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EE Overview:
Sk

® Edges and Scale

m physical edges persist across scales

® Edge Detection

m Problem with noise, and accurate edge location

® Edge growing

m Thresholding with hysteresis

m Edge relaxation
® Hough Transform
= Finding lines

® Marr’s Theory of Vision

lg = why edges matter

® Edges and Derivatives
m convolution and filters
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$¢ Marr’s Theory of Vision:

Edges in images correspond to physical events:
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® Still influential

® Agrees with pre-conceptions as to how vision might work
® Not proven possible to build a reliable system in this way

® Pragmatic approach: what do we need to do a specific task?
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Edges and Derivatives




First-Derivative Edge Filters
® What is an edge?

PR

Discrete version of 0k,

® To detect: look at the slope
P€ Central difference
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Prewitt Sobel  Roberts
\ A 2NN 2
-1j0]1 11 Decomposable:
S, =|-2|o[2]=[2|®[1[o]1] Exterior product
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6 5 Multiplies and adds

(a®b)*xZ=ax*x(bxT)

First Derivative Filters : Sobel

E Image Verticals Horizontals Ed‘e Stren‘th
i Ix =Sx*T Iy =Sy T VIZ+12

Edge strength: g = \?I\ 22 + 17

Ridges of g at edges, but noisy.

VI
V1|

Normal to Edge: n =
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# second-Derivative Edge Filters
74 0T 92T

® [aplacian: scalar operator

A=V2=2582452

Linf

A

zero crossing

® Difference of Gaussian, Laplacian of -1]-1)-1
Gaussian: includes gaussian smoother -1)18)-1
® False edges: every peak/trough of gradient -1 fl
gives a zero-crossing, not just big peaks Laplaman
® Doesn't tell us the direction of the edge
(scalar operator)
® Tends to create closed loops of edges . - ,
(‘plate of spaghetti’ effect) mexican hat
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. . Zero
Laplacian Filter Crossings

pli el

® Need to consider smoothing and noise “1[-1]-1
® Need to consider scale -1(8](-1
® Need to consider edge detection -1]-1]-1
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Edges and Scale

Edges and Scale

EE @ Edge filters enhance noise é X §
® What is a ‘real’ edge and what noise? XXX
® Edges exist at many different scales

® \What scales matter depends on application
® Sensible approach: use many different scales
m Edges persist across scales, allows fusion across scales

® Gaussian gives scale & smoothing separable filter

&« Edges and Scale

b

Linf

Marr-Hildreth:
® Convolve with gaussian g
® Take Laplacian v2 of result:

m combine into single stage
LoG

® Edges at zero-crossings

® Edges move with scale if
curved

® No information on direction
® ‘Plate of spaghetti’ problem

‘mexican hat’
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Canny:
® Convolve with gaussian g
® Take gradient

— —
V(G+I), g=|V(G+I)]
® Find gradient direction:
—
n=V(G=*I)/g
® Create gaussian-smoothed

derivative tuned to this
direction

of result

® Take another derivative in that
direction to find local
maximum, zero-crossing

® Stable across scales
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st Marr-Hildreth vs Canny

S, . . . .
E% ® Both involve pre-smoothing with gaussian

i

|

® Both involve second-derivative BUT:

Marr-Hildreth:

® No information on direction

Canny:

® Create tuned derivative given
estimated gradient direction

® Only compute second
derivative in gradient direction

® Check that it really is local
maximum of edge strength in
that direction (see non-
maximum suppression)

® By adding second-derivative
in other direction, increases
effect of noise




% Marr-Hildreth Edge Detection

=

G>0 LoG

zero
crossings LO
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Marr-Hildreth Edge Detection
=10

B e

® Some edges not
well localized

® ‘Plate of spaghetti’
effects

Un ggE

Edge Detection

Edge Detection: First Derivatives

7 [aTp- T /0T

® Position of maximum can be difficult to locate:

pli el

m second-derivative, zero crossing more precise
® Simple threshold:
m thick edges, need to apply thinning
m missed edges, streaking (see thresholding with hysteresis)




oFfan
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Edge Detection: Second Derivative

® Zero-crossing more precisely located than maximum
® Thresholding in Marr-Hildreth (LoG):

m Doesn’t use directional information
. o +Vv
® ‘Plate of spaghetti’: € ve

= continuity =>

closed loops or meets boundary zero-crossing
of LoG
® Thinning, edge growing & edge relaxation

m incorporate neighbourhood information

® Noise, false edges, double response

Pl
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Non-Maximum Suppression

® Start from edge-strength signal g

® | ocate possible edge point P

® [dentify gradient direction n

® Interpolate g at P{and Pa

® P is local maximum provided:
9(P)>g9(®Py &9(P)>9(Pz)

® Only accepts as edge if proper
maximum, rejects if not

Object & pixel

® |n practise, only allow a set of positions

discrete possible directions

b

Linf

Canny Edge Detector
o 1
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oc=1.5

white, all 3 scales
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From Edge Pixels to Edges

PR

® Have candidate edge pixels
® Have information on edge direction and strength
® \Want connected edges:

Edge growing

® Going from individual edge pixels, to entire,
connected edges — curves that are boundaries of
objects

mnmﬁ

Edge Growing
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Edge Thresholding with Hysteresis

® Edge strength image, two thresholds T, & T,
® Only edges have points g> Ty

Ungﬂ

® Edges have all points g> T

® Start at point g>T,,, and trace connected points with
g>T,

N
AN

.

\ \\
T g9g>T1 g>7THy Result

Edge Relaxation
® Use context to resolve ambiguity (as in segmentation)

g(i): Edge strength at pixel i

e(7): Edge direction at pixel 7

Normalise edge strengths g(i) = P(e,i) <1
® Compatibilit
el andyj, AN
edge directions e and ¢’
c; j(e, e’) = 0 not neighbours
cijle, e') = |cos(a)|

pli el

® As before, update probabilities based on support




Edge Relaxation

T

N/

|
l

weak and strong edges

® Many refinements and
alternatives in the
literature, but all
applying same basic
ideas

mnmﬁ

Hough Transform

Hough Transform (1)

Ungg

® Have some set of points, parts of edges etc
® \Want to put them together into continuous lines
® Strategy:

m Transform to parameter space

m Let points vote for lines that could pass through them
m Look for clusters

® Finding the right parameter space

® Can be extended if you can find such a space for
shape of interest

pli el
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Aside: Lines in human vision
See lines where we have Actually straight, but we

only minimal information don’t see them as that!




Hough Transform (2)

Set of points {P; = (x;,y;)} in image plane.
Any and all straight lines thro' B;:
-

L;: line in (c,m) plane, intercept y;, gradient —z;

oFfan

Pl
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Hough Transform (3)

® Repeat for all points {P; = (x;,y;)} in image plane
® | ook for points in (c,m) plane where lots of lines cross
® Lines which pass thro’ lots of points in image plane
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i Hough Transform (4)

Linf

/

® Verticals, m is infinite! Need better
parameter space

pli el
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Hough Transform (5)
y

y=mz+c
0 NEV (em) = (r,0)
N

—_—

% (r=xcos0+ ysing)

® Single point P, = (x;, ;)
® All possible @ : allowed values of r, sinusoid curve

® Extend to other than lines, generalised Hough
transform




