

MANCHESTER

Image Representation

- Isn't it totally obvious? We all know what an image is!
- Various ways of representing an image, depending on the task in hand

Slide 7

- Image function
- Landscape
- Array of pixels
- Image histogram
- In another space entirely!

MANCHESTER NOTE: $e^{i\theta} \equiv \cos\theta + i\sin\theta$ **Image Representation** $\Rightarrow \ \mathcal{F}_I \text{ complex, } I(\underline{\mathit{r}}) \text{ real}$ so $\mathcal{F}_{I}(-\underline{k})\equiv\overline{\mathcal{F}}_{I}(\underline{k})$ • Frequency Space: Integrate over the image, weighted by complex exponentials $\mathcal{F}_{I}(u,v) \propto \iint I(x,y) \exp(iux + ivy) dx dy$ • Compact vector form: $\mathcal{F}_{I}(\underline{k}) \propto \iint I(\underline{r}) \exp(i\underline{k} \cdot \underline{r}) d\underline{r}$ = Inverse: $I(\underline{r}) \propto \iint \mathcal{F}_{I}(\underline{k}) \exp(-i\underline{k} \cdot \underline{r}) d\underline{k}$ Slide 12

MANCHESTER

The University of Manchetof

Grey-Level Processing: Point Processing

	MANCHESTER			
University	Convolution Theorem	$ \begin{array}{l} \operatorname{NOTE:} \\ e^{i\theta} \equiv \cos\theta + i\sin\theta \\ \Rightarrow \ \mathcal{F}_{I} \ \operatorname{complex}, \ I(\underline{r}) \ \operatorname{real} \\ \operatorname{so} \ \mathcal{F}_{I}(-\underline{k}) \equiv \overline{\mathcal{F}}_{I}(\underline{k}) \end{array} $		
Fb	• Frequency space (see Image Representation) :			
	$\mathcal{F}_{I}(\underline{k}) \propto \iint I(\underline{r}) \exp(i\underline{k} \cdot \underline{r}) d\underline{r}$ • Look at it in frequency space or real space:			
	convolution in real space convolution in frequency space			
	$\mathbf{g} * \mathbf{I} \iff \mathcal{F}_{\mathbf{g}} \times \mathcal{F}_{\mathbf{I}}, \mathbf{g} * \mathbf{I} \equiv \mathcal{F}^{-1} \left(\mathcal{F}_{\mathbf{g}} \times \mathcal{F}_{\mathbf{I}} \right)$			
	$\begin{array}{ll} \bullet & \mbox{convolution in frequency space} \Leftrightarrow \mbox{multiplication in real space} \\ \mathcal{F}_g \ast \mathcal{F}_I & \iff & g \times I, \mathcal{F}_g \ast \mathcal{F}_I \equiv \mathcal{F} \left(g \times I\right) \end{array}$			
		Slide 28		

MANCHESTER 1821				
Convolution Theorem: Laplacian of				
Gaussian & Difference of Gaussians				
Gaussian and FT of Gaussian Convolution Theorem				
$ = \left[\mathbf{g}(\mathbf{x}) \propto \mathbf{e}^{-\beta \mathbf{x}^2}, \mathcal{F}_{\mathbf{g}}(\mathbf{k}) \propto \mathbf{e}^{-\alpha \mathbf{k}^2} \right] \mathbf{g} * \mathbf{I} \equiv \mathcal{F}^{-1} \left(\mathcal{F}_{\mathbf{g}} \times \mathcal{F}_{\mathbf{I}} \right) $				
Laplacian of gaussian:				
$rac{\partial^2}{\partial \mathbf{x}^2} \left(\int \mathrm{e}^{-\mathrm{i}\mathbf{k}\mathbf{x}} \mathrm{e}^{-lpha \mathbf{k}^2} \mathcal{F}_{\mathbf{I}}(\mathbf{k}) \mathrm{d}\mathbf{k} ight)$				
Laplacian Inverse FT Gaussian FT of Image				
• Do the derivative:				
$\int -k^2 e^{-ikx} e^{-\alpha k^2} \mathcal{F}_I(k) dk \xrightarrow{\text{Convolution with Gaussian, parameter } \alpha}$				
$\frac{d}{d\alpha}\int e^{-ikx}e^{-\alpha k^2} \mathcal{F}_{I}(k)dk$				
• LoG: difference of infinitesimally-separated gaussians				
DoG: difference of finitely-separated gaussians Slide 31				

MANCHESTER Appreciation		
Neighb Rank F	oourhood Processing: Tiltering	

The University of Manchestor	MANCHESTER
	Grey-Level Processing: Image Arithmetic

MANCHESTER Address of the second seco	
Introduction to Segmentation	

14 12 10

100

50

MANCH<mark>EST</mark>ER

Segmentation: Thresholding

profile

Adaptive Thresholding

Slide 42

• Thresholding

MANCH LESTER Alassachung Wild	Ł	
Binary	Processing	

The University of Mainchentor	ANCH IESTER 1821			
N	leasurer	nent		

MANCHESTER

Simple Measurements on Objects Extracted objects as above

Slide 57

- Representing Objects:
- Boundary representation
 - Area representation
- Simple geometric measurements
 - Area
 - Perimeter
 - Circularity

Representing Objects: Boundary • Boundary Representation: chain code $1 \rightarrow 0 \rightarrow 0 \rightarrow 0$ $1 \rightarrow 0 \rightarrow 0 \rightarrow 0$ $1 \rightarrow 0 \rightarrow 0 \rightarrow 0$

15

