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Abstract: This paper introduces the notion of a C' fuzzy manifold as a patural development of the notions of a fuzzy topological
vector space and of a fuzzy derivative of a fuzzy continuous mapping between fuzzy topological vector spaces. First, a fuzzy atlas
of class C! on a set is constructed and shown to yield a fuzzy topology that is compatible with the fuzzy atlas. The structure of a
C! fuzzy manifold on the set then follows. Next, it is shown that the product of two fuzzy manifolds is a fuzzy manifold, and that
the composition of two fuzzy differentiable mappings between fuzzy manifolds is fuzzy differentiable. Finally, the notions of a
tangent vector and of a tangent space at a point in a fuzzy manifold are formulated, and the tangent space is shown to be a vector
space.
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1. Introduction

The notion of a differentiable manifold, that is, a set locally like Euclidean space, arose historically in
many different mathematical disciplines, including the study of local differential geometry, projective
geometry, algebraic geometry, and continuous or Lie transformation groups [1]. In its present
formulation, it has led to the reformulation and generalization of these classical disciplines, and it has
been essential to the modern development of applications such as the theory of dynamical systems.
Although there are established theories of relevant fuzzy structures, including fuzzy topological spaces
[2,7,9,10], fuzzy topological vector spaces [S], and fuzzy derivatives [3], there have been few attempts
at formulating a satisfactory structure for fuzzy differentiable manifolds. The purpose of this study is to
bring together the notions of a fuzzy topological space and fuzzy differentiation between fuzzy
topological vector spaces to form a general notion of a fuzzy differentiable manifold.

The principle of the approach is to take the definition [3] of a fuzzy derivative of a fuzzy continuous
mapping between fuzzy topological vector spaces (ftvs’s), and use it to endow a ftvs with a fuzzy
differential structure. This differential structure is then extended to sets that are locally homeomorphic
to ftvs’s, thereby establishing the notion of a fuzzy manifold.

First, we propose a definition of a fuzzy atlas of class C' on a set and show that it is possible to define
a fuzzy topology on the set from the ftvs’s associated with the fuzzy charts. Then we define C' fuzzy
manifolds and show that if X and Y are C! fuzzy manifolds then their product X X Y is a C' fuzzy
manifold, and that the composition g o f of two fuzzy differentiable mappings g, f is fuzzy differentiable.
The notion of C' fuzzy diffeomorphisms between C' fuzzy manifolds follows naturally. Last, we define
a tangent vector and a tangent space at a point in a C' fuzzy manifold, and show that this tangent space
has the structure of a vector space.
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2. Preliminaries

For the sake of completeness, we briefly review here definitions and some properties of fuzzy
topological spaces, fuzzy topological vector spaces, and fuzzy differentiation, and include some new
technical results concerning bases for fuzzy topologies and products of fuzzy differentiable mappings
between fuzzy topological vector spaces.

Definitions and notation for fuzzy sets follow Zadeh [11], and those for fuzzy points and
neighbourhoods follow Pu and Liu [9]. Thus if x,, 0<c¢ =<1, is a fuzzy point in X with membership
function p, (y), y € X, then u, (y) =cif y =x and p, (y) = 0 otherwise. We denote by k, the fuzzy set in
X with the constant membership function y, (x) = ¢ for all x € X. The following definition of a fuzzy
topological space is due to Chang [2].

2.1. Definition. A fuzzy topology on a set X is a family J of fuzzy sets in X which satisfies the
following conditions.
(i) ko, k€ 7.
(ii) fA,BeJ,then ANBeJT.
(iii) If A;e I for all j e J (J some index set), then (U, A; € 7.

In the definition of a fuzzy topology due to Lowen [7], the condition (i) is

(i) For all ¢ € (I the unit interval), k. € 7.
If a fuzzy topology defined according to 2.1 also satisfies Lowen’s definition, then we refer to it as a
proper fuzzy topology.

The pair (X, 7) is called a fuzzy topological space, or fts for short, and the members of 7 are called
T -open fuzzy sets or simply open fuzzy sets. In the following, definitions and propositions hold for
proper and improper fuzzy topologies, unless stated otherwise.

2.2. Definition. A fuzzy topological space is called a fuzzy T, space if every fuzzy point is a closed
fuzzy set.

2.3. Definition. Let I be a fuzzy topology on a set X. A subfamily @ of 7 is called a base for 7 if each
member of J can be expressed as the union of members of %.

2.1. Proposition. A family % of fuzzy sets in X is a base for a proper fuzzy topology on X if it satisfies
the following conditions.

(i) suppea {us(x)} =1, for all x € X.
(ii) If By, B,€ % then BN B, e B.
(iii) For every 0<c <1 and every Be B, k. "B € B.

Proof. Let 7 (%), or simply 7, be the famlly of fuzzy sets than can each be expressed as a union of
elements of 9. From condition (1) ki€ J, and it is obvious that if A;e T, jeJ, then U, A, € J. Let
{B;} and {B;} be subfamilies of % (j and ! ranging in index sets J and L, respectively) and let
Ha(x) = sup {5 (x)} and pc(x) = sup {s(x)}, x € X. Then

min{p,(x), pc(x)} = min{sgp {ug(x)}, sup {MB,(X)}} = sup {min{pp(x), up(x)}}, xelX.

This shows that if A, C e 7, then AN C € 7. Finally, it is necessary to prove that k., 0<c <1, belongs
to 7. Condition (111) 1mp11es that for each ¢, 0=<c <1, the fuzzy set with membership function

sup {min{u,(x), us(x)}}, xeX,
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belongs to J. By condition (i), for each x € X and for each ¢, 0=<c <1, there exists a fuzzy set Be %
with membership value ugz(x)=c. Then supg.g {min{u, (x), ps(x)}}=c, for all xeX, 0=sc<1,
which shows that k. € 7. Thus the family generated by unions of B € & is a proper fuzzy topology. U

Note that if a base for an improper fuzzy topology is considered, condition (iii) is unnecessary.

2.4. Definition. Let {(X;, J,)},., be a family of fts’s and (X, 7) be the product fts [4, 10]. The product
fuzzy topology T on X has as a base the set of finite intersections of fuzzy sets of the form p;'[A)],
where p;'[A/] is the inverse image of A; € J; under the projection p; of X onto Xj, j€/J.

Let {X;};<j=, be a finite family of sets and for each j let A; be a fuzzy set in Xj. The product
A=1I-, A, of the family {A;} is defined as the fuzzy set in X =]I}., X; that has membership function

palx) = gjg {paj(pi(x))}, xeX

If X; has fuzzy topology J;, 1<j=n, the product fuzzy topology on X has as a base the set of
product fuzzy sets of the form [[}_, A;, A;€ J;.

2.5. Definition. Let (X, 7), (Y, ¥) be two fts’s. A mapping f of (X, 7) into (Y, V') is said to be fuzzy
continuous if for each open fuzzy set V in ¥ the inverse image f ~'[V] is in 7. Conversely, fis said to be
fuzzy open if for each open fuzzy set U in 7, the image f[U] is in 7.

2.6. Definition. A bijective mapping f of a fts (X, J) onto a fts (Y, ¥) is called a fuzzy
homeomorphism if it is fuzzy continuous and fuzzy open.

2.2. Proposition. Let f be a fuzzy continuous (resp. fuzzy open) mapping of a fis (X, J) into a fts
(Y, V) and g a fuzzy continuous (resp. fuzzy open) mapping of (Y, V) into a fis (Z, Z). Then the
composition g°f is a fuzzy continuous (resp. fuzzy open) mapping of (X, 7) into (Z, &).

Proof. Obvious.

2.3. Proposition. Let {(X;, T)}jcr, {(Y}, V})}jes be two families of fts’s and (X, T), (Y, V) the
respective product fts’s. For each jeJ, let f; be a mapping of (X;, 9)) into (Y}, ¥}). Then the product
mapping f =1L, f;: (x)— (f(x;)) of (X, T) into (Y, V) is fuzzy continuous if f; is fuzzy continuous for
each jel.

Proof. See [4].

2.4 Proposition. Let {(X;, T)}1<j<n {(Y;, V})}1=j<n be two finite families of fis’s and let (X, T),
(Y, V) be the respective product fis’s. For each j, 1<j<n, let f; be a mapping of (X;, 7)) into (Y}, V).
Then the product mapping f =1I1'-, fi: (x})— (f(x))) of (X, T) into (Y, V') is fuzzy open if f; is fuzzy
open for each j, 1<j=<n.

Proof. Sece [4].

The following definition of a fuzzy topological vector space is due to Katsaras and Liu [5]. Let E
denote a vector space over the field K of real or complex numbers.

2.7. Definition. Let {4;},~=, be a finite family of fuzzy sets in a vector space E. The sum A = ¥}, 4;
of the family {A,} is the fuzzy set in E that has membership function

pa(x)= sup min {p,(x;)}, x€E.
L 1

xi=x l=j=<n
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The scalar product A of o€ K and A a fuzzy set in E is the fuzzy set in E that has membership
function p,4(x), x € E, given by

Uaa(X) = pa(x/a) for a#0,
= g, (x) for a« =0,

where A =sup, .z pa(y).

2.8. Definition. A fuzzy topological vector space, or ftus for short, is a vector space E over the field K
of real or complex numbers, E equipped with a fuzzy topology J and K equipped with the usual
topology &, such that the two mappings

(i) (x,y)—=>x+yof (E, T)x(E, J) into (E, J),

(ii) (a, x)—> ax of (K, H) % (E, ) into (E, T),
are fuzzy continuous.

Note that the fts £ may be proper or improper but K is a special case of an improper fts. This was
not made explicit in [3]. In the sequel E denotes a ftvs with scalar field K.

Let E, F be two fuzzy topological vector spaces and let ¢ be a mapping from E into F. Let o(¢)
denote any function of a real variable ¢ such that lim,_,, 0(t)/t = 0.

2.9. Definition. The mapping ¢ is said to be tangent to 0 if given a neighbourhood W of 05, 0< é < 1,
in F there exists a neighbourhood V of 0,, for every A, 0 <A< §, in E such that

o[tV] co(t)W,

for some function o(¥).

Note that in [3] the range of A was 0 <A =< 6. The reason for the modification will become apparent
in the proof of Proposition 2.6, which depends on Lemma 2.1. (The propositions of [3] are unaffected.)
The following definitions of fuzzy differentiability and fuzzy derivative were proposed by Ferraro and
Foster [3].

2.10. Definition. Let E, F be two ftvs’s, each endowed with a T fuzzy topology. Let f:E— F be a
fuzzy continuous mapping. Then f'is said to be fuzzy differentiable at a point x € E if there exists a linear
fuzzy continuous mapping u of E into F such that

f+y)=fx)+u(y)+¢(y), yeE

where ¢ is tanget to 0. The mapping u is called the fuzzy derivative of f at x. The fuzzy derivative of f
at x is denoted by f'(x); it is an element of L(E, F), the set of all linear fuzzy continuous mappings of
E into F. The mapping f is fuzzy differentiable if it is fuzzy differentiable at every point of E.

From this point on, suppose that each ftvs is equipped with a T; proper fuzzy topology. Some of the
properties of fuzzy derivatives have been discussed in [3]. In particular there is the following.

2.5. Proposition. Let E, F, G be ftvs’s, f a fuzzy continuous mapping of E into F, and g a fuzzy
continuous mapping of F into G. Let x e E and y = f(x). If f is fuzzy differentiable at x and g is fuzzy
differentiable at y, then the composition g°f is fuzzy differentiable at x.

Proof. See [3].
Further, the fuzzy derivative of gofat x € E is g'(f(x))of'(x) [3].
2.1. Lemma. Let F=F X F, be the product ftus of two ftvs’s F,, F,. Each neighbourhood W of 0,

0< =<1, in F contains a product W, X W, of neighbourhoods W;, W, of 0s. in F,, F,, respectively, for
every 8’, 0<< &' < 4.
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Proof. Since W is a neighbourhood of 05, there exists an open fuzzy set W' in F such that 05 € W' = W.
The set W' can be represented as the union of the fuzzy sets U; X V; where U, V; (i and j ranging in
some index sets) are open fuzzy sets in F;, F, respectively. Hence

tiw(0) = sup {min{uy(0), puy(0)}} = 6.
4Ly
Therefore, for each 8’, 0< 8’ <4, there exist i’, j' such that u;,(0), uy (0)=46". O

2.6. Proposition. Let E,, E,, F|, E be ftvs’s. Suppose that f:E,—F, and g:E,— F, are fuzzy
differentiable. Then f X g:E, X E;— F, X F, is fuzzy differentiable.

Proof. By hypothesis,

fGi+y) —f) =F"(x)) + x:(y3),  xi, meEy,
glxa+y2) —8(x2) =8'(x2)(¥2) + x2(y2), X2, 2 € E,

where x,, x, are functions tangent to zero. By Lemma 2.1, each neighbourhood W of 05, 0<d =1, in
F, X F, contains a product of neighbourhoods W,, W, of 04 in F, FE for each §', 0<<8'<é.
Suppose (by Proposition 4.2 of [3]) that W, and W, are each balanced [5]. Since f and g are fuzzy
differentiable, there are, for each 0,, 0 <A< é’, in E,, E,, fuzzy neighbourhoods V;, V, of 0, in E;, F,
such that x,[tVi] c0,()W,, x:[tVa] € 0,(1)Ws. Set 0 = max{o,, 0,}. The product V, XV, is a fuzzy
neighbourhood of 0; in E=E; X E,. Set V =V, X V,. Write [5] xi[tVi] X xa2[tVa] = (1 X x)[tV) X V3]s
hence x,[tVi] X xo[tVa] = (1 X x2)[£V]. Set x4 X x2 = x. Then

Hoyw(z) = min{ toyw(21), Bowywy(22)}
= min{py,v,1(21), Bprvil(22)} = Byev(2), 2=(21, 22), 21 € F, € B,

That is, x[tV] c o(t)W, where V c E; X E, and W c F; X E; hence y is tangent to zero. Furthermore
f'(x,) X g'(x,) is fuzzy continuous {4] and linear. O

2.11. Definition. Let E, F be fuzzy topological vector spaces. A bijection f of £ onto F is said to be a
fuzzy diffeomorphism of class C' (or C' fuzzy diffeomorphism for short) if it and its inverse f~' are
fuzzy differentiable, and f' and (f ')’ are fuzzy continuous.

2.7. Proposition. Let E, F, G be ftus’s. If f is a fuzzy diffeomorphism of class C' of E onto Fand G is a
fuzzy diffeomorphism of class C' of F onto G, then g°f is a fuzzy diffeomorphism of class C' of E onto
G.

Proof. This follows from Proposition 2.5 and from Proposition 2.2. O

2.8. Proposition. Let E,, E,, F, F, be ftus’s. Suppose that f:E,—F, and g:E,— FE are fuzzy
diffeomorphisms of class C'. Then f X g:E, X E,— F, X E, is a fuzzy diffeomorphism of class C".

Proof. Obvious from Proposition 2.6 and from Propositions 2.3 and 2.4. [

3. Fuzzy manifolds

We now define fuzzy atlases and manifolds in a way that generalizes the classical definition. We
prove that the fuzzy differential structure is compatible with a fuzzy topology and that fuzzy manifolds
and fuzzy differentiable mappings between them retain some of the properties of classical manifolds
and differentiable mappings.

The following is based on the definition of a classical atlas given by Lang [6].
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3.1. Definition. Let X be a set. A fuzzy atlas s of class C' (or C' fuzzy atlas for short) on X is a
collection of pairs (A4;, ¢;) (j ranging here and subsequently in some index set) which satisfies the
following conditions.

(i) Each A, is a fuzzy set in X and sup;{u,(x)} =1, for all x € X.

(ii) Each ¢; is a bijection, defined on the support of A;, {x € X: ta(x) >0}, which maps A; onto an
open fuzzy set ¢;[A;] in some ftvs E;, and, for each [ in the index set, ¢;[4; N A,] is an open fuzzy set in
E;.
j(iii) The mapping ¢;° ¢; ', which maps ¢;{A; N A,] onto ¢,[A; N A]is a C* fuzzy diffeomorphism for
each pair of indices j, [

Each pair (A4;, ¢;) is called a fuzzy chart of the fuzzy atlas. If a point x € X lies in the support of A;
then (4, ¢,) is said to be a fuzzy chart at x.

3.1. Proposition. Let o be a C' fuzzy atlas, with charts (A;, ¢;), on a set X,, and let B be a C' fuzzy
atlas, with charts (By, y,), on a set X,. Then the collection of pairs (A; X By, ¢; X ,) forms a C" fuzzy
atlas on X, X X,.

Proof. (i) For all x,eX,, x,€ X,, sup;{us(x,)} =sup,{us(xs)} =1, and by definition Ba,xp(X)=
min{, (x1), up(x2)}, X = (x, x,). Therefore

SUP {15 (5)) = SUp (min {1t (1), s (52)}} = min{sup (1 (51}, sup {1 (e2)) | = 1.

(i) @,[A;] and y,[B,] are open fuzzy sets in ftvs’s E;, E, respectively. It follows that ¢,[A;] X ¥,[B/] is
an open fuzzy set in E; X E, [5] and, since ¢,[A;] X y[B/]=(¢; X ¥)[A; X B} [5], (¢; X w)[A; X B] is
open in E; X E,. Next, consider the intersections A; N A, and B, N B, for each g, r. It is straightforward
to show that (A4;NA,) X (B,NB,)=(A; X B;)N (A, % B,). But it has just been proved that (¢; x
Y[(A;NA,) X (B,N B,)] is an open fuzzy set in E; X E, because ¢;[4; N A,] and y,[B, N B,] are open
fuzzy sets in E; and E,; respectively. Hence (¢; X y)[(4; X B))N (A, X B,)] is an open fuzzy set in
E. X E,

](iii) The last condition of Definition 3.1 is satisfied by virtue of Proposition 2.8. [

Next it is shown that the set X can be given a fuzzy topology such that each A; in the C' fuzzy atlas
on X is an open set and each ¢; is fuzzy continuous.

3.2. Proposition. Let & be a C' fuzzy atlas with charts (A;, ¢;) and suppose that for any open fuzzy set
Vin ftus E;, (¢;'[V], @) is a fuzzy chart of . The family {A;} of fuzzy sets forms a base for a proper
fuzzy topology on X, and in this topology the ¢, are fuzzy continuous.

Proof. First, sup{u,(x)} =1, for all x e X. Next, if (A, ¢), (A, ¢..) are fuzzy charts then
(A/NA,, ¢) is a fuzzy chart, since ¢,[4,NA,,] is an open fuzzy set; this shows that if A, A4,, € {A;}
then A, N A,, € {A;}. Thus conditions (i) and (ii) of Proposition 2.1 are satisfied. Finally, for each / and
¢, 0=c <1, let Aj = ¢; '[k. N ¢,[A/]]; then (4], ¢,) is a fuzzy chart, and hence A; belongs to {A;}. The
membership function of A; is pa(x)=min{p, (x), pa(x)}, x € X; thus, for every 0<c<1, k.N
A;e{A;}. That {A;} is a base then follows from Proposition 2.1. Each mapping ¢; is fuzzy continuous
since ¢; ' takes an open fuzzy set onto an open fuzzy set. [

Let (X, ) be a fuzzy topological space. Suppose there exist an open fuzzy set A in X and a fuzzy
continuous bijective mapping ¢ defined on the support of A and mapping A onto an open fuzzy set V in
some ftvs E. Then (A, ¢) is said to be compatible with the C' atlas {(A;, ¢,)} if each mapping ¢;° ¢~
of ¢[A N A;] onto ¢,[A N Aj] is a fuzzy diffeomorphism of class C'. Two C" fuzzy atlases are compatible if
each fuzzy chart of one atlas is compatible with each fuzzy chart of the other atlas. It may be verified
immediately that the relation of compatibility between C' fuzzy atlases is an equivalence relation. An
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equivalence class of C? fuzzy atlases on X is said to define a C' fuzzy manifold on X. In the sequel we
refer simply to fuzzy manifolds.

3.3. Proposition. Let X, Y be fuzzy manifolds; then the product X X Y is a fuzzy manifold.
Proof. An obvious consequence of Proposition 3.1.

3.2. Definition. Let X, Y be fuzzy manifolds and let f be a mapping of X into Y. Then f is said to be
fuzzy differentiable at a point x € X if there is a fuzzy chart (U, ¢) at x € X and a fuzzy chart (V, y) at
f(x) € Y such that the mapping yeof°¢~', which maps ¢[UNf~'[V]] into y[V] is fuzzy differentiable
at ¢(x). The mapping f is fuzzy differentiable if it is fuzzy differentiable at every point of X; it is a C!
fuzzy diffeomorphism if Yeofo¢p~'is a C' fuzzy diffeomorphism.

3.4. Proposition. Let X, Y, Z be fuzzy manifolds, f a mapping of X into Y and g a mapping of Y into
Z. If f and g are fuzzy differentiable then g f is fuzzy differentiable.

Proof. Let (U, ¢), (V, ¥), (W, x) be fuzzy charts at x € X, f(x) e Y, g(f(x)) € Z, respectively. Then
Yofop~!, which maps ¢[UNF '[V]] into y[V], and xegow™', which maps y[V Ng~'[W]] into
x[W], are fuzzy differentiable. Hence yeogey 'oyofogp ' =yxo(gef)o¢™", which maps ¢[UN
FUVINf ' [g ' [W]]] into x[W], is fuzzy differentiable, by virtue of Proposition 2.5, and the assertion
follows. O

Corollary. If f and g are C' fuzzy diffeomorphisms then the composition gof is a C' fuzzy
diffeomorphism.

4. Tangent vector spaces of a fuzzy manifold

The notion of a directional derivative in Euclidean space leads to the notion of a tangent
vector of a differentiable manifold. Let X be a fuzzy manifold and let x be a (crisp) point in X.
Consider triples (U, ¢, v;), where (U, ¢) is a fuzzy chart at x and v, is a fuzzy point of the ftvs in which
¢[U] lies. Two such triples (U, ¢, v;), (V, ¢, wy) are said to be related, written (U, ¢, v;)~
(V, ¥, wy), if the fuzzy derivative of ¢ o ¢! at ¢(x) maps v, into wy. That is, (Yo ¢~") (¢ (x))vy = w;.

4.1. Proposition. The relation (U, ¢, v;) ~ (V, ¢, w,) is an equivalence relation.
Proof. Straightforward.

4.1. Definition. An equivalence class of triples (U, ¢, v;) is called a tangent vector of the fuzzy
manifold X at x, and the tangent space at x, denoted by T,.(X), is defined as the set of all tangent
vectors at x.

The set T,(X) can be given the structure of a vector space. Define the sum of two tangent vectors at
xeX as (U, ¢y, vin) + (Us, 92, U2y) = (U, @2, (92°¢7") (¢1(x))v1s + v,,). Define the product of a
tangent vector with a scalar « as o - (U, ¢, v;) = (U, ¢, aw,). Compare [8].

4.2. Proposiﬁon. If (Uly ¢1, vll) -~ (Vl’ wl, WU\) and (Uz, ¢2, U2y) -~ (‘/2, 'lpz, Wzy), then (Ul) ¢1’ Ull) +
(Us, @2, U2,) ~ Vi, Y1, wia) + (Va, W2, way).

Proof. Form the sums (U, ¢2, (¢2° @7 ") (9:1(x))vir +v2,), (Va, 2, (W20 911 (W1(X))Win + wyy).
From the definition of related triples,
(¥ ¢2_1)’(¢2(x))((¢20 ¢1"1)’(¢)1(x))vu + vy )= (2o ¢1_1)'(¢1(x))vu + (P20 ¢2_l)'(¢2(x))vzy
= ((¥2° 01 ") (91(x)) 2 (1o Y1) (¥:1(x)))wir + Wy,
= (Y2091 ") (Y1(X)) Wi + Wy, O
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4.3. Proposition. If (U, ¢, v;)~(V, ¢, wy) then o - (U, ¢, v;)) ~a - (V, ¥, wmy).

Proof. Straightforward.
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