

MANCIIISTER2

Grey-Level Processing: Overview

- Point processes
- Transform global gray-level scale
- Neighbourhood Processing
- Values and their context
- Image Arithmetic
- Using a sequence/pair of images
- Image Transforms
- Images in a different space (frequency space)

MANCIIESTER

Convolution: 2D

- Asterisk notation:

$$
\tilde{\mathrm{I}}=\mathrm{g} * \mathrm{I}
$$

- Discrete form:

$$
\tilde{\mathrm{I}}(\mathrm{x}, \mathrm{y})=\frac{\sum_{\mathrm{a}} \sum_{\mathrm{b}} \mathrm{~g}(\mathrm{a}, \mathrm{~b}) \mathrm{I}(\mathrm{x}+\mathrm{a}, \mathrm{y}+\mathrm{b})}{\sum_{\mathrm{c}} \sum_{\mathrm{e}} \mathrm{~g}(\mathrm{c}, \mathrm{e})}
$$

- Integral form:

$$
\tilde{\mathrm{I}}(\mathrm{x}, \mathrm{y})=\frac{\iint \mathrm{g}(\mathrm{a}, \mathrm{~b}) \mathrm{I}(\mathrm{x}+\mathrm{a}, \mathrm{y}+\mathrm{b}) \mathrm{dadb}}{\iint \mathrm{~g}(\mathrm{c}, \mathrm{e}) \mathrm{dcde}}
$$

- Integral form (vector notation)

$$
\underline{r}=(\mathrm{x}, \mathrm{y}), \tilde{\mathrm{I}}(\underline{r})=\frac{\iint \mathrm{g}(\underline{z}) \mathrm{I}(\underline{r}+\underline{z}) \mathrm{d} \underline{z}}{\iint \mathrm{~g}(\underline{y}) \mathrm{d} \underline{y}}
$$

MANCI ISTETR

Convolution: Common Kernels

- Gaussian: $\mathrm{g}(\mathrm{x}, \mathrm{y})=\mathrm{A} \exp \left(-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) / 2 \sigma^{2}\right) \sigma$ width
- Smoothing kernel
- Any unimodal kernel smoothes the image
- Difference of Gaussian (DoG)
 $\mathrm{g}(\mathrm{x}, \mathrm{y})=\mathrm{A} \exp \left(-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) / 2 \sigma^{2}\right)-\mathrm{B} \exp \left(-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) / 2 \alpha^{2}\right)$
- Laplacian (or Laplacian of Gaussian)
- similar shape to DoG, second-derivative filter
- First-derivative edge filters
- ridges at edge positions

Manclisytur
 Convolution Theorem

- Frequency space (see Image Representation) :

$$
\mathcal{F}_{I}(\underline{k}) \propto \iint I(\underline{r}) \exp (i \underline{k} \cdot \underline{r}) d \underline{r}
$$

- Look at it in frequency space or real space:
- convolution in real space \Leftrightarrow multiplication in frequency space
$\mathrm{g} * \mathrm{I} \Leftrightarrow \mathcal{F}_{\mathrm{g}} \times \mathcal{F}_{\mathrm{I}}, \quad \mathrm{g} * \mathrm{I} \equiv \mathcal{F}^{-1}\left(\mathcal{F}_{\mathrm{g}} \times \mathcal{F}_{\mathrm{I}}\right)$
- convolution in frequency space \Leftrightarrow multiplication in real space
$\mathcal{F}_{\mathrm{g}} * \mathcal{F}_{\mathrm{I}} \Longleftrightarrow \mathrm{g} \times \mathrm{I}, \quad \mathcal{F}_{\mathrm{g}} * \mathcal{F}_{\mathrm{I}} \equiv \mathcal{F}(\mathrm{g} \times \mathrm{I})$

[^0]

	MANCIIISSTLIR
	Binary Processing Aim: Improved binary image - Restoration or enhancement - Neighbourhood Processing: - binary morphology (erosion \& dilation) - skeletonization - Image Logic: - combining binary images for more complicated processing
	Slide 47

MANCIIISTER

Measurement: Area

- List of all boundary points (derived from chord list)

- Trapezoidal rule Area $=\frac{(y+\tilde{y})(x-\tilde{x})}{2}$
- Take difference to find area of strip of shape

MANCIIESTER

Measurement: Perimeter

- 8-piece Chain Code:
- Diagonals are longer!
$P=N_{\text {even }}+\sqrt{2} N_{\text {odd }}$

- 4-piece chain code: $P=N$, all equal length
- Circularity: $C=\frac{4 \pi \text { Area }}{P^{2}}$
- $\mathrm{C}=1$ for circle, $\mathrm{C}<1$ for anything else

[^1]
[^0]: MANCLIISTR1R
 Convolution Theorem: Laplacian of Gaussian \& Difference of Gaussians

 Gaussian and FT of Gaussian Convolution Theorem
 $\mathrm{g}(\mathrm{x}) \propto \mathrm{e}^{-\beta \mathrm{x}^{2}}, \mathcal{F}_{\mathrm{g}}(\mathrm{k}) \propto \mathrm{e}^{-\alpha \mathrm{k}^{2}} \mathrm{~g} * \mathrm{I} \equiv \mathcal{F}^{-1}\left(\mathcal{F}_{\mathrm{g}} \times \mathcal{F}_{\mathrm{I}}\right)$ Laplacian of gaussian:

 $$
 \underset{\text { Laplacian }}{\frac{\partial^{2}}{\partial \mathrm{x}^{2}}\left(\int \mathrm{e}_{\text {Inverse } \mathrm{FT}}^{-\mathrm{ikx}} \underset{\text { Gaussian }}{\boldsymbol{\uparrow}} \mathrm{e}_{\mathrm{FT} \text { of Image }}^{-\alpha \mathrm{k}^{2}} \mathcal{F}_{\mathrm{I}}(\mathrm{k}) \mathrm{dk}\right)}
 $$

 - Do the derivative:

 - LoG: difference of infinitesimally-separated gaussians
 - DoG: difference of finitely-separated gaussians

[^1]: MANCI LESTRTR

 ## Summary

 Basic Image Analysis:

 - Mostly straightforward and fairly intuitive
 - Can give good results on suitable images
 - Have to grasp basics before can move on to more sophisticated methods

