, a more accurate estimate
of ΔE is 1.6, which is also larger than the corresponding repre-
sentative threshold value of 0.5–0.6 (Section 6.A). Color con-
stancy with CMCCAT2000 is therefore good under a moderate
illuminant change, but not perfect.

More usually, the color difference ΔE is converted into
a dimensionless color constancy index CI by scaling by
the distance, ΔE1,2 say, between the two illuminants in the
same color space and subtracting from unity [170], i.e.,
CI � 1 − ΔE∕ΔE1,2. Perfect constancy corresponds to an in-
dex of unity, and the complete absence of constancy corre-
sponds to an index of zero. With the chromatic adaptation
transform CMCCAT2000 and color-difference formula
CIEDE2000, the color constancy index of the sample point
on the flower is 0.92. With CIECAM02 space, it is 0.91.

Although the scene and its contents are not typical of those
used in psychophysical measurements, these index values are
compatible with the upper limit recorded for observers with
a variety of experimental methods, materials, and illuminant
changes [120,167].

Fig. 6. Physical limits on color constancy under a global illuminant change. The images top left and top right are color renderings of a hyper-
spectral reflectance image of a terrace with flowers under a global daylight illuminant with respective correlated color temperatures 4000 K and
6500 K. Enlarged copies of the square areas marked in white are shown bottom left and bottom right. By applying a standard chromatic adaptation
transform CMCCAT2000 [110], the point on the flower arrowed in yellow, bottom left, transforms to a point that is a closer color match to each of
the two points arrowed in white, bottom right, than to the correct point arrowed in yellow. The small light-gray rectangular plate at the bottom of the
full scene is a reference reflectance surface. The hyperspectral image of the terrace was acquired on October 7, 2003, in Sameiro in the Minho region
of Portugal.
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Other formulations for color constancy indices are described
in Refs. [120,171–173].

To extend measures of color constancy from individual
surfaces or points to the whole scene, global statistics may
be deployed such as the mean and median of the distribution
of index values.

2. Preserving Identity

Instead of using colorimetric measures of scene color constancy,
there is a more utilitarian way of proceeding, namely, by meas-
uring how far color constancy allows points to be identified by
their color under a change in illuminant [137].

Consider, again, the sample point on the flower under the
4000 K daylight, arrowed in yellow in Fig. 6, bottom left. As al-
ready explained, under the 6500 K daylight, the same point ar-
rowed in yellow, bottom right, has tristimulus values X 2,Y 2,Z 2,
and thatwith chromatic adaptation provided byCMCCAT2000,
the estimated tristimulus values X̃ 2, Ỹ 2, Z̃ 2 differ from the true
values X 2,Y 2,Z 2. But the color differencemight be acceptable if
X̃ 2, Ỹ 2, Z̃ 2 were closer to X 2,Y 2,Z 2 than the tristimulus values
of any other points in the scene—in other words, if X̃ 2, Ỹ 2, Z̃ 2

constitutes a nearest-neighbor match according to some color-
difference formula. In that event, color can still be used to identify
the sample point uniquely despite the inaccuracy of the constancy
operation. Notice that it is not the size of the color difference that
counts but the risk of confusion.

Color constancy can then be quantified by the number of
points in the scene that preserve their identity under the change
in illuminant, i.e., the number of illuminant-invariant points.
For a given constancy operation, this number obviously varies
with the scene and the illuminant change.

A way to estimate the number of illuminant-invariant points
is developed in Section 7.C.

D. Metamerism

Metamerism refers to the effect whereby two or more lights
appear the same but have different spectral compositions
[13,92]. It can arise in several forms, though the most impor-
tant in practice is associated with surfaces. Metameric surfaces
have different spectral reflectances but match in color under
some illuminant, i.e., have the same tristimulus values. Since
the match is likely to fail under some other illuminant [92],
it follows that surface color is not a reliable guide to material
identity. As with several other color phenomena, metamerism
is a consequence of the number of degrees of freedom for re-
flectance and illumination spectra being greater than for their
trichromatic representations.

The extent to which spectral reflectances are classified as the
same or different is an empirical issue. Here, metameric surfaces
are taken to be those for which color differences are subthresh-
old under one illuminant and suprathreshold by a certain
multiple of threshold—the criterion degree of metamerism
—under another illuminant [8].

The proportion or relative frequency of metameric surfaces
in a scene may be calculated by taking a random sample of pairs
of points from a hyperspectral reflectance image. Notice that
the sample takes no account of what physically or semantically
defines a surface, e.g., the flowers in Fig. 1 or the stone cottage
in Fig. 3. Therefore, points from the same object in shadow and

in direct illumination are treated distinctly. This situation
differs from that described in Section 3.B in that pairs of
points are considered as isolated samples undergoing a change
in illuminant spectrum [8, Appendix A]. That said, omitting
shadowed regions in these calculations seems to have little effect
on relative frequency estimates [8, Section 3.F].

Two kinds of relative frequencies may be defined, both with
respect to a nominal discrimination threshold. The relative fre-
quency of metamerism is the proportion of times a pair of
points chosen at random are indiscriminable under one illumi-
nant but discriminable under another illuminant. The condi-
tional relative frequency of metamerism is the proportion of
times a pair of points chosen at random from pairs of points
that are indiscriminable under one illuminant are discriminable
under another illuminant.

How should these frequencies be estimated for a scene?
Given a hyperspectral reflectance image, choose a pair of global
illuminants, say daylights of 25,000 K and 4000 K. Choose an
approximately uniform color space, CIELAB or CIECAM02,
and a nominal threshold color difference ΔE thr. With CIELAB
space, apply a chromatic adaptation transform such as
CMCCAT2000 to first transform tristimulus values to a refer-
ence illuminant such as a 6500 K daylight, as explained in
Section 4.B. Then proceed [8] as follows:

1. Choose a random sample of, say, N pairs of points in
the scene (the symbol N is used generically).

2. From this sample, find the number of pairs N 0 whose
color differences under the 25,000 K daylight are less than the
threshold ΔE thr.

3. From this subsample, find the number of pairs N 1

whose color differences under the 4000 K daylight are greater
than or equal to ΔE thr (or some multiple, n say, of ΔE thr, the
criterion degree of metamerism).

4. The relative frequency of metamerism is N 1∕N .
5. The conditional relative frequency of metamerism

is N 1∕N 0.

Each of these frequencies is a probability estimate and subject
to sampling error. Even so, based on 50 close-up and distant
hyperspectral reflectance images of urban and rural scenes under
25,000 K and 4000 K daylights, CIEDE2000 color difference
thresholdsΔE thr � 0.5 and 1.0, and criterion degrees of metam-
erism n � 1,…, 4 [8], the relative frequency of metamerism ap-
pears to be low, from about 10−6 to 10−4, depending on the
criterion. In contrast, the conditional relative frequency is very
much higher, from about 10−2 to 10−1, sufficiently high to in-
fluence visual judgments. Predictably, daylights that have closer
correlated color temperatures yield lower relative frequencies [8].

That there should be so large a difference between relative
frequency and conditional relative frequency is to be expected,
for in a scene with a moderately large gamut of colors, any two
surfaces chosen at random are unlikely to match. Thus, for the
50 natural scenes used in Ref. [8], the median CIEDE2000
color difference ΔE between randomly chosen points under
a 6500 K daylight is about 19.0, which is much greater than
the threshold color difference ΔE thr of 0.5 or 1.0. On the other
hand, given a pair of points that do match, i.e., have a color
difference less than ΔE thr, they may well fail to match with
a change in illuminant.
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Broadly similar estimates of the relative frequency of metam-
erism are obtained by sampling from pooled collections of
individual reflectance spectra taken from different natural
and manufactured materials illuminated by natural and
artificial lights [161].

7. UTILITY OF COLOR

Basic color properties of a scene such as the number of distin-
guishable colors and their constancy under changes in illumi-
nation do not depend on how often different reflecting surfaces
appear, as long as the colors exist and are stable. Yet for color to
be of practical use to an observer in distinguishing surfaces and
identifying them under illumination changes, their differing
relative frequencies do need to be taken into account.

The reason is fundamental. Relative frequencies determine
to a greater or lesser extent the composition of any random
sample of points from a scene and therefore their distinguish-
ability. How distinguishability should be quantified can be
framed in different ways [148], even without introducing
cognitive factors [174]. For the present purposes, however, in-
formation-theoretic methods [162] offer a fruitful guide to
what is possible, in particular, the relationship between the
number of distinguishable colors in a scene under constant
illumination, the number of surfaces or points that can be dis-
tinguished by virtue of their color, and the number of points
that can be identified under a change in illumination.

To simplify the exposition, technical notions are introduced
only when necessary.

The material in this section is based partly on
[137,148,175].

A. Entropy and Effective Gamut Volume

Consider the scene in Fig. 6, top right. Histogram estimates of
the relative frequency distributions of its CIECAM02 color
components are plotted in Fig. 7. The plot on the left is for
the lightness component J , in the middle for the red–green
component aC, and on the right for the yellow–blue compo-
nent bC, with the arrows indicating the maximum value of each
component. All three histograms are peaked with the long tails
in the positive direction for aC and bC due to the orange of the
flowers.

These three histograms can be viewed as the marginal
estimates of an underlying probability density function f �a�
of a continuous random variable A, say. The color triplets
�J , aC, bC� are the individual instances a of A. The uncertainty
in A may be quantified by an information-theoretic measure
known as the Shannon differential entropy h�A�, defined
[162] thus:

h�A� � −

Z
f �a� log f �a� da: (10)

The differential entropy h�A� is expressed in bits if the loga-
rithm has base 2, which is the base used in this tutorial. As
a measure of uncertainty, the differential entropy is unique,
up to a constant, according to certain axioms [176]. Other
kinds of information measures are described in Ref. [177].

Methods of evaluating the integral in Eq. (10) are described
in Section 7.D. It is emphasized that estimates of the differen-
tial entropy thereby obtained refer to the underlying continu-
ous distributions, not the discrete hyperspectral samples that
represent them.

Given a differential entropy h�A�, its logarithmic inverse
2h�A�(otherwise known as its exponential or antilogarithm)
can be interpreted as the volume that defines the effective sup-
port set size of the random variable A or, equivalently, of its
probability density function f [162,178,179]. In the present
context, it defines the effective volume of the color gamut,
which, as explained in Section 7.B, may be used to estimate
the number of points that can be distinguished by their color.
Still, as a consistency check, it is reasonable to ask whether for a
suitable probability density function f in Eq. (10) the defini-
tion of effective gamut volume coincides with the conventional
definition of gamut volume.

Suppose that the colors in a scene are equally probable, un-
like the colors in the scene in Fig. 6, top right. The marginal
distributions, in particular, are then flat, by contrast with those
in Fig. 7. Let V be the gamut volume. Since the value f �a� in
Eq. (10) is constant over all a, its integral is unity, and so
f � 1∕V . Equation (10) then simplifies to

h�A� � −

Z
1

V
log

1

V
da � log V , (11)

which, after logarithmic inversion, gives
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Fig. 7. Histogram estimates of the relative frequency distributions of the lightness component J , left, the red–green component aC, middle, and
the yellow–blue component bC, right, of the CIECAM02 representation of the scene in Fig. 6, top right. The arrows indicate the maximum values of
the components, which have very small relative frequencies.
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2h�A� � V :

So, as required, for a suitable probability density function, the
definitions coincide: effective gamut volume 2h�A� equals gamut
volume V .

Since the differential entropy of an arbitrary distribution on
a bounded set is always less than or equal to the differential
entropy of a uniform distribution, the effective gamut volume
is always less than or equal to the gamut volume.

As with gamut volume, the effective gamut volume depends
on the dimensions of the color space. For the scene in Fig. 6,
top right, its differential entropy is approximately 12.5 bits,
corresponding to an effective CIECAM02 gamut volume of
approximately 212.5 � 5.8 × 103, much smaller than the con-
ventional CIECAM02 gamut volume of 4.7 × 104, calculated
by empirically flattening the probability density function f .

B. Number of Distinguishable Surfaces

Differential entropy provides a way to take into account the
relative frequencies of colors in a scene. But how does it enable
an estimate to be made of the number of surfaces or points that
can be distinguished by their color?

As before, treat the CIECAM02 color triplets �J , aC, bC� as
instances of a three-dimensional continuous random variable,
A say, and the corresponding observer responses as instances of
another three-dimensional continuous random variable, B say.
Notation here differs from [153]. The amount of information
that B provides about A is given [162] by the mutual informa-
tion, written I�A;B�. It can be defined in several equivalent
ways. The following uses the differential entropies h�A� and
h�B� and the differential entropy h�A,B� of the distribution
of A and B taken jointly:

I�A;B� � h�A� � h�B� − h�A,B�: (12)

Because mutual information is a difference of differential en-
tropies, it does not depend on the dimensions in which it is
measured, as long as they are related to each other by an invert-
ible linear transformation [162].

Importantly, there is a simple relationship between mutual
information and the approximate number of distinguishable
points that can be sampled from a scene [162,178], and there-
fore retain their identity in the presence of uncertainty or in-
ternal noise in the observer (or color camera). This number, N
say, is given by the inverse logarithm of I�A;B�, i.e.,

N � 2I�A;B�: (13)

Estimating N requires evaluation of the right-hand side of
Eq. (12), but it can be simplified. Suppose that observer inter-
nal noise is represented by a three-dimensional continuous ran-
dom variableW such that B � A �W. With a hard threshold
defined by the interval ΔE thr, the probability density function
of W is the uniform distribution on a cube with side ΔE thr

(alternatives include the uniform distribution on a ball and
a three-dimensional Gaussian noise distribution [153]).
Providing that W is not too large, then to a good approxi-
mation [153], the mutual information in Eq. (12) can be
written as

I�A;B� � h�A� − h�W�: (14)

From Section 7.A, the differential entropy h�A� is the loga-
rithm of the effective gamut volume, and, by the same kind
of calculation that led to Eq. (11), the differential entropy
h�W� is the logarithm of the volume of the unit cell
�ΔE thr�3. Substituting these values into Eq. (14) gives

I�A;B� � log 2h�A� − log �ΔE thr�3

� log

�
2h�A�

�ΔE thr�3
�
:

Taking the inverse logarithm of both sides and substituting the
result into the right-hand side of Eq. (13) yields the following
for the number of distinguishable points:

N � 2h�A�

�ΔE thr�3 : (15)

This expression is precisely analogous to the expression for the
number of distinguishable colors in Eq. (9). Each is the quo-
tient of a gamut volume by the volume of a unit cell. Indeed
Eq. (9) is a special case of Eq. (15) in which the differential
entropy h�A� is derived for a flattened version of the probability
density function f , as in Section 7.A.

The number of distinguishable points can now be estimated
for the scene in Fig. 6, top right. From Section 7.A, the differ-
ential entropy of the colors is approximately 12.5 bits, corre-
sponding to an effective CIECAM02 gamut volume of
approximately 5.8 × 103. If this volume is divided by the vol-
ume of the unit cell �ΔE thr�3, with ΔE thr � 0.6, then by
Eq. (15), the number of distinguishable points is approximately
2.7 × 104. This is much smaller than the estimate of 2.2 × 105

obtained by taking its CIECAM02 gamut volume of 4.7 × 104

(Section 7.A) and dividing by the same volume of the unit
cell �ΔE thr�3.

These estimates are for only one scene. Values for 50 natural
scenes are given in Ref. [148, Fig. 4].

In other applications, differential entropy is used to predict
the relative frequency and magnitude of metamerism across
scenes and the changes in relative color cues or color relations
between surfaces under changes in illuminant [148,180]. In its
discrete form [162], entropy is used to classify observers’ color-
naming behavior with individual colored surfaces [181].
Mutual information is additionally used to estimate the rela-
tionship between differences in luminance and differences in
color within natural scenes [145] and to estimate the optimum
spectral locations of cone photopigments [182].

C. Number of Illuminant-Invariant Points

A utilitarian way of measuring color constancy in a scene is
outlined in Section 6.C.2, namely, as the number of points that
preserve their identity under a change in illuminant. But how
to estimate this number? Consider once more the scene
in Fig. 6. One approach is to perform an exhaustive nearest-
neighbor search for color matches, i.e., by counting all those
points whose transformed CIE tristimulus values X̃ 2, Ỹ 2, Z̃ 2

are closer to their true values X 2, Y 2,Z 2 than for any other
points in the scene, with respect to some color-difference
formula. But the result depends on the chromatic
adaptation transform. Different transforms define different
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nearest-neighbor matches; moreover, nearest-neighbor matches
themselves may not always be optimum [183].

Instead, information-theoretic methods may be used in a
way similar to that for estimating the number of distinguishable
points under constant illumination described in Section 7.B.
Such an approach provides a least upper bound on all possible
chromatic adaptation transforms and more generally on any
color-constancy operation.

Again treat the CIECAM02 color triplets �J , aC, bC� as
instances of a three-dimensional continuous random variable,
A1 say, under the first illuminant and as a different three-
dimensional continuous random variable, A2 say, under the
second illuminant. Suppose that f 1�a1� and f 2�a2� are the cor-
responding probability density functions of A1 and A2. The
amount of information that A2 retains about A1 is measured
by the mutual information I�A1;A2�. In Section 7.B, it is used
to determine the number of points that preserve their identity
in the presence of observer internal noise. Here, it determines
the number of points that retain their identity in the presence
of what might be thought of as illuminant-change noise.
This number, N say, is given by the inverse logarithm of
I�A1;A2�, i.e.,

N � 2I�A1;A2�:

For the scene in Fig. 6, top, under 4000 K and 6500 K day-
lights, the estimated mutual information I�A1;A2�, calculated
as in Sections 7.A and 7.B, is approximately 21.9 bits, corre-
sponding to approximately 4.0 × 106 illuminant-invariant
points.

As before, these estimates are for one scene. Means and stan-
dard deviations for 50 natural scenes under different daylight
illuminants are given in Ref. [137, Fig. 3(a)].

Although I�A1;A2� does not depend on linear transforma-
tions of the color space, it does depend on the type of color
space, since the relationship between one space and another
is usually nonlinear. In fact, with the chromatic adaptation
transform CMCCAT2000 and color-difference formula
CIEDE2000, the CIELAB estimate of I�A1;A2� for the scene
in Fig. 6 is approximately 22.4 bits, just 0.5 bits larger than
with CIECAM02. The corresponding number of illumi-
nant-invariant points is approximately 5.4 × 106.

These estimates of the number of illuminant-invariant
points for the scene in Fig. 6 are large but plausible, since they
exclude observer uncertainty. To help interpret the magni-
tude of the illuminant-change noise, it can be expressed in
terms of equivalent Gaussian variables [137]. Suppose that
the noise is represented by a three-dimensional continuous ran-
dom variable V, such that A2 � A1 � V. Suppose further that
the J , aC, bC components of A1 and of V are distributed nor-
mally and independently with respective common variances
σ2 and σ2V . Then, as shown in Ref. [162], the mutual infor-
mation I�A1;A2� � �3∕2� log�1� σ2∕σ2V�. It follows that
σ∕σV � �22I�A1;A2�∕3 − 1�1∕2 ≈ 2I�A1;A2�∕3. Therefore, given
that I�A1;A2� is approximately 21.9 bits, the equivalent
Gaussian signal-to-noise amplitude ratio σ∕σV is approximately
158, or, conversely, the percentage noise amplitude 100 σV∕σ
is about 0.63%. This value is smaller than measures of observer
internal noise such as the Fechner fraction, which is on the
order of 2% [92].

Suppose, now, that the estimate of the number of illumi-
nant-invariant points includes observer uncertainty, as in
Section 7.B. The mutual information I�A1;B� between A1

and the observer response B to A2 decreases, since there are
now two sources of noise that are largely independent of each
other, one due to an illuminant change and one due to the
observer, i.e.,

I�A1;B� < I�A1;A2�:
Since the number of illuminant-invariant points N is given by

N � 2I�A1;B�,

it too decreases.
Thus, to continue with the example of the scene in Fig. 6,

top, suppose that the probability density function for observer
internal noise W is the uniform distribution on a cube of side
ΔE thr. Then, the estimated mutual information I�A1;B�, cal-
culated as in Sections 7.A and 7.B, falls to approximately
11.8 bits, corresponding to approximately 3.5 × 103 illumi-
nant-invariant points, three orders of magnitude smaller than
without observer uncertainty. Similar estimates are obtained by
replacing the uniform distribution for observer internal noise
by a three-dimensional Gaussian noise distribution with the
same covariance.

In addition to spectral changes, non-spectral changes in
illumination, e.g., changes in the distribution of shadows, spec-
ularities, and mutual reflections, along with other uncertainties
(Section 3.C) can be interpreted as sources of noise, leading to
further reductions in I�A1;A2� and in I�A1;B�. The complex-
ities of environmental illumination may also affect observer
performance in other ways [184].

Notwithstanding the usefulness of mutual information and
its equivalents, can colorimetric measures such as the color con-
stancy index provide a similar guide to identifying surfaces or
points under illuminant changes? Unfortunately, global statis-
tics based on the mean or median of point-wise color
differences do not suffice. The reason is evident with the scene
in Fig. 6. With the chromatic adaptation transform
CMCCAT2000, the tristimulus values X 1,Y 1,Z 1 of the sam-
ple point arrowed in yellow, bottom left, are transformed to the
values X̃ 2, Ỹ 2, Z̃ 2, which, as noted in Section 6.C.1, differ from
the true values X 2,Y 2,Z 2 of the sample point, arrowed in yel-
low, bottom right. These estimates X̃ 2, Ỹ 2, Z̃ 2 are actually
closer to the tristimulus values of each of the two points ar-
rowed in white (and to the tristimulus values of many other
points not indicated in the image), according to the color-
difference formula CIEDE2000. A more detailed example is
described in Ref. [137].

These kinds of erroneous matches occur with other points in
the scene and with other chromatic adaptation transforms.
Patently, identifying a point by its color involves not only
the color difference between its estimated and true tristimulus
values X̃ 2, Ỹ 2, Z̃ 2 and X 2,Y 2,Z 2, or their equivalents, but also
the color differences between X̃ 2, Ỹ 2, Z̃ 2 and the tristimulus
values of all the other points in the scene.

Although mutual information sets a least upper bound on
the number of illuminant-invariant points in a scene, it does
not automatically follow that it is possible to find a chromatic
adaptation transform that can reach that bound, even with
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illumination changes that are purely spectral. In practice
[137,175], performance tends to fall several bits below the least
upper bound. Locally weighted polynomial regression may of-
fer a better description [185], though it risks overfitting [107].

D. Estimation

Numerical estimates of differential entropy may be obtained
directly from probability density functions, e.g., from empirical
histograms. Examples of histogram estimates of the marginal
distributions are shown in Fig. 7. But using histograms in place
of the unknown probability density function f in Eq. (10) can
lead to marked biases in the estimates [186]. Fortunately,
differential entropy can be estimated from nearest-neighbor
statistics, a safer approach than constructing empirical histograms.
The Kozachenko–Leonenko kth-nearest-neighbor estimator
[187,188] is asymptotically unbiased and converges reasonably
rapidly with increasing sample size. Its convergence is improved
with an offset method, details of which are given in Ref. [175].
The essence of the method is to decompose the estimate into two
components: one the mutual information between equivalent
Gaussian variables with known variance–covariance structure,
and the other an offset obtained by applying the nearest-neighbor
estimator to normalized versions of the variables.

The Kozachenko–Leonenko estimator can be implemented
by library routines with efficient C++ code for exact nearest-
neighbor search [135,136].

8. COMMENT AND CONCLUSION

Terrestrial and close-range hyperspectral imaging makes pos-
sible the realistic analysis and modeling of color vision in
the environment. Cone receptor and postreceptor responses
can be estimated, scene color statistics calculated, and the utility
of color assessed in tasks requiring an observer to distinguish
surfaces or identify them under changes in illumination. In ad-
dition, colorimetric formulas can be tested and color rendering
transformations optimized.

Caution does, though, need to be exercised in securing
images and in analyzing them:

1. To be valid, hyperspectral images should be linearly
related to the physical quantities they represent. The workflow
for image acquisition, processing, and calibration demands
careful, accurate management.

2. The choice of spectral radiance or reflectance images
leads to different tradeoffs. Spectral reflectance data allow a
wider range of questions to be addressed but entail more
assumptions or constraints than spectral radiance data.

3. In modeling receptor responses to images, variations
in receptor density and type may need to be considered,
along with the intrusion of signals from rods and intrinsically
photosensitive retinal ganglion cells.

4. In assessing the utility of color in different observer
tasks, average measures of scene properties such as the mean
or median of color signals may be less relevant than information
measures such as Shannon differential entropy. But estimating
differential entropy with little or no bias depends on the good-
ness of the chosen numerical estimator.

More generally, each spectral radiance or reflectance image
constitutes a single sample from the real world in which

reflecting properties may vary from point to point and reflected
light from instant to instant. Inferences drawn from such data
are inevitably probabilistic.

Similar caveats apply to extensions of hyperspectral imaging,
including stereo, goniometric, and video hyperspectral imag-
ing. Constraints on acquisition time may force reductions in
the spatial or spectral sampling density available to the imaging
system. Nevertheless, preserving the relevant degrees of free-
dom associated with natural scene data remains a prerequisite.
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