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Abstract

Over the past decade, multivariate statistical process control (MSPC) methods have been proven, in the process industries, to be an
effective tool for process monitoring, modelling and fault detection. This paper describes the development of a real-time monitoring
solution for a complex petroleum refining process with an installed multivariable model predictive controller. The developed solution was
designed to track the time-varying and non-stationary dynamics of the process and for improved isolation capabilities, a multiblock
approach was applied. The paper highlights the systematic and generic approach that was followed to develop the monitoring solution
and stresses the importance of exploiting the knowledge of experienced plant personnel when developing any such system.
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1. Introduction

In today’s competitive oil and gas industry, the pressure
to improve the performance of processing facilities is
intense. Unplanned outages and equipment failures can
have a significant impact on plant economics and result in
substantial loss of revenues. Real-time performance mon-
itoring and the early detection of degraded process
performance and equipment failure is becoming a funda-
mental prerequisite to sustain both plant production ability
and profitability (Nimmo, 1995). One approach to avoid-
ing or better dealing with such situations is to make more
use of the data that is routinely collected from process
plant. The advent of modern process measurement,
automation, and information systems has resulted in a
significant increase in the amount of process data available
to plant operators and engineers. Unfortunately, it is often
very difficult to monitor such large amounts of data and
assess the condition of a processing facility.

Venkatsubramanian, Rengaswamy, Yin, and Kavuri
(2003) reviewed a variety of techniques that have been
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proposed to exploit the large amounts of data available on
process plants. Of these techniques, multivariate statistical
process control (MSPC) methods, and principal compo-
nent analysis (PCA) in particular, have been demonstrated
to provide a powerful approach for the detection and
isolation of abnormal conditions. MSPC methods are data
driven techniques that reduce the dimension of process
data and extract key features and trends in the process data
that are of interest to plant personnel. In reducing the
dimension of the process data, MSPC techniques are able
to provide a robust approach to process modelling and
real-time condition monitoring. One of the earliest articles
describing the use of MSPC techniques in the process
industries was presented by Kresta, MacGregor, and
Marlin (1991), who described a basic methodology for
using MSPC techniques to detect abnormal conditions in
continuous processes. Since this time there have been many
industrial applications of MSPC reported. Marjanovic,
Lennox, Sandoz, Smith, and Crofts (2006), for example,
successfully applied partial least squares (PLS) to monitor
the progression of a batch reactor, Lane, Martin, and
Morris (2001) applied PCA to a multirecipe manufacturing
process and detected when overdosing had occurred and
Dayal, MacGregor, Taylor, Kildaw, and Marcikic (2004)
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applied PLS to monitor an industrial digester. In the
petrochemical industry Geng and Zhu (2005) demonstrated
how a non-linear PCA technique could be applied to detect
fault conditions in an ethylene process and Badcock,
Bailey, Jonathan, and Krzanowski (2005) successfully
applied PCA to monitor a fluidised catalytic cracking unit.

MacGregor and co-workers have recently extended the
scope of MSPC applications in the process industries by
using PCA as an image analysis tool. Their work has
included the detection of abnormal conditions in the
flavouring of snack foods (Yu & MacGregor, 2003) and
the detection of lumber defects (Bharati & MacGregor,
2003). Further details on the application of MSPC
techniques to industrial data can be found in Kourti
(2005), Martin, Morris, and Lane (2002) and Eriksson
et al. (2005).

Although there have been a large number of industrial
applications of MSPC reported in the literature, there have
been far fewer documented cases where MSPC systems
have been applied in real time with their results interpreted
by plant operators, rather than MSPC experts. The
development of real time MSPC applications introduces
many issues which are frequently ignored in off-line
studies. For example, if plant personnel are to adopt the
system then it is essential that the system is accurate and
simple to interpret. Inaccurate information and in parti-
cular false alarms are often introduced when the dynamics
of the process change with time. Such changes are routine
in process systems and hence any developed monitoring
solution must be able to cope with this.

A limitation with MSPC techniques is that there are, as
yet, no clear methodologies for developing robust moni-
toring systems for process applications. An analogy can be
made here with model predictive control (MPC) systems.
Clear methodologies for applying MPC were developed in
the 1980’s and these have resulted in the widespread
application of this technology throughout the process
industries (Qin & Badgewell, 2003). By developing similar
design methodologies for MSPC systems, it is anticipated
that take-up of this technology in industry will improve
considerably.

A particularly successful real-time application of MSPC
was reported by Miletic, Quinn, Dudzic, Vaculik, and
Champagne (2004) and Zhang and Dudzic (2006), who
developed a real-time monitoring system for a continuous
slab caster. This system was able to identify several
abnormal conditions, saving money and increasing opera-
tor confidence in running the equipment. A further real-
time application was reported by Lennox, Montague,
Hiden, Kornfeld, and Goulding (2001), who described the
successful application of PCA to monitor the integrity of a
copper smelting furnace. The developed system was
sufficiently accurate for automated plant shutdown proce-
dures to be configured which acted on the information
provided by the PCA monitor. The developed system
was shown to extend the campaign life of the furnace
significantly.

The focus of the work described in this paper was the
development of a real-time condition monitoring system,
based on PCA, for identifying abnormal conditions of a
refining process. This process was considered to be complex
in terms of its dynamic characteristics and also its size with
respect to process variables and disturbances. Unlike many
other monitoring applications which are designed to detect
and isolate specific fault conditions, the primary aim for
the system developed in this study was to identify operating
conditions that would indicate that the process, or the
MPC system applied to this process, was not behaving in
an optimal manner. The methodology adopted in devel-
oping the condition monitoring solution is considered to be
generic and should therefore be applicable to many
different applications.

In the following section of this paper the MSPC
techniques applied in this work are described. Section 3
provides a brief overview of the refining process that was
studied in this work. The results from the study are
presented in Section 4 and the main conclusions from this
study are reported in Section 5.

2. Multivariate statistical process control

Although there may be hundreds of plant variables that
are measured in any given process, there tend to be only a
small number of underlying characteristics that actually
drive the process. The purpose of PCA is to identify a new
set of variables that reflect these characteristics. These new
variables, termed scores or latent variables are linear
combinations of the original process variables. The
expectation is that there will be fewer scores than plant
variables and therefore the plant can be monitored with
much greater ease by simply analysing these new variables.
For full details of PCA the reader is referred to Jackson
(1991). The following sections describe the monitoring
statistics that are typically applied when using PCA and
provide a brief description of multiblock and adaptive
extensions to PCA.

2.1. Condition monitoring using MSPC

Whilst the scores obtained using PCA can themselves be
monitored, using two and three-dimensional charts, it is
often more appropriate to monitor two univariate statistics
that can be identified when PCA is applied. These statistics
have been defined to simplify the description of a new data
point in terms of the pre-defined PCA model and are
referred to as 7> (or Hotelling’s) and SPE (squared
prediction error) and are defined as follows:

np
T =) o't (1)
k=1

where o is the standard deviation of the kth #-score.

SPE = | E|3. (2)
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Relative to the data used to develop the PCA model, the
T? and SPE statistics indicate how far the plant is currently
operating from normal operating conditions and whether
the relationships between the process variables have
changed significantly. Control limits can be determined
for these two statistics such that their violation indicates
abnormal operating conditions. Following the detection of
abnormal conditions, the contribution that each variable
makes to the two statistics can be determined and possible
causes of the condition can be identified.

2.2. Multiblock PCA

The concept of multiblock PCA was introduced by
Wold, Esbensen, and Geladi (1987). The technique was
proposed as a tool to compare several blocks of variables
that were measured on the same object. For example, in a
chemical process, the measurements recorded in each sub-
system may be classified as a separate block. Since its
original development, several multiblock algorithms have
been proposed, consensus PCA and hierarchical PCA
being the most commonly applied methods (Qin, Valle, &
Piovoso, 2001; Westerhuis, Kourti, & MacGregor, 1998).
In this study consensus PCA was applied.

In consensus PCA, scores and loadings are identified for
each of the individual blocks and then the information
from these blocks are combined into what are termed super
scores. When monitoring a process using multiblock PCA,
T? and SPE charts can be determined for each of the
individual blocks and also for the ‘super level’. Westerhuis
et al. (1998) proved that the super scores of consensus PCA
are identical to the scores of regular PCA and hence the
super level statistics do not provide any information
beyond what is obtained through regular PCA. However,
by analysing the 7> and SPE statistics of the individual
blocks, it is often possible to isolate the cause of
abnormalities to particular sections of the process.

2.3. Recursive PCA

Recursive, or adaptive, MSPC algorithms have been
proposed in recent years to cater for the time varying
nature of many process systems. Wold (1994) developed a
recursive technique which used exponentially weighted
moving average (EWMA) filters in conjunction with PCA.
Li, Yue, Valle-Cervantes, and Qin (2000) argued that this
was not a complete recursive PCA (RPCA) scheme and
identified a computationally efficient algorithm for updat-
ing the PCA model whenever new process data became
available. In the case study investigated in this work, the
sample time was such that computation efficiency was not
an issue and therefore recursion of the model was achieved
by re-calculating a PCA model at each sampling instant
using a moving window of process data.

With appropriate choice of parameters, the recursive
algorithms proposed by Wold (1994) and Li et al. (2000)
will produce the same results as the recursive algorithm

employed in this work. However, the techniques proposed
by Li et al. (2000) and Wold (1994) allow forgetting factors
to be used in the adaptation of the model so that the model
is weighted to model recent data with greatest accuracy.
Such techniques are not recommended in adaptive process
modelling (Sandoz, 2003) and in condition monitoring can
result in the model adapting more readily to abnormal
conditions (Wang, Kruger, & Lennox, 2003).

A further issue when applying any recursive algorithm is
that many processes will produce the occasional measure-
ment spike. To prevent the PCA model adapting to these
measurements a filter should be used to detect and
eliminate them. In this work the Hampel filter (Pearson,
2002) was found to be suitable. It is also important that the
PCA model does not adapt to abnormal conditions and
hence whenever an abnormal event is confirmed, the data
collected during this period should not be used to adapt the
model.

3. The condensate fractionation process description

The process that was investigated in this study was a
condensate fractionation process. Fig. 1 shows a simplified
process flow diagram of the process. This process separates
a hydrocarbon feed into a mix of products for further
processing or product blending. Cold feed is pumped
through the pre-heating train to heat the feed up to the
required desalting temperature. The feed then enters the
desalter, and the desalted feed is fed to a pre-flash drum
where light products and any remaining free water are
removed. The pre-flash drum product is then heated by a
set of heat exchangers before entering a pre-flash distilla-
tion column. In this column, feed is distilled into light,
medium and heavy products, which are removed from the
top, middle, and bottom sections of the column, respec-
tively. Heavy product from the bottom of the pre-flash
distillation column is further heated by two furnaces before
entering the main fractionating distillation column. In the
main column, feed is distilled into multiple products based
on the difference in their boiling temperatures. The distilled
products are collected at the column’s top, middle, and
lower sections and are further processed to produce motor
gasoline, kerosene, and diesel oils.

This refining process is characterised by its relatively
slow dynamics (settling time is approximately 1h), large
number of process variables and interactions between the
various sections of the process due to recycle flows and heat
integration. An installed MPC system provides accurate
control of critical product specifications, minimises the
impact of process disturbances, and drives the process to
operate closer to its economic optimum point. Six
inferential models (soft sensors) are implemented in the
process to provide timely prediction of critical product
specifications and to enable real-time control of these
product specifications. The controller has 30 controlled
variables, 17 manipulated variables and six disturbance
variables, and is considered reasonably large with respect
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Fig. 1. Simplified flow diagram of the process.

to industrial standards. The primary controlled variables
are the process feed flow, furnace outlet temperature, and
several other key product specifications. Soft sensors are
used to predict important product properties at the top of
the pre-fractionator column, as well as top and side draw
of the main condensate fractionator. The main objective of
the MPC is to maximize valuable products production
while maintaining product specifications. Typical process
disturbances include changes in feed quality, blending flows
between products and ambient temperature.

4. Methodology

This section will introduce the methodology followed in
developing the condition monitor for the fractionation
process. The basic methodology was based on that
presented by Miletic et al. (2004), however, further
recommendations are offered here that would help in
developing industrial MSPC-based monitoring applications.

The application development methodology involved the
following basic steps:

1. application design,
2. data collection and analysis, and

3. model development and proof of concept.

These steps are presented in detail below.

4.1. Application design

This step involved the specification of the objectives and
scope of the study, in addition to developing a detailed
understanding of the process operation. The primary aim
of this study was to design and configure a general
condition monitoring system for the fractionation process.
It was intended that the monitoring system would provide
plant operators with a single screen display which would
indicate when the plant was behaving normally and detect
and isolate any abnormality in process operation. Since the
process is controlled by a multivariable model predictive
controller, it was the intention that the monitoring system
should be capable of monitoring the general operation of
the MPC controller in addition to the process as a whole.

To develop an in-depth process understanding, flow
diagrams and drawings were reviewed and several inter-
views were conducted with key facility staff. This step was
considered to be critical for the project as it helped to
identify the following objectives for the monitoring system:

e It should identify conditions that prevent the plant from
meeting product specifications and maximising plant
yield.

e It should provide an early indication of off-spec
production as this has an impact on downstream process
units.
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The interviews also identified the key disturbances on the
process and the frequency that these disturbances occur.

Following the interviews, a survey of the existing
instrumentation on the process was carried out to identify
the measurements that were available for use by the real-
time condition monitoring system. Two approaches have
been suggested in the literature to determine which of the
available measurements should be utilised in the models
(Miletic et al., 2004). These approaches recommend either
including all process variables in the model or selecting a
subset of variables that are considered to be important
when assessing the overall performance of the process.

In this work, the second approach was adopted, where
from an understanding of process operation, detailed
interviews, and the survey of existing measurements, a
subset of variables to be used in the development of the
MSPC models was identified. In doing so, variables where
classified as ‘critical’, ‘important’, and ‘unimportant’. Only
critical and important variables where chosen for use in the
models. Identifying the process variables in this way was
considered to be important because when all the variables
were used in the model there were frequent occasions when
the monitor would identify an abnormality, which could be
traced to an unimportant condition. Such an alarm would
be considered a false alarm by plant personnel and
therefore undesirable. For example, measurements on flow
lines leading to storage tanks, or blending streams are
unlikely to have any significant effect on the plant
operation and hence abnormal measurements here will
not be important to plant personnel. By using only those
variables that are considered to be important, or critical, it
is more likely that any alarms raised by the monitoring
system would be of interest to process operators and
engineers.

In addition to the critical and important variables
identified above, the cause and effect variables used in
the MPC algorithm and the estimates made by several
linear, soft sensors that were used in the controller where
also included in the monitoring system. The inclusion of
the MPC variables allowed a unified performance moni-
toring application to be developed that would monitor
both the process and the general operation of the MPC
system. It was found that by including many of the implicit
variables from the MPC system, such as constraint limits
and modelling errors, that a monitoring system could be
constructed that provided detailed information relating to
the performance of the MPC system. Unfortunately,
interpretation of this system was considered to be too
complex for operations staff and hence only the explicit
MPC variables, i.e. controlled variables and manipulated
variables, were used in this monitoring system. A moni-
toring system for use by control engineers is however being
developed. This system will use all the available control
system variables, together with the important process
variables.

Since the soft-sensor models are linear combinations of
other variables included in the monitoring system, they will

provide limited information. However, their inclusion was
thought to be necessary as it might aid in the isolation of
abnormal conditions. In total 164 process variables were
used in the models developed in this study. This included
the measurements used in the MPC system plus many other
measurements that were not employed in the controller.

4.2. Data collection and analysis

Process data is the cornerstone of all data driven
modelling techniques, thus the quality of process data
used in developing the MSPC condition monitoring model
is crucial to the success of the application. It is useful to
consider the following questions when collecting data for
modelling purpose:

o What is considered ‘normal’ process operation?

o How much data is available and how much should be
used?

e What is the quality of the process data?

e s the data collected from data historians compressed? If
S0, is it useable?

o How noisy is the collected process data?

Identifying what constitutes normal operation for a
process is a challenging task, however, it can be simplified
somewhat if accurate records are available of any major
process upsets that affected the process during the period
over which data is available.

Complex process units such as the one considered in this
study have several operating modes, produce multiple
products with various specifications and undergo routine
maintenance tasks. Maintenance tasks are often carried out
on critical process equipment while the process is still in
operation. In this application, such tasks involved the
removal of a section of heat-exchangers, which were taken
out of service for cleaning and maintenance. Normal
operation in the fractionator was maintained during this
period through the use of a second heat-exchanger section.
Since maintenance practices, such as this occur frequently,
data collected during these operations should be considered
to be ‘normal’.

A further complication with identifying normal operat-
ing data is that the definition of normal operation can be
interpreted differently by operating personnel thus it is
recommended that this task be addressed during the
personnel interviews to arrive at a common understanding
of what should be considered ‘normal’ operation.

Another important factor to consider that is often
overlooked when collecting process data for analysis is to
identify periods when control valves are saturated, i.e. fully
open or fully closed. Valve saturation will introduce non-
linearity into the process behaviour and hence will affect
the ability of the PCA model to identify relationships
within the data. To eliminate any problems associated with
saturated valves, all periods of data during which any of
the control valves, identified as being critical, were outside
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of their linear range, i.e. open less than 20% or more than
80%, were climinated from the data. This will have the
effect that the developed monitor will identify any periods
of data when the valve is saturated as abnormal. This is
desirable in this application as it warns process operators
that the MPC system may be constrained and hence may
not be performing optimally. A further consideration that
was made when identifying normal operation was to
remove sections of data when one or more control
variables were outside of their upper and lower soft
constraint limits. By using this data to identify the model,
the monitoring system will detect when the control system
is not behaving optimally, i.e. when the control variables
are exceeding their limits.

Once the period of normal operation has been identified,
data is collected from plant historians for the entire period
of normal operation. The rate at which data is sampled is
an important factor to consider. A high sampling
frequency will enable abnormal conditions to be identified
very quickly, however, it may also necessitate the need to
consider serial correlations in the PCA model. Such
correlations and how they impact on PCA applications is
still the subject of research (see Chiang, Russell, & Braatz,
2002, for example). In the application studied here,
discussions with plant personnel indicated that the detec-
tion of abnormal conditions during steady state, rather
than transients was important and hence a 1-h sampling
rate was considered to be appropriate. This sampling rate is
comparable to the settling time of the system.

Following the identification of normal operating condi-
tions, approximately 8 months, or 6000 h of process data
was available for this study. Discussions with plant
personnel indicated that disturbances to this process and
changes in operating conditions are such that data
collected from a period of approximately 4-6 months
would be likely to cover all the typical operating conditions
for this plant. Eight months of data is therefore sufficient
to both develop and test a monitoring system. In many
applications, effects such as those from changes in the
season will often mean that significantly more data is
required to thoroughly test any developed solution.

The process data used in this study was collected from a
plant data historian. An issue that often affects data
analysis and data-driven modelling techniques is the
compression of data in plant historians. Although it is
recommended, whenever possible, that uncompressed data
be used for process modelling and analysis, practical
limitations in computer and control systems data storage
space dictates the use of reconstructed historical data
obtained from historians. Commercial data historians use
compression to facilitate the storage of large amounts of
historical data. However, severe data compression causes a
substantial loss of information from the data and may
render the reconstructed data unusable for modelling
purposes. The historian used in this study utilised the
swinging door compression method (Matthew, Liakopoulos,
Dragana, & Georgakis, 1998). Using this method, the

compression factor (CF) can be defined as the ratio
between original data storage requirement and that of the
archived data (Thornhill, Choudhury, & Shah, 2004). The
degree of compression is set by the users, but can be
estimated from the reconstructed data set. As a rule of
thumb, Thornhill et al. (2004) suggests that a CF of 3 or
less (CF<3) is acceptable. All the data collected and used
in this exercise had a CF of less than 1.5 (CF < 1.5) with the
exception of several set-points that were rarely changed.
Finally, process noise and outliers can also be a factor that
affects data driven modelling techniques. In this work first
order filters were used to remove the noise from some
signals and the Hampel filter, by Pearson (2002) was found
to be suitable for the detection and removal of outliers.

4.3. Model development and testing

The last step in developing the prototype monitoring
system is the identification of the model and its subsequent
off-line analysis. This step typically involves the investiga-
tion of how well the developed models are able to track
process conditions and their ability to identify significant
abnormalities and excursions. Control limits for both the
SPE and T? charts should also be examined in this step so
that appropriate levels can be specified to ensure that only
significant abnormalities exceed the limits.

5. Condition monitoring application analysis and results

This section presents, in detail, the results obtained when
several PCA techniques were developed and compared for
the proposed monitoring application.

5.1. Static PCA models

For the condition monitoring application, a static PCA
model was initially developed for the process. This model
was developed using approximately 4500 sample points
from the normal operating data, with the remaining 1500
being used for testing and validation. The model was
identified using the algorithms and equations presented in
Section 2. Fig. 2 shows the cross validation curve. This
figure shows the error that is produced when the PCA
model is used to reconstruct the values of unseen process
data. In this example, the normal operating data was
divided into 10 separate blocks, with nine blocks used to
identify the model and one used to determine the
reconstruction error. This process is repeated until the
error has been determined over each of the 10 blocks and
then these errors are summed together. Further details of
cross validation techniques can be found in Wise and
Gallagher (1996). The recommendation of Wise and
Gallagher (1996) would be to use either five or seven
principal components, as there is very little reduction in the
error when more than this number of components was
used. Many of the results obtained in this section were
repeated using a variety of principal components. These
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results indicated that when more than approximately 10
components were used, the monitor became very sensitive
and identified many conditions, which although could be
considered to be abnormal were of no interest to plant
personnel. The results obtained with between four and
eight principal components were found to be very similar.
Discussions with plant personnel indicated that the seven
component models provided marginally better results than
the five component models. Hence all the models identified
in this paper employed seven components. The fact that the
monitoring results are robust to the number of principal
components is encouraging as it is important that the
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Fig. 2. Cross validation for static PCA model.
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developed monitoring system should be robust to choices
made by the developer.

Fig. 3 shows the 7% and SPE charts that were produced
when the normal operating data was passed through the
identified PCA model. These charts show some violation of
the control limits, for example, between sample points 200
and 400 on the 7” chart and around sample point 2900 on
the SPE chart. Investigation of each of the violations on
these charts indicated operating conditions that would be
considered to be abnormal. These conditions were not
identified during the data collection and analysis step of
this study and contained examples of the type of conditions
that it was hoped the condition monitor would be able to
detect. For example, Fig. 4 shows the contributions made
by each of the process variables to the elevated SPE
recorded at around sample number 2900. This chart
highlights two variables as being the source of the problem,
variables 46 and 47.

The raw measurement for variable 46, reflects the fuel
gas heating value at the furnace. This value was found to
increase significantly at sample number 2900. It is worth
noting that the major contributing variables, as identified
by the contribution chart, variable 47, is also a measure-
ment of the fuel gas heating value, but this measurement is
taken at a different process location. Significant variation
in this value will act as a disturbance to the furnace and
may ultimately affect other key process variables in the
main fractionator. The early detection of this elevation in
fuel gas heating value would help operators to provide
manual feedforward control to compensate for this
disturbance and hence improve the efficiency of the
process. In this particular example, operations staff did
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Fig. 3. MSPC charts for developed static PCA model for training data set.
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Fig. 4. Contribution plot.

detect and isolate the problem, however, the PCA model
would have alerted the operations staff to the problem
sooner.

Having identified several abnormal conditions, the data
collected during these periods was removed and the PCA
model re-calculated.

The above example indicates how the PCA model and
data can be interrogated to reveal the likely cause of any
abnormality. As discussed earlier in this paper, multiblock
techniques have been developed to aid in the identification
of the root cause of any abnormal condition and these
techniques are considered appropriate if the process being
monitored can be divided into specific processing units. For
this application, the process can be divided into the pre-
heat and pre-flash section and the main fractionator
column sections and therefore a two-block PCA model
was developed.

Multiblock PCA charts for blocks 1 and 2 are shown in
Figs. 5 and 6 for the normal operating data used in the
previous analysis. Note that the super block statistics are
identical to those obtained using the static PCA model and
are therefore not displayed. The advantage of the multi-
block approach is that Figs. 5 and 6 give a clear indication
to operators were the abnormality in the process occurs.
Figs. 5 and 6 show that at sample number 2900, there is an
increase in the SPE for block 2, but no significant increase
in the SPE for block 1. Hence the process operators can
quickly identify that there is an abnormal condition in
block 2.

To test the suitability of using the PCA and multiblock
PCA models as real-time condition monitors, they were
each applied to the validating data, which contained data

collected under normal operating conditions. Fig. 7 shows
the SPE and T° statistics that were determined for the
static PCA model over this data set. The charts clearly
show that although the 77 statistic remains within its limits,
the SPE statistic exceeds its limit significantly. Thorough
analysis of this novel data set indicated that there were no
particularly significant abnormalities present and further
investigation showed that the reason for the elevated SPE
value was because the model was not able to track the time-
varying and non-stationary characteristics of the process.
Fig. 8 illustrates how the process mean varies considerably
over the combined training and evaluation data sets
(the first 4500 data points represent the training data with
the remainder, the evaluation data). Furthermore, the
dynamics of the process change considerably with time.
For example, when a heat exchanger is removed from
service, or when there is a change in the characteristics of
the feed stock to the process.

5.2. Recursive PCA

To address the limitation of the static PCA model
developed in the previous section, a condition monitor
based on RPCA techniques was developed. The RPCA
model was based on the approach presented in Section 2.4.
By updating the parameters of the PCA model, together
with the corresponding control limits for the 7° and SPE
charts, changes in the correlation structure of the process
can be accommodated by the model.

As discussed in Section 2.4, the RPCA algorithm used in
this work calculates a new PCA model at each sampling
instant using a moving window of data. The length of this
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Fig. 6. Block 2 MBPCA charts.

window determines how quickly, or slowly the model will ~ examined using moving windows of data with varying
adapt to new process conditions. The performance of the lengths.

RPCA algorithm was tested on the same data set used to Figs. 9 and 10 show SPE and 77 charts produced by the
develop and test the static PCA models in the previous RPCA model using moving windows of length 5000 and
section. The performance of the RPCA model was 3000 samples, respectively. Note that the data set that was
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Fig. 8. Process data mean for the normal operating conditions.

used here was the combined training and evaluation data
sets that were used in the static PCA tests, hence there are
6000 data points. With a sampling interval of 1h, 5000 and
3000 samples corresponds to approximately 208 and 125
days of data, respectively. These can be considered to be
relatively large moving windows, however, they were
thought to be consistent with the rate at which the feed
stock and other disturbances to the process occur.

The charts displayed in Figs. 9 and 10 illustrate that
changing the length of the moving window had no
significant impact on the charts. However, when the length
of the moving window was specified to be much smaller

than 3000, 1000, for example, then the model adapted very
quickly to any abnormal condition, and there was then the
chance that it would be undetected. This issue is described
in more detail in Wang et al.(2003).

Comparison of Figs. 9 and 10 with Figs. 3 and 7
indicates that the RPCA model is able to identify the
abnormal operating conditions that were detected in the
normal operating data, and unlike the static PCA model, it
is able to provide a useful monitoring statistic for the
novel data set. For example, the peak which occurs in the
SPE statistic at approximately sample number 5200
was caused by the two variables shown in Fig. 11. The
variable displayed in the left-hand side of Fig. 11 has
moved into a slightly lower operating region, which is not a
problem. However, the variable displayed in the right-hand
side of Fig. 11 indicates a disturbance in the level at the
base of the column, which would be of interest to the
operators.

Finally, a recursive multiblock PCA (RMBPCA) model
was developed and compared with the RPCA approach.
Figs. 12 and 13 show blocks 1 and 2 charts respectively for
this model when applied to the training and evaluation
data sets. The RMBPCA model was able to identify the
abnormality shown in the SPE charts of the RPCA model
that occurred at sample 5200, and isolated block 2 as the
source of the condition. Also, the RMBPCA model was
able to identify and isolate other abnormalities occurring
outside of the training data set such as that at sample
4600 in block 1 and sample 5800 in block 2. The key
contributing variables for both these peaks were identified
from contribution charts. Analysis of these variables
showed that between sample numbers 4100 and 5100
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Fig. 9. RPCA model charts using a moving window width of 5000.
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Fig. 10. RPCA model charts using a moving window width of 3000.

variable 14 reduced to an abnormally low value and 6. Conclusions and future work

variable 36 dropped significantly at approximately sample

number 5800. Detailed analysis of the RMBPCA charts This paper has presented the results from a detailed

showed that it highlighted conditions throughout the data study into the development of a condition monitoring

set that would have aided process operators in maintaining  solution for application to a fractionation process. This

the operation of the unit at optimal conditions. process is a large and complex system with almost 200
The results of this study are summarised in Table 1. process measurements and dynamics that vary with time.
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Fig. 12. RMBPCA for block 1.

The overall aim of the study was to develop a simple
process monitoring system that would enable process
operators to quickly and easily identify any sources of
abnormality in the process.

The study showed that static PCA techniques were not
suitable in this application as the process contained time-
varying dynamics. Recursive techniques, however, were
able to provide an accurate method for identifying
abnormal conditions. Although it was possible for
operators to identify these conditions without the aid of

the PCA monitoring system, the complexity of the process
means that the monitoring system would certainly make it
easier for operators to identify when the process is not
behaving optimally.

As the process can be divided into two logical sections,
multiblock and recursive multiblock techniques were also
examined in this paper. The multiblock PCA models
helped to quickly identify and isolate the section of the
plant where the abnormality occurred. This approach is
recommended for complex process units that can be
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Fig. 13. RMBPCA for block 2.

Summary of different modelling structures

Algorithm Advantages Disadvantages
Static PCA Contains few user Unable to cope with time-
defined parameters varying characteristics of the
process and hence unsuitable
for the fractionation process
Static Allows the root cause ~ Unable to cope with time-
multiblock of any abnormality to  varying characteristics of the
PCA be isolated to the process and hence unsuitable
relevant section of the  for the fractionation process
process
Requires that process variables
be divided into separate blocks
which may in some situations
be difficult
Recursive Able to adapt to time- ~ Requires an extra ‘tuning’
PCA varying parameter (length of the
characteristics window) to be specified by the
user
Recursive Allows the root cause  Requires that process variables
multiblock of any abnormality to  be divided into separate blocks
PCA be isolated to the which may in some situations

relevant section of the
process

Able to adapt to time-
varying
characteristics

be difficult

Requires an extra ‘tuning’
parameter (length of the
window) to be specified by the
user

divided into separate logical sections, and when the
number of process variables included in the condition
monitoring application is large. As with the standard PCA

approach, multiblock PCA was found to be unable to track
the time-varying characteristics of this process and hence a
recursive multiblock PCA approach was deemed to be the
most suitable algorithm to apply to the process studied in
this work.

The results of this study are such that Saudi Aramco
now has confidence that the monitoring system can provide
benefits in real time. Further work is now being undertaken
to identify a software package that can be configured to
interface with existing plant systems, so that the monitor-
ing solution can operate in real time.

A complex issue which arose from this study was in
monitoring the performance of the MPC system. The use of
multivariate statistical techniques to provide a monitoring
solution for this controller is the subject of current research.
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