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Abstract

Regression-based schemes have proven effective for locating landmarks on images. Most previous approaches either predict the

positions of all points simultaneously, or use regressors that predict individual points combined with a global shape constraint. The

former can be efficient, but such models tend to be less robust. Conversely, Random Forest (RF) voting methods for individual

points have been shown to be robust and accurate, but can lead to very large models. We explore the continuum between these two

approaches by training RF regressors to predict subsets of points.

Multi-point regression voting was implemented within the Random Forest Regression Voting Constrained Local Model frame-

work and evaluated on clinical and facial images. Significant model size reductions were achieved with little difference in accuracy.

The approach may therefore be useful where high numbers of points, and limitations on memory or disk space, make single-point

models impractically large.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

We propose an automated method for annotating landmarks on deformable structures by voting for their positions

using multiple, overlapping sub-models, each trained to predict the positions of subsets of the points. Algorithms

such as the Active Appearance Model (AAM)1, Shape Regression Machine2 and others3 use a sequence of regressors

to fit the entire shape simultaneously. However, holistic methods tend to generalise poorly4. An alternative is to

use sequences of regressors for individual points. The ambiguity inherent in the use of local image patches may

be dealt with by imposing a global shape constraint using, for example, statistical shape models (SSMs)5, pictorial

structures6, or Markov random fields (MRFs)7. In particular, regression voting (RV) methods8, especially those4 9 10

based on Random Forests (RFs)11, tend to be robust. The RFRV Constrained Local Model (RFRV-CLM)9, which

uses a RF regressor for each point constrained by a global shape model, has been successfully applied to both clinical

and facial images9, and has shown superior generalisation capability compared to the AAM12.
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One drawback of such methods is that RFs increase in size linearly with the number of trees and exponentially

with tree depth. Clinical image annotation often requires many, densely annotated points, which can make RF-

based models impractically large. Some authors13 have proposed alternative RF structures to reduce size. Here we

investigate the use of RF regressors to localise multiple points simultaneously, reducing the number of RFs needed.

The process of learning mappings between arbitrarily complex input and output spaces is generally referred to as

structured learning14. Several authors have investigated the application of RFs within this framework, often using

standard input and structured output spaces. For example, Dollár and Zitnick15 performed edge detection using RFs

trained to predict local edge maps from image features. Ebner et al. 16 applied RFs to localise entire sets of points

simultaneously in hand MRI. Our novel contribution is to use structured RFs to predict the parameters of SSMs that

cover subsets of points. An accumulator array for each point is used to collect votes from each sub-model covering

that point, retaining the robustness of RF voting methods. Fitting is constrained using a global SSM. The approach has

advantages in terms of flexibility; each sub-model can cover any subset of the points, arbitrary numbers of sub-models

can be used, and they can overlap such that several sub-models localise a point using information from different image

regions. We briefly describe RFRV and CLMs in Section 2 (see Lindner et al. 9 for details), and then describe how

multi-point sub-modelling (MP) is implemented within this framework. We report results on clinical and facial images

in Section 3; the latter are included to show the importance of correlations between points in the sub-models.

2. Method

2.1. RF Regression Voting

RFRV uses a single RF regressor for each point, trained to predict the offset to that point based on local patches of

image features. The training data consists of a set of images I with manual annotations xl of a set of N points l = 1...N
on each. The images are first aligned into a standardised reference frame using a similarity registration, giving a

transformation T with parameters θ, and then resampled into this frame by applying Ir(m, n) = I(T−1
θ (m, n)), where

(m, n) specify pixel coordinates. The reference frame width, in pixels, is controlled by a parameter wf rame, allowing

variation of the resolution of the resampled images. Random displacements d j are generated by sampling from a

uniform distribution with apothem dmax and the same dimensionality as the images. For each point, image patches of

area w2
patch are extracted at these displacements from each resampled training image, and features f j are derived from

them. Haar-like features17 are used, as they have proven effective for a range of applications and can be calculated

efficiently from integral images. To allow for inaccurate initial estimates of pose during model fitting, and to make

the detector locally pose-invariant, the process is repeated with random perturbations in scale and orientation. A RF is

then constructed; each tree is trained on a bootstrap sample of pairs {(f j, d j)} from the training data using a standard,

greedy approach. At each node, a random set of n f eat features is chosen, and a feature fi and threshold t that best split

the data into two compact groups are selected by minimising an entropy measure9. The process is terminated at a

maximum depth Dmax or minimum number of samples Nmin, and repeated to generate a forest of ntrees.

2.2. Constrained Local Models

The CLM5 uses a SSM to constrain the fitting of models for individual points. The concatenated, reference-

frame coordinates of the points in each training image define its shape; the SSM is generated by applying principal

component analysis (PCA) to the set of training shapes1. This yields a linear model of shape variation, giving the

position of point l
xl = Tθ(x̄l + Plb + rl) (1)

where x̄l is the mean point position in the reference frame, Pl is a set of modes of variation, b encodes the shape model

parameters, and rl allows small deviations from the model.

2.3. RFRV-CLM Fitting

The fitting of a RFRV-CLM to a query image Iq is initialised via an estimate of pose from a previous model or a

manual initialisation, providing estimates for b and θ. The image is resampled in the reference frame using the current
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pose Iqr(m, n) = Iq(T−1
θ (m, n)). For each point l, a grid of locations zl is defined covering a search range of apothem

dsearch around the initial estimate of its position. Regressor Rl is applied to the image features extracted from the local

patch around each grid location. Each tree in Rl predicts the offset to the true point position, and casts a vote into

an accumulator array Cl at the predicted position. This is performed independently for each point. The shape model

places a constraint on the results from all regressors. The quality of fit Q is given by

Q(p) = ΣN
l=1Cl(Tθ(x̄l + Plb + rl)) s.t. bT S−1

b b ≤ Mt and |rl| < rt (2)

where Sb is the covariance matrix of shape model parameters b, Mt is a threshold on the Mahalanobis distance, and

rt is a threshold on the residuals. Mt is chosen using the cumulative distribution function (CDF) of the χ2 distribution

so that 98% of samples from a multivariate Gaussian of the appropriate dimension would fall within it. This ensures a

plausible shape by assuming a flat distribution for model parameters b constrained within hyper-ellipsoidal bounds18.

Q is iteratively optimised, over parameters p = {b, θ, rl}, as described in9.

2.4. Multi-Point Sub-modelling

In the RFRV-CLM, each RF regressor predicts the offset of a single point using local image features. In the

multi-point (MP) algorithm, the RFs are trained to predict the parameters of a function that describes the positions of

multiple points. The function used here is a SSM. Let S k be a set of integers indicating a subset of Nk points (each

element of S k is an integer in the range [1,N]). A SSM is built, representing a shape xk in the reference frame as

xk = x̄k + Pkbk (3)

where x̄k is the mean shape, Pk the modes of variation, and bk the shape parameters. The first two columns of Pk

correspond to translation; it is assumed that the scale and rotation components are small and thus well approximated

by a linear model. A set of perturbations to the shape parameters {dbk} are sampled from a uniform distribution of

range [−dbmax, dbmax], and applied to each training image. Patches of image data around the perturbed points are then

drawn from the images, and features are extracted. The displacements dbk and corresponding features are then used

to train a RF regressor Rk() that, given the current position of a point subset x′k, estimates the shape parameter offsets

dbk required to improve the points

dbk = Rk(fk(x′k)) ⇒ x̂k = x′k + Pkdbk (4)

Fitting proceeds as within the RFRV-CLM framework. Separate voting arrays are used for each point, and each

regressor that includes a given point in its sub-model votes into the corresponding array, allowing the combination of

results from multiple, overlapping sub-models. The resulting voting arrays are used as the Cl in Eq. 2.

3. Results

3.1. Segmentation of Vertebrae in DXA Images

A series of experiments was performed to evaluate the effect of the number of points in the sub-models on the

performance of the MP algorithm, using 320 dual-energy X-ray absorptiometry (DXA) images of the spine, split

randomly into halves for training and testing. Sub-models were constructed from contiguous sets of points along

boundaries and, to reduce the size of the parameter space, overlap was set to �(npoints/2)� i. e. each point was contained

within a maximum of two sub-models. The dimensionality of bk was chosen by removing PCA modes that varied

point positions by less than 0.5 pixels. The experiments focused on a single vertebra (L2) to limit CPU time and, as in

Roberts et al. 19, the model covered the target vertebra and both of its neighbours (L1-L3). Manual annotation of 130

points on each image was performed by an expert radiographer (see Fig. 1(a)). Errors were calculated as the mean,

over the 38 points on L2, of the distances both between the automatic and manual points (point-to-point (P-to-P) error)

and, to compensate for the aperture problem, of the minimum distances between the automatic points and a Bezier

spline through the manual points (point-to-curve (P-to-C) error). A 2-stage, coarse-to-fine model was used and all

free parameters were set to the values given in Bromiley et al. 20.
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Fig. 1. (a) Example 130-point annotation of the L1-L3 vertebrae on a DXA spinal image. (b,c,d,e) Performance of MP in annotation of 38 points

on the L2 vertebra in 160 DXA images of the spine: (b,c) The proportional area under the CDF of mean P-to-C and P-to-P error with varying Nk ,

together with the results from (non-MP) RFRV-CLM with Dmax = 15, Nmin = 1; (d,e) CDFs of errors for MP with Nk = 1 and 20 with Dmax = 15,

compared to the results from RFRV-CLM. The error bars show the standard error on the mean of five repeat experiments.

 200

 300

 400

 500

 600

 700

 0  5  10  15  20

M
od

el
 s

iz
e 

(M
B

)

Number of points in sub-models

(a)

 200

 300

 400

 500

 600

 700

 0  20  40  60  80  100  120  140

M
od

el
 s

iz
e 

(M
B

)

Number of sub-models

(b)

Fig. 2. MP size on disk compared to the number of points in each sub-model and the number of sub-models, for Dmax = 15 and Nmin = 1.

Three sets of experiments were performed to evaluate the dependence of MP annotation accuracy on sub-model

size Nk, varying Nk from 1 to 20 for each of Dmax = 15, 10 and 5. Figs. 1(b,c) show the results as the proportional

area under the cumulative distribution function (CDF) of P-to-P and P-to-C errors. Examples of the CDFs for the

experiments with Dmax = 15, Nmin = 1 and Nk of 1 and 20, and results from a 2-stage, coarse-to-fine RFRV-CLM, are

shown in Figs. 1(d,e). Considering P-to-C error first, performance fell with Nk regardless of Dmax, but the reduction

was greater at lower Dmax. This implies that the reduction in performance was due to the dimensionality of the output

space increasing with Nk whilst the number of samples available to populate it was constant, since constraining RF

depth limits the ability to model more complex output spaces. The points were densely annotated along bone edges,

and so most of the single-point regressors had limited information about the spacing of points along the edge. The



52   P.A. Bromiley et al.  /  Procedia Computer Science   90  ( 2016 )  48 – 53 

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14
P

ro
p.

 o
f i

m
ag

es
Mean P-to-P error (% of IOD)

RFRV-CLM
MP 9 rand. sz 2

MP 13 rand. sz 2
MP 15 rand. sz 2
MP 19 rand. sz 2

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

P
ro

p.
 o

f i
m

ag
es

Mean P-to-P error (% of IOD)

RFRV-CLM
MP 9 heur. sz 2

MP 13 heur. sz 2
MP 15 heur. sz 2
MP 19 heur. sz 2

(c)

Fig. 3. (a) Example facial image from the BioID data set, with 17-point annotation. (b,c) CDFs of the mean P-to-P error on BioID, relative to the

IOD, comparing RFRV-CLM to MP with 19, 15, 13 and 9 random (b) and heuristically chosen (c) sub-sets of size 2.

use of MP sub-models imposed stronger constraints on inter-point spacing, and this was reflected in the P-to-P error,

which reduced with Nk up to 6. At this value, neither P-to-P nor P-to-C errors were significantly larger for the MP

algorithm compared to the single-point RFRV-CLM. The increase in P-to-C error across the range of Nk tested was

small (≈ 0.2mm) compared to the error itself, and all models attained 100% on the CDF at the same value i.e. were

equally robust. Figure 2 shows that the model size on disk depended linearly on the number of regressors i.e. had a

significant (a factor of 3.5 difference between Nk = 1 and 20) inverse linear relationship to Nk. The CPU time required

for model fitting showed a similar, but weak (a 7.1% drop from Nk = 1 to 20), dependence on Nk.

3.2. Facial Landmark Annotation in Natural Images

The points in the spinal images were densely aligned along the edges of bony structures, providing a natural

ordering in which to select sub-sets and significant correlations between neighbouring points. To demonstrate sub-

model point selection in images that did not have this property, and applicability to a wide range of image types, the

method was also applied to natural images of faces. Models were trained to annotate 17 points, as shown in Fig. 3(a).

A multi-stage model was used as described in Lindner et al. 9. The models were trained on 267 images from the

AFLW data set21, and tested on 1476 images from the BioID data set22. Performance was evaluated using the mean

P-to-P distance relative to the inter-ocular distance (IOD)5.

Two sets of experiments were performed using Nk = 2 and varying the number of sub-models. In the first, the

points in each sub-model were chosen randomly, i. e. were dissimilar in location and appearance. In the second, they

were chosen heuristically, to minimise the Euclidean distance between them. A RFRV-CLM with identical parameters

was used for comparison. The results are shown in Fig. 3. When points were chosen heuristically, to maximise their

correlations, performance of models containing between 13 and 19 regressors was not significantly different to that

of the single-point method. The 19-regressor model, containing more than one regressor per point, did not result in

improved performance compared to the RFRV-CLM. However, only when the number of regressors was reduced to

9, the smallest number of 2-point regressors that could annotate all of the points, was a reduction in performance

observed. In contrast, when the points were chosen randomly, a reduction in performance was observed regardless of

the number of regressors used. This demonstrates that the MP method extracts information from the correlations of

points within the sub-models. As with the spinal images, the differences in performance were relatively small, and all

models attained 100% on the CDF at the same value i.e. were equally robust.

4. Conclusion

Most previous regression-based approaches for automatic landmark annotation fall into two groups; holistic ap-

pearance models such as the AAM, where all points are predicted from a single model, and atomistic models such

as the RFRV-CLM, where local intensity is modelled separately for each point, and a global shape constraint is used

during fitting. The aim of this paper was to explore the continuum between these approaches, by training structured

regressors to predict the parameters of shape models that, in turn, predicted the positions of subsets of points.
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Evaluation on densely annotated DXA images indicated that, at optimal sub-model size, there was no significant

difference in performance compared to RFRV-CLM. However, the corresponding reduction in the size of the model on

disk was highly significant, being linear in the number of regressors. Performance dropped when the sub-model size

was increased beyond the optimal value, due to the increasing output space dimensionality. However, the magnitude

of the reduction was small, and RFRV-CLM and the MP algorithm were equally robust, achieving 100% on the CDF

at the same point. The method was also used to segment the proximal femur in 839 anteroposterior (AP) pelvic

radiographs showing unilateral hip osteoarthritis, and the tibia in 500 AP knee radiographs showing varying stages of

osteoarthritis, with identical conclusions; these results are not included here due to space constraints.

Experiments on natural images of faces demonstrated that the method is applicable to a wide variety of image

types, and showed the importance of selecting correlated points to train the sub-models. This also proved that the MP

method compensates for the smaller number of regressors used, compared to RFRV-CLM, by extracting additional

information from the correlations between points in each sub-model. We conclude that MP can significantly reduce

model size with little or no loss in accuracy, and so allows larger numbers of points to be modelled without exceeding

available memory or disk space. Furthermore, since MP does not focus on reducing the size of each RF, it could be

combined with methods that do, such as global retraining and pruning23, to produce further size reductions.
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