
COMP60442: Computer Vision Module Maths Primer

Carole Twining

Abstract

This document is intended as a very brief overview of the most basic mathematical concepts to be used in
this module. The contents should already be familiar to students with a basic maths qualification, but what may
be unfamiliar is the range of different notation used for the same mathematical concept in relevant books and
papers. Students should read these notes carefully, and make sure they can answer the simple self-test questions.

Contents

1 Differentiation and Differential Calculus 1
1.1 Basic Derivatives . 1

1.1.1 Finite Differences . 2
1.2 Partial Derivatives . 2

Questions: Differentiation . 3

2 Arrays, Vectors, and Matrices 3
2.1 Data Arrays . 3
2.2 Vectors and Operations on Vectors . 4

Some Basic Operations with Vectors . 4
2.2.1 Matrices Acting on Vectors . 5

2.3 Matrices and Matrix Algebra . 6
Some Basic Operations with Matrices . 6
2.3.1 Eigenvectors and Eigenvalues . 7
Questions: Vectors and Matrices . 7

3 Vector Calculus 7
3.1 Discrete Laplacian . 8

1 Differentiation and Differential Calculus

Differential calculus is a area of maths that allows us to describe and analyse the rate of change of quantities. This
rate of change can involve the rate of change of a quantity with time, the rate of change of a quantity with spatial
position, or in general, the way that any quantity changes as a result of changing the variables on which it depends.
It hence in general applies in such areas as considering how the results of a process or algorithm depend on errors
on the input data to the process.

1.1 Basic Derivatives

Suppose we have an arbitrary function of a variable x, which we will write as:

y = f(x).

The slope of the graph of y plotted against x, at the point x = a, is given by the derivative:

dy

dx

∣∣∣∣
a

≡ df

dx

∣∣∣∣
a

.

The notation ·|a is often omitted. Where the identity of the independent variable x is clear, the derivative of a
function f(x) is sometimes written as f ′(x), or just f ′.

There are two techniques which allow the calculation of derivatives of more complicated expression:

1

• Product Rule:
For a product of functions:

f(x) = g(x)h(x) ⇒ f ′(x) = g′(x)h(x) + g(x)h′(x).

• Chain Rule:
For a function of a function, we have the chain rule:

f(x) = g (h(x)) ⇒ f ′(x) = g′(h(x))h′(x).

Note that some care needs to be taken here in this use of the dash notation, in that g′(h(x)) actually means:

g′(h(x)) =
dg(h)
dh

∣∣∣∣
h=h(x)

,

since the function g only depends indirectly on x via the value of h.

1.1.1 Finite Differences

As we will see below when we consider vectors, we often only know the value of a function f(x) at some discrete
sample set of points x, rather than for any value of x. In this case, the derivative f ′(x) can be approximated using
finite-differences. So, if we know the values of yi = f(xi) at some set of points {xi : i = 1, 2, . . . n}, then the (centred)
finite-difference approximation of the derivative is given by:

df(x)
dx

∣∣∣∣
x=xi

=
dy

dx

∣∣∣∣
x=xi

≈ yi+1 − yi−1

xi+1 − xi−1
=

f(xi+1)− f(xi−1)
xi+1 − xi−1

.

If the points xi are equally-spaced, and a unit distance apart, then this is often written as:

df(x)
dx

∣∣∣∣
x=xi

≈ yi+1 − yi−1

2
.

Finite-differences are the basis of methods for the numerical solution of equations involving derivatives of functions
(differential equations). In some cases, you may also encounter the asymmetric difference:

df(t)
dt

∣∣∣∣
t=tn

≈ f(tn+1)− f(tn)
tn+1 − tn

or:
df(t)
dt

∣∣∣∣
t=tn

≈ f(tn)− f(tn−1)
tn − tn−1

.

1.2 Partial Derivatives

In most cases, a function of interest will depend on more than one variable. A simple example is the height above
sea-level of some part of a landscape, where the exact height depends on our position in two dimensions (which we
could think of as latitude and longitude, for example). We hence have a function f(x, y), where we now have two
independent variables.

The slope of the landscape at a point obviously depends on which direction we walk in. This information is
encoded in the partial derivatives (∂ symbol rather than the d we used previously):

∂f(x, y)
∂x

∣∣∣∣
y

,
∂f(x, y)

∂y

∣∣∣∣
x

.

What ∂f(x,y)
∂x

∣∣∣
y

means is that we take the function f(x, y), and consider only the effect of varying x when we are

asking about the slope. We then in effect take the ordinary derivative with respect to x, in that whenever y occurs
in the expressions, we treat it as if it were a constant. To give an example:

f(x, y) = x2y + x3 + y2 ⇒ ∂f

∂x
= 2xy + 3x2,

∂f

∂y
= x2 + 2y.

Note that as above, the ·|y notation is often omitted where the meaning is clear, and in some cases, the even shorter
notation is used, where:

fx =
∂f

∂x
.

2

As in the case of the basic derivative, we can also construct finite-difference approximations to these partial derivatives.
We can also differentiate these derivatives themselves (so, not just asking what the slope of the landscape is at a
point, but how that slope varies with position), and hence we have the second-order partial derivatives:

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
= fxy ≡ fyx.

Note that as for the basic derivative, we also have a chain-rule for partial derivatives. So, suppose we have a function
f which depends on two independent variables u and v, and that these both depend on x and y. That is:

f = f(u, v), u = u(x, y) & v = v(x, y).

From before, we can compute what happens if we change just u, or just v, these are the partial derivatives fu and
fv. However, if we change just x (but not y), then both u and v change to some extent since they both depend on
x. Hence we have to combine the partial derivatives according to the chain-rule:

∂

∂x

∣∣∣∣
y

f(u, v) =
∂f

∂u

∣∣∣∣
v

∂u

∂x

∣∣∣∣
y

+
∂f

∂v

∣∣∣∣
u

∂v

∂x

∣∣∣∣
y

= fuux + fvvx.

You should take careful note of what variables are being held constant at each step of the computation.

Questions: Differentiation

1. Compute the first derivatives of the two functions g(x) = x2 and h(x) = cos x. Hence:

• use the product rule to compute the first derivative of f(x) = x2 cos x.

• use the chain rule to compute the first derivative of f(x) = cos x2.

[Note. Don’t let yourself get confused by the fact that x is used in the definition of both g and h.]

2. Consider the function f(x, y) = x2 + y2. Find by direct computation the partial derivatives fx, fy, fxx, fxy, fyx

and fyy.

Consider now the function g(x, y) = (x+y)2 +(x−y)2. By direct computation, find the first partial derivatives
gx and gy.

Now consider the substitution u(x, y) = x + y, and v(x, y) = x− y. Hence by use of the chain rule for partial
derivatives, express the first partial derivatives of g in terms of the first partial derivatives of f , and verify that
you get the same answer as you did by direct computation.

2 Arrays, Vectors, and Matrices

2.1 Data Arrays

For a multi-valued data set (for example, the daily average temperature at a location, measured every day for a
year), the entire set of values is often combined into a single structure. So, we could arrange the temperature data
described above into a vector ~T with 365 elements, where the ith element Ti was the temperature on the ith day.

The notation used for vectors varies greatly, so you will find ~T , T, T, and sometimes just T all used to denote
the entire vector of temperatures. How you refer to an individual element also varies, so you will find Ti and also
T (i) (and possibly T (1, i) and T (i, 1)) all used in various mathematical and coding contexts.

Now suppose that we measure the daily temperature not just at one location, but at some set of locations. We
can then form a two-dimensional array of data values. For example, we could have the temperature on the ith day
at location α, which we could refer to as the element Tiα of the array T. We could also describe this as the element
T (i, α). In Matlab notation, the day i is the row index, and the location α is the column index. This data array is
rectangular and complete – we have measurements at all locations for every day.

Note that we have been careful here, and used different alphabets to denote the day index i and the location index
α. Not all authors are this careful, and for instance, you will find instances where authors will refer to an element
Tij , where i denotes day (and runs from 1 to 365), whereas j denotes location (and runs from 1 to 7, say). It is then
important to note that Tji is different to Tij (the temperature at location one on the seventh day in general will have
nothing to do with the temperature at the seventh location on the first day), and may not even exist. Hence care
needs to be taken when referring to individual elements of an array as to which way the array has been organized,
and what the indices actually refer to.

3

We can also construct multi-dimensional arrays. Suppose that at each location for each day, we also measured
the temperature at ground level, and at a height of 10 metres above the ground. We could then form these into
a three-dimensional array, with elements TiαA, where i is the day index, α is the location index, and A the height
index. In Matlab notation, we could refer to element T (355, 7, 2), which would be day 355, at the seventh location,
and the temperature at the height.

2.2 Vectors and Operations on Vectors

Now lets look just at vectors. In mathematical terms, we just have a vector ~x with N elements xi. In coding terms,
you have to distinguish between column vectors, which you can think of as an array with elements {x(i, 1) : i =
1, 2, . . . N}, and a row vector {y(1, i) : i = 1, 2, . . . N}. If ~y is a row(column) vector, the corresponding column(row)
vector is given by the transpose, ~yT , where yT (1, i) = y(i, 1) and so on.

Some Basic Operations with Vectors

• Multiplication by a Number:
For a vector ~x and a number a, we form the new vector a~x with elements axi.

• Addition and Subtraction:
If ~x and ~y are both vectors of the same size and type (i.e., both row vectors or both column vectors), then we
can add them, to obtain a new vector:

~z = ~x + ~y, zi = xi + yi, z(i, 1) = x(i, 1) + y(i, 1) or: z(1, i) = x(1, i) + y(1, i).

If we have a column vector and a row vector of the same length, in coding terms we can still add them as
~z = ~x + ~yT . As before, in mathematical terms, we do not usually distinguish between row and column vectors.

Since we can add vectors, we can obviously subtract them as well, by just rearranging the above expressions.

• Dot Product:
If we have two vectors of the same size N , ~x and ~y, the dot product is the number given by:

~x · ~y =
N∑

i=1

xiyi.

If they are both row vectors, in coding notation this is written as xT y (which is the same as yT x), and if they
are both column vectors, as xyT (or equivalently yxT).

Length/Modulus of a Vector:1

In terms of geometry, we can think of the dot product of a vector with itself, ~x · ~x, as the length of the vector
squared, which is sometimes written as |~x|2.
Angle Between Vectors:
The dot product of two vectors, ~x · ~y can then be thought of as the number |~x| |~y| cos θ, where θ is defined as
the angle between the two vectors.

Two vectors are said to be orthogonal if the angle between them is ninety degrees, hence their dot product is
zero.

• Outer Product:
If we have two vectors ~v and ~w, which need not be of the same size, we can form a matrix by taking the outer
product2 of ~v and ~w:

U = ~v ⊗ ~w, Uij = viwj .

We hence see that the first vector uses the row index, and the second uses the column index. So, if ~v is of size
m, and ~w is of size n, then ~v⊗ ~w is a matrix of size m×n. In MATLAB, if ~v and ~w are written as row vectors,
then the outer product is given by: v’*w where v’ is the column vector formed by taking the transpose of v.
We hence see that this corresponds to a (single-column) matrix v’ of size m× 1 multiplying w of size 1× n (a
single-row matrix) to produce a matrix of size m× n.

1You should not confuse the length of a vector as used in Matlab, where it means just the number of elements, with the length |~x| as
defined here.

2Note that the definition of the outer product given in the old version of the Maths Primer by Neil Thacker, that you might have come
across on the TINA website disagrees with this definition. But the one used here is in accord with the definition of the tensor product.

4

• The Cross Product
For the special case where we have 2 vectors in three dimensions ~v = (vx, vy, vz), ~w = (wx, wy, wz), we can
take the cross-product, to give another vector in three dimensions. The physical meaning of this vector is that
it is at right angles to both of the original vectors, and its length is given by |~v||~w| sin θ, where θ is the angle
between the two vectors (see angle between vectors above). The notation for the cross-product (sometimes also
called the wedge product) is ~v × ~w or ~v ∧ ~w. Care should be taken not to confuse this with the outer product!
In components, the cross-product is given by:

~v × ~w = (vywz − vzwy, vzwx − vxwz, vxwy − vywx).

We hence see that the x component involves the y and z components of the two vectors, and similarly for the
other components. To remember the signs, think of xyz, block out the component you are trying to find, and
take remaining indices. So, y component of the cross-product gives xz, which means takes x component of ~v
and z component of ~w with plus sign, and z component of ~v and x component of ~w with a minus sign.

The appearance of the minus signs means that ~v × ~w = −~w × ~v.

2.2.1 Matrices Acting on Vectors

Using the dot product above, we can let a (row) vector ~y act on a (column) vector ~x, written as ~y ·~x, yT x, or
∑
i

yixi.

Now suppose that rather than a single vector ~y, we have a collection of row vectors, and we wish to know the
result of taking the dot product between each of these vectors in turn with the vector ~x. If ~yα is the αth row vector,
with elements yαi, then the dot product for this vector is given by ~yα · ~x =

∑
i

yαixi.

We can also compute this by stacking the row vectors into a matrix, Y, where the αth row of this matrix is the
vector ~yα. The collection of dot products with ~x can then be written as the product of the matrix and the vector
Y~x. The result is another column vector, where:

~z = Y~x, ~zα =
∑

i

Yαixi =
∑

i

yαixi.

We can then see that if ~x is a column vector with N elements, and Y is a matrix with M rows (and of course N
columns), then the result of the multiplication is a column vector with M elements.

Example: Rotation in the plane.

Take a point in the plane with coordinates (x, y). If we rotate the point through an angle θ about the
origin, the coordinates of the rotated point are given by:

x → x cos θ + y sin θ, y → y cos θ − x sin θ.

We now collect the coordinates into a column vector ~r, with components r1 = x and r2 = y. We can then
write this rotation in matrix form as:

~r → R(θ)~r, where: R(θ) =
(

cos θ sin θ
− sin θ cos θ

)
.

Suppose we now have a rotation followed by a translation, so that:

x → x cos θ + y sin θ + a, y → y cos θ − x sin θ + b.

One way to write this would be to use R(θ)~r +~t, where ~t is the translation vector with elements a and b.
However, we can write this combined rotation and translation in terms of a single matrix. We extend the
vector ~r, where r1 = x, r2 = y, and r3 = 1. Using this 3-element vector, we can now write:

~r → R(θ, a, b)~r, where: R(θ, a, b) =

cos θ sin θ a
− sin θ cos θ b

0 0 1

 .

If you perform the matrix multiplication, you will see that the formula works. The point of this is that by
extending ~r in this way, we have reduced a translation and rotation (a matrix multiplication followed by
a vector addition), to one matrix multiplication, and this is a form that is often used in applications.

5

2.3 Matrices and Matrix Algebra

We have seen how a (column) vector of size N can be multiplied by a matrix of size M×N (M rows and N columns)
to produce as output a vector of size M . We now consider the matrix acting on a set of P such column vectors,
rather than a single column vector. So, if we have a column vector ~xA with elements xiA, multiplied by the matrix
Y as before, we obtain:

~zA = Y~xA ⇒ Z = YX, where: XiA = xiA,

where Y is of size M ×N , the collection of P column vectors form a matrix X of size N × P , and the result of the
multiplication is a matrix Z of size M × P , with elements3:

ZαA =
∑

i

YαiXiA.

We now summarize the basic rules for matrix algebra.

Some Basic Operations with Matrices

• Transpose:
If A is matrix with M rows and N columns, the transpose AT is a matrix formed by exchanging rows and
columns, hence is a matrix with N rows and M columns, with elements:

(AT)αi = Aiα.

• Addition:
If matrices A and B are the same size, then we can add them by adding the corresponding elements:

C = A + B where: Ciα = Aiα + Biα.

• Multiplication:
As we have already seen, if we have a matrix A of size M ×N and a matrix B of size N ×P , then we can form
the product:

C = AB, CαA =
∑

i

AαiBiA.

It is important to note that unless we have square matrices (same number of rows as columns), even if AB
exists, BA does not. And even for square matrices, AB is not in general the same as BA. Hence order of
multiplication matters for matrices.

• Identity:
The Identity matrix I is a square matrix of size N × N , with all the diagonal elements Ijj = 1, and zeros
everywhere else. It has the property that:

IA = A, BI = B

where A is any matrix of size N × P , and B is any matrix of size P ×N (and for any value of P ≥ 1).

• Inverse:
If a matrix A has an inverse A−1, then this inverse has the property that:

A−1A = I and AA−1 = I.

Such an inverse does not always exist, but where it does, it takes the place in matrix algebra of division in
ordinary algebra.

3Note that we have again been careful with our notation, and used different alphabets for indices which have different ranges. This is
not always the case, and you will often come across expressions such as:

Zjk =
X

i

YjiXik,

where the use of the same alphabet does not necessarily mean that each index has the same range.

6

2.3.1 Eigenvectors and Eigenvalues

We’ve already mentioned matrices acting on vectors. There is a special case of a matrix acting on a vector, which
occurs frequently in many fields of computing and physics. This is the concept of an eigenvector. For a square
matrix A, a (non-zero) vector ~v is an eigenvector of A if it satisfies:

A~v = λ~v,

where λ is some number (the eigenvalue associated with the eigenvector ~v).
What this means is that the matrix A acts on the vector ~v to produce another vector, which is just some multiple

of the original vector. Hence applying A changes the length/modulus of the vector, but not its direction.
MATLAB has standard functions for computing the eigenvectors and eigenvalues of a matrix.

Questions: Vectors and Matrices

1. Consider the vectors ~a = (0, 1, 3, 4), and ~b = (0, 3, 4, 1).

• Compute the dot product of these vectors.

• Compute C, the outer product ~a⊗~b.

• Compute C~b, and see how this can be related to ~a. Look at the formula for the outer product, to see if
this is the result you might have expected (Hint: Try working out ~b ·~b. Does this give you any ideas?).

• If I have the equation AB = X, how do I write the form of the solution for B if I know A and X? (Hint:
What would you do if these were numbers, rather than matrices? Does this give you any idea as to which
matrix operation you require, the analog of what you did with numbers?)

2. Consider the vectors ~v = (3, 4, 0) and ~w = (−4, 3, 0).

• Compute the cross-product ~c = ~v × ~w

• By computing the dot-products ~c · ~v and ~c · ~w, show that ~c is at right angles to both vectors.

• By computing |~c|, |~v| and |~w|, work out the angle between ~v and ~w. Does this agree with the result of
~v · ~w?

3 Vector Calculus

In §1, we considered differentiating (scalar) functions, and in §2, we considered vectors and arrays. We can now put
these together, and consider differentiating vector-valued functions.

Which might seem a rather odd thing to want to do, so let’s give a simple example.
Suppose we have a fluid flowing through a pipe, or just tea in our tea-cup after stirring. We then have positions in

the fluid, relative to the cup or pipe, which we will write as a position in three-dimensional space using the position
vector ~r = (x, y, z), where we have used the usual Cartesian xyz coordinates.

At any instant t, at any point in the fluid, we then have the velocity of the fluid at that point, which we will call
~v(x, y, z, t) or ~v(~r, t). This velocity is obviously a vector (which direction is the fluid moving in, and how fast?), it
depends on our position ~r, hence it is a vector-valued function of another vector.

When it comes to the pattern of flow in the fluid, we can consider two sorts of variation; how the flow varies over
time (that is, we have ~v(~r, t), where t is time), and how the flow varies with position. For computing how the flow
changes in space and in time, we have the partial derivatives we introduced earlier: ∂

∂t ,
∂
∂x , ∂

∂y , and ∂
∂z . It is usual

to take the spatial partial derivatives and collect then together into the del operator:

~∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
.

You can think of this a bit like a vector, hence acting on a scalar (such as the temperature of the tea!), it should
give a vector. Acting on a vector, we can think of it as dot-product like, to give a scalar, or cross-product like to
give another vector. This then gives us the following first-order and second-order differential operators:

• First Derivatives:

– Gradient of a scalar function f(~r) giving a vector:

~∇f(~r) =
(

∂f(~r)
∂x

,
∂f(~r)
∂y

,
∂f(~r)

∂z

)
= (fx, fy, fz)

7

– Applied to a vector-valued function:

1. Divergence, giving a scalar4:

~∇ · ~v(~r) =
∂vx(~r)

∂x
+

∂vy(~r)
∂y

+
∂vz(~r)

∂z.

2. Curl, giving a vector:
~∇× ~v(~r) = (vzy − vyz, vxz − vzx, vyx − vxy),

where we have used the shorthand:
vyx = (vy)x =

∂vy

∂x
,

hence the seeming flip of the indices in the cross-product.

• Second Derivatives:

– Of a scalar function (div-grad or del-squared, ∆ is an alternative notation for ∇2, also called the Laplace
operator):

∆f(~r) = ∇2f(~r) = ~∇ ·
(

~∇f(~r)
)

= fxx + fyy + fzz =
∂2f(~r)
∂x2

+

– Of a vector-valued function (the vector Laplacian, grad-div minus curl-curl):

~∇2~v(~r) = ~∇(~∇ · ~v)− ~∇× (~∇× ~v) =
(

~∇2vx, ~∇2vy, ~∇2vz

)
.

3.1 Discrete Laplacian

We have seen what the Laplacian is in the continuum, but what does it look like if we are using finite differences?
So, let us suppose we have the values of our function at a set of points forming a two-dimensional regular grid,

f(xi, yj), or simple f(i, j), where the integers i and j give us the position on the grid. We will assume the grid has
unit spacing.

Near a point (i, j), we can construct two finite-difference versions of fx:

fx(i +
1
2
, j) ≈ f(i + 1, j)− f(i, j), fx(i− 1

2
, j) ≈ f(i, j)− f(i− 1, j).

Taking the difference of these gives a finite-difference estimate of fxx(i, j):

fxx(i, j) ≈ f(i + 1, j) + f(i− 1, j)− 2f(i, j).

Similarly:
fyy(i, j) ≈ f(i, j + 1) + f(i, j − 1)− 2f(i, j).

We hence have our first version of the discrete Laplacian, the sum of fxx(i, j) and fyy(i, j), which can be written in
a compact form as the matrix of numbers:

D2 =

0 1 0
1 −4 1
0 1 0

 ,

where the centre of the matrix corresponds to the coefficient for f(i, j), and the other values correspond to the
coefficients of the terms at the neighbouring sites. Note that the approximation to a derivative means that the sum
of the coefficients has to be zero.

This form is useful, but doesn’t use all the information from the nearest-neighbours of (i, j) to compute the
approximation, and leaves out the diagonal neighbours. We can include these, and by using the zero-sum rule, this
gives the second version of the discrete Laplacian:

D̃2 =

1 1 1
1 −8 1
1 1 1

4Note the dual use of the sub-scripts compared with the gradient, and don’t confuse the subscript in vx meaning x-component, with
the subscript in fx meaning partial derivative with respect to x.

8

