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Abstract

Computer models, or simulators, are widely used in a range ofscientific fields to aid understand-
ing of the processes involved and make predictions. Such simulators are often computationally
demanding and are thus not amenable to statistical analysis. Emulators provide a statistical ap-
proximation, or surrogate, for the simulators accounting for the additional approximation uncer-
tainty. This thesis develops a novel sequential screening method to reduce the set of simulator
variables considered during emulation. This screening method is shown to require fewer simulator
evaluations than existing approaches. Utilising the lowerdimensional active variable set simplifies
subsequent emulation analysis. For random output, or stochastic, simulators the output dispersion,
and thus variance, is typically a function of the inputs. This work extends the emulator framework
to account for such heteroscedasticity by constructing twonew heteroscedastic Gaussian process
representations and proposes an experimental design technique to optimally learn the model pa-
rameters. The design criterion is an extension of Fisher information to heteroscedastic variance
models. Replicated observations are efficiently handled inboth the design and model inference
stages. Through a series of simulation experiments on both synthetic and real world simulators,
the emulators inferred on optimal designs with replicated observations are shown to outperform
equivalent models inferred on space-filling replicate-free designs in terms of both model parameter
uncertainty and predictive variance.

Keywords: Gaussian Process, Fisher Information, Optimal Design, Input-dependent variance,
Heteroscedasticity.
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Chapter 1 INTRODUCTION

Computer simulators of real world processes are of great importance in many scientific fields.

Often, these simulators are both computationally expensive and require many inputs. Exam-

ples include climate projections (Hargreaves et al., 2004), estimation of national carbon balances

(Kennedy et al., 2008), epidemiology (Singer et al., 2009) and systems biology (Henderson et al.,

2009a), where biochemical reactions of cell processes are modelled. The problem of the compu-

tational expense of simulators can be handled using emulation technology where the simulator is

approximated by a statistical probabilistic model known asan emulator. Emulation of determinis-

tic computer simulators is a well established methodology that allows for the statistical analysis of

complex computationally expensive simulators. Using these simulators for predicting outcomes

for a limited number of input scenarios has been common practice but in order to quantify the

uncertainty of these predictions a large number of simulator runs is required which can be pro-

hibitively expensive for computationally demanding simulators.

The emulator is very fast to evaluate and allows subsequent analysis to be performed by lever-

aging the emulator as a surrogate of the simulator. In emulation of deterministic models, the

probabilistic model most commonly used is the Gaussian Process (GP) which allows for the spec-

ification of a wide range of prior beliefs on the properties ofthe simulator response such as its

smoothness and variability.

The majority of the emulator literature deals with deterministic simulators where the output is

invariant to repeated executions of the simulator at the same input setting. In this thesis, the focus

is on emulation of stochastic, or random output, simulators. Random output simulators typically

arise where the simulator has some internal source of randomness, common examples of which

are chemical and biological reaction models (described in Chapter 6) and agent-based models.

In terms of analysis, stochastic simulators typically require more evaluations than deterministic

systems as the additional intrinsic variability of the simulator needs to be captured. For this reason

we believe emulation to be useful even for medium complexitystochastic simulators.

In Section 1.1 the contribution of this thesis is discussed,followed by an outline providing a

summary of each chapter in Section 1.2. Finally Section 1.3 lists publications stemming from this

work.

1.1 Contribution

High-dimensional input spaces can make the calculations required for emulation challenging. By

identifying the active variables of a simulator, known as screening, subsequent tasks in the emu-

lation framework are simplified and fewer simulator models runs are required for the analysis to

proceed. A sequential screening technique is developed that is simple to implement. The tech-
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nique acts in a sequential way in order to keep the number of simulator runs down to a minimum,

whilst identifying the inputs that have non-linear effects. Our proposal is built upon the method

proposed by Morris (1991) for screening and therefore keepsthat technique’s simplicity. The

method utilises a threshold to separate non-linear from linear effects. As direct elicitation of this

quantity can be challenging, an alternate approach is developed that allows the elicitation to be

conducted on the simulator output space. The sequential method is successfully applied to the

output of a 13-dimensional stochastic rabies model and it isshown to require fewer simulator runs

than the batch Morris method to identify the same set of factors as having non-linear effects.

Following the screening procedure, the parameters of the Gaussian Process (GP) emulator are

inferred on the reduced active variable design space. As thevariance of stochastic simulators

is often a function of the input variables, two novel methodsof performing GP regression on

heteroscedastic datasets with replicated observations are developed. The Coupled GP method

builds on the work of Kersting et al. (2007) by explicitly considering replicate observations and

applying corrections due to finite sample size effects. The resulting model is flexible and inference

is efficient for designs with replicate observations as the moments of the replicates are used rather

than repeating the observations. When the simulator variance response is sufficiently simple or

expert judgements are available, a simpler parametric variance model can be utilised. For such

cases the Joint Likelihood model is introduced, where a deterministic functional form is used for

the variance response.

The process of inferring the parameters of the GP model requires the selection of a set of input

points, an experimental design, at which to evaluate the simulator. A model-based experimental

design method is developed that is shown to reduce the variance of parameter estimation under

both Maximum Likelihood (ML) and fully Bayesian inference.The method is based on the util-

isation of the Fisher information to select the maximally informative set of points with respect

to parameter estimation. Using the Joint Likelihood model allows for the analytic derivation of

the Fisher information for designs with replicate observations. An extensive simulation study is

presented to examine the impact of the model-based optimal designs on both parameter estimation

and predictive variance using the Joint Likelihood GP model.

1.2 Outline

In Chapter 2 an overview of the framework of emulation for computer models is presented to

set the context for the thesis. In particular this chapter does not provide an extensive literature

review but rather an overview of the main methods and techniques in the emulation of computer

simulators. An in-depth review of screening, heteroscedastic GPs and optimal design is provided
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in the corresponding chapters.

The identification of the simulator active variables, knownas screening, is discussed in Chapter

3. Following a review of existing screening methods, the sequential Morris method is presented,

which is a novel approach to help identify factors with non-linear effects on the simulator response

using a smaller number of simulator runs than a batch approach.

In Chapter 4 the GP framework is extended to admit the case of input-dependent noise, known

as heteroscedastic regression. Two novel methods of performing heteroscedastic GP regression on

complex datasets with replicated observations are presented. These are applied to a one dimen-

sional function and their performance discussed.

Optimal experimental design is discussed in Chapter 5. The aim of the methodology is to

maximise the information provided by a set of input locations, known as an experiment design,

with regards to a specified criterion. In this thesis we use the Fisher Information as the criterion

in order to minimise the generalised variance of the parameter estimation. An extensive set of

simulation results is presented to examine the impact of optimal designs on emulation under both

Maximum Likelihood (ML) and fully Bayesian inference.

In Chapter 6 the screening, emulation and optimal design frameworks discussed in the previous

chapters are applied to real world stochastic models. The sequential Morris method is applied to a

13-dimensional stochastic rabies model to identify the factors that are most relevant in determining

the probability of disease extinction within five years. Twostochastic models simulating biological

reactions within a cell are utilised in Section 6.3 with the aim of demonstrating the heteroscedastic

emulation and optimal design methods presented in Chapters4 and 5 respectively.

Finally in Chapter 7 the thesis is summarised and we concludewith a discussion of the research

outcomes and possible directions for future research.

1.3 Disclaimer

This thesis is submitted for the degree of Doctor of Philosophy (Ph.D). The work presented here

is original and has not been submitted previously for a degree, diploma or qualification anywhere

else. However, parts of the work have been published and presented in the following papers,

conferences and seminars:

1. Boukouvalas, A., Cornford, D., Singer, A., Managing Uncertainty in Complex Stochastic

Models: Design and Emulation of a Rabies Model. Accepted to St. Petersburg Workshop

on Simulation (2009).

2. Boukouvalas, A. and Cornford, D., Experimental Design for Heteroscedastic Gaussian Pro-

cess emulators. Accepted for poster presentation at the Machine Learning Summer School,

16



Chapter 1 INTRODUCTION

Cambridge, (2009).

3. Boukouvalas, A., Cornford, D., Maniyar, D. M. and A. Singer, Gaussian process emula-

tion of stochastic models: developments and application torabies modelling. Accepted for

poster presentation at the Royal Statistical Society Conference, Nottingham, (2008).
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Chapter 2 OVERVIEW OF EMULATION FOR COMPUTER MODELS

This chapter provides a brief introduction to emulation methodology. An overview of the main

methods and techniques involved in the emulation of simulators is provided. The discussion is not

intended as an in-depth review of each stage of emulation. Anextended review of the screening,

heteroscedastic emulation and optimal design aspects of emulation is provided in the chapters 3,

4 and 5 respectively.

Definitions of terms commonly used in this thesis are provided in Section 2.1. In Section 2.2

an overview of the emulation methodology is presented, followed by a discussion of each stage.

An overview of experimental design is given in Section 2.3. In Section 2.4 the GP formalism is

presented which forms the basis of the statistical approximation to the simulator. The validation

of the emulator is discussed in Section 2.5. We conclude witha summary in Section 2.6.

2.1 Definitions

For clarity in the discussion that follows in subsequent chapters, we define some key terms:

• Experimental Design: A set of input combinations at which to evaluate the simulator.

• Optimal Experimental Design: The use of mathematical and statistical methods to select the

minimum number of experiments for optimal coverage of descriptor or variable space. In

the context of this thesis we are considering a design over the input space of the simulator

model.

• Latin Hypercube: A square grid containing sample positions is a Latin squareif (and only

if) there is only one sample in each row and each column. ALatin Hypercubeis the gener-

alisation of this concept to an arbitrary number of dimensions, whereby each sample is the

only one in each axis-aligned hyperplane containing it.

• Simulator: A simulation is an imitation of some real thing, state of affairs, or process.

The act of simulating something generally entails representing certain key characteristics

or behaviours of a selected physical or abstract system. In the context of this thesis the

simulator is typically a piece of computer code (or function), with a set of inputs and outputs.

• Input variablesor Inputsor Factors: the set of variables required to determine the output of

the simulator. These might include both parameters of the system being modelled and the

initial (time) state of the system.

• Emulator: The Gaussian Process emulator is a statistical approximation to the simulator

which is faster to run and allows a variety of subsequent analyses to be carried out. The

statistical approximator need not be a GP but we do not consider such cases here.
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• Replicated observations. Observations obtained through repeated evaluations of the simu-

lator at a fixed input value.

2.2 Emulation Process

In Figure 2.1 a diagrammatic overview of emulation methodology is provided. Given a descrip-

tion of reality, thesimulator is developed. The simulator might then be validated using a set of

observations. The description of the system typically involves physicallaws and mechanisms or

other known structural information regarding the system. Simulators vary greatly in their com-

plexity. For highly complex systems such as the climate, theresulting simulators can have high

computational requirements. For certain analysis such assensitivity analysis(described in Chap-

ter 3) where the effect of inputs on output uncertainty is examined, a prohibitively large number

of simulator runs would be required. In such cases anemulator is constructed which acts as a

statistical surrogate of the simulator for subsequent analysis.

The emulator is constructed by first identifying the most relevant inputs by employing ascreen-

ing technique. The aim of the screening procedure is to identifythe most relevant factors in terms

of their effect on the simulator output. The least relevant factors can be fixed to their nominal

values or discarded entirely for the subsequent steps whichcan greatly simplify the analysis. We

discuss existing methods and propose a sequential screening method in Chapter 3.

Experimental designis the process of selecting input points at which to evaluatethe simulator.

In this thesis we focus onoptimal experimental design where the design is selected such that

a criterion function is maximised. In most instances screening precedes optimal experimental

design as the latter usually requires a numerical optimisation of the criterion function which can

be more easily accomplished in a lower dimensional space. Inthe case of adaptive experimental

design, the process can be iterated whereby new sets of points at which to evaluate the simulator

are proposed at each stage. Experimental design is discussed further in Section 2.3.

The next step of the methodology involves the construction of the emulator. This proceeds in

two stages. Firstly a prior specification of the functional form of the simulator is used to construct

a Gaussian Processprior model. The unknown parameters of the prior model areinferred using

the experimental design and the corresponding simulator evaluations. This process is described in

more detail in Section 2.4.

Prior to utilising the emulator,validation methods are employed to check the correctness of

the emulator. This procedure aims to uncover incorrect prior specifications or inference issues

which would lead to a poor fit of the emulator to the simulator.Typically a separate experimental

design to the training set used in emulation inference is used for validation. Validation methods
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are described in Section 2.5.

If the emulator is shown to be an acceptable surrogate to the simulator, statistical analysis

techniques can be employed using the emulator rather than the slower simulator. Examples of

such analysis areuncertainty analysis(O’Hagan et al., 1998), where the effect of input uncertainty

on the simulator output is calculated, andcalibration (Kennedy and O’Hagan, 2001) where given

a set of observations ofreality, the model parameters are inferred and possibly the discrepancy of

the simulator toreality is estimated.

Reality

Simulator

Emulator Inference

Experimental Design

Validation

Screening

Sensitivity Analysis Uncertainty Analysis Calibration

Observations

Theory

Adaptive

Observations

Figure 2.1: Diagrammatic view of emulation methodology.

2.3 Experimental Design

In this section, we briefly review existing approaches to experimental design for computer exper-

iments. The discussion is based on MUCM Toolkit (World Wide Web electronic publication,

Release 6, 2010), pageThreadTopicExperimentalDesign, to which the reader is referred for a

more extensive discussion.

Two main classes of design are developed in the literature: general purpose designs that can

be used for a variety of simulators or model-based designs that are optimal, in some sense, for a

particular model.

General purpose designs are developed utilising geometriccriteria. A frequently used type

of general purpose design are space-filling designs. Such designs place points so that they are

well separated and cover the input space well. The rationaleis that for deterministic simulators

points very close to each other carry little information dueto the process correlation. This does

21



Chapter 2 OVERVIEW OF EMULATION FOR COMPUTER MODELS

not hold for stochastic simulators which we consider in thisthesis as even replicated observations

are informative. Also for deterministic simulators discovering the range of correlation requires a

range of inter-point distances in the design.

A variety of space-filling designs have been used for computer experiments:

• Fully Factorial Design. A set of predeterminedp values, called levels, is assigned to each

factor. The design is the combination of all possible levelsof all factors. However even if

only 2 levels are assigned to each factor, the number of required runs for ad dimensional

design space is 2d. This is usually prohibitively high for most simulators andFractional

Factorial designs have been developed that consist of subsets of the Full Factorial design.

• Optimised Latin Hypercube Designs. A Latin Hypercube (LH) is a random set of points

subject to the constraint that for each input factor the points are evenly spread in the design

domain. LH designs are not guaranteed to be space-filling in the entire design domain but

rather just in each dimension separately. The most commonlyapplied approach to enhance

the space-filling property of LH designs is to generate a large number of them and select

the LH where the minimum distance between points is maximised. This is known as the

Maximin Latin Hypercubedesign and is employed extensively in our simulation studies in

this thesis. An example is presented in Figure 2.2.

• Pseudo-Random Sequences. A specific set of pseudo-random generating functions have

been shown to generate space-filling designs. The Sobol’ sequence in particular is an exam-

ple of a low discrepancy sequence where discrepancy is a measure of departure of a set of

points from a uniform spread. The benefit of using such sequences is that they are very fast

to generate and can be employed in a sequential setting wheremore points may be gener-

ated as needed. However, especially for small design sizes,clusters and ridges of points may

be generated by such a sequence. For more information on the construction of the Sobol’

sequence see Kuipers and Niederreiter (2005).

In some instances a more sophisticated design approach is needed. Applying space-filling

designs, points will not be placed in close proximity. However to estimate certain kernel param-

eters in the GP such as the length-scale parameters, it is beneficial to have points close to each

other. Further, geometrical designs cannot easily be altered to accommodate prior information

on the model parameters. Model-based design allows the specification of a model and a criterion

function with respect to which the design is optimised.

Two main types of criterion functions have been explored in the literature:

• Minimise average/maximum predictive uncertainty.
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Figure 2.2: Example of 30-point Maximin Latin Hypercube.

• Minimise generalised variance of parameters.

Criteria used for computer experiments are typically basedon minimising predictive variance

because the quality of prediction is of critical importancein the usefulness of the emulator. How-

ever all such methods that we are aware of require an initial parameter estimate and therefore could

benefit from an initial design that minimises parameter uncertainty. For example in Krause et al.

(2008), where the Mutual Information criterion is used to minimise predictive variance at unsam-

pled locations, the GP kernel parameters are assumed to be known. In Krause and Guestrin (2007)

a hybrid approach of switching between exploration, where the design is optimised for parameter

estimation, and exploitation, where the parameters are fixed, is developed. In Youssef (2010) a

Karhunen Loeve expansion is used to linearise the GP correlation function. An initial Latin Hy-

percube design is used to estimate the parameters prior to the expansion. We therefore believe a

pragmatic approach to design should incorporate explicit minimisation of parameter uncertainty as

robust parameter estimation would allow for more robust prediction. Optimal and Hybrid design

approaches are discussed more extensively in Chapter 5.

2.4 Gaussian Processes

Formally a Gaussian Process is defined as (Rasmussen and Williams, 2006):

Definition 2.4.1. A Gaussian Process is a collection of random variables, any finite number of

which have a joint Gaussian distribution.

For the discussion that follows we use the observational model:

t = f (x)+ ε,
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where f (x) is the noise-free unknown function we wish to interpolate,ε is a Gaussian noise vari-

able andt are the observed noisy functional values.

GPs are an example of a non-parametric method as they characterise a prior over functions di-

rectly instead of requiring an explicit parametrisation ofthe unknown functionf (Mackay, 1998).

In this thesis we assume a zero-mean GP prior but we note that all results can be readily ex-

tended to include a non-constant mean function. GP models are closely related to Kriging in the

geostatistical literature (Stein, 1999b).

The GP framework is derived in Section 2.4.1 and a list of covariance functions used in this

thesis is given in Section 2.4.2. How GPs are used for prediction is described in Section 2.4.3

and how parameters are inferred is discussed in Section 2.4.4. An example of GP inference and

prediction is given in Section 2.4.5 and issues and extensions of the GP framework are reviewed

in Section 2.4.6.

2.4.1 Derivation of a GP

A GP can be understood by considering a finite linear-in-the-parameters modelt = Φ(X)w+ ε

whereΦ(X) is an×M matrix ofM fixed basis functions applied onn points,w anM-dimensional

parameter vector,ε a Gaussian distributionN(0,σ2I) andI the identity matrix.

By placing a Gaussian prior on the parameters,

p(w) = N(0,a−1I),

the posterior of the noise-free functionf = Φ(X)w is Gaussian with mean and covariance

E[ f ] = Φ(X) E(w) = 0,

Σ( f ) = Φ(X) E[ww′] Φ(X)′ = a−1 Φ(X)Φ(X)′.

The noisy observationst can be described by a GP:

p(t) = N(0,a−1Φ(X)Φ(X)′+σ2I) = N(0,K+σ2I).

whereK = [k(x,x′)] the matrix obtained via the evaluation of the kernel function at all pairs of

training points.

If an algorithm depends solely on inner products in input space it can be lifted into higher

dimensional spaces by replacing the inner products with a kernel functionk(x,x′) (Rasmussen and

Williams, 2006). This is known as the kernel trick and allowsthe GP to operate even in infinite
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dimensional spaces of basis functions (M → ∞).

2.4.2 Covariance functions

A GP is defined by ameanand acovariancefunction, the specification of which allows the incor-

poration of prior knowledge in the emulation analysis such as the smoothness and differentiability

of the approximated function.

In this thesis we use the following covariance functions (Rasmussen and Williams, 2006):

• Squared Exponential:

kSE
θ (r) = σ2

p exp

(

− r2

2λ2

)

,

• Exponential, also known as Ornstein-Uhlenbeck (OU):

kOU
θ (r) = σ2

p exp
(

− r
λ

)

,

• Matérn with fixed order 5/2:

kMat
θ (r) = σ2

p

(

1+
r
√

5
λ

+
5r2

3λ2

)

exp

(

− r
√

5
λ

)

,

wherer = ||xi − x j || the Euclidean distance between support points. The kernel parameters are

θ = (σ2
p,λ). The σ2

p is known as the process-variance term and controls the amplitude of the

kernel response.λ, commonly referred to as the length-scale parameter, has the effect of rescaling

the inputs and can be used to infer the relative importance ofan input - see Section 3.1.1.

2.4.3 Prediction

Assuming the GP covariance parameters are known, prediction of the outputt∗ at a new sitex∗

given the training data{x, t} can be calculated using the conditioning property of Gaussian distri-

butions. Specifically the joint distributionp(t, t∗|x,x∗) is:

p(t, t∗|x,x∗) =N









t∗

t



 | 0,





K(x∗,x∗)+σ2I K(x∗,x)

K(x∗,x)T K(x,x)++σ2I







 ,

and by conditioning on the training set (Appendix A.3) the predictive distributionp(t∗|x,x∗, t) is

also Gaussian and has mean and covariance:

E[t∗] = K(x∗,x)
[

K(x,x)+σ2I
]−1

t, (2.1)

Cov[t∗, t∗] = K(x∗,x∗)+σ2I −K(x∗,x)
[

K(x,x)+σ2I
]−1

K(x,x∗). (2.2)
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2.4.4 Inference

Given a training set{x, t} there exist a range of methods to infer the kernel parametersθ.

The simplest approach, known asMaximum Likelihood(ML), is to maximise the marginal log

likelihood of the GP:

logp(t|x,θ) =−1
2

log|K+σ2I |− 1
2

t′(K +σ2I)−1t − N
2

log(2π), (2.3)

whereN the number of training points and| . . . | denotes the determinant. Derivatives of Equation

(2.3) with respect to the kernel parametersθ can then be used to optimise the likelihood using

a non-linear numerical optimisation method such as scaled conjugate gradient (Nabney, 2001).

Kernel parameters required to be non-negative may still be optimised using general numerical

methods by optimising their logarithm, i.e. optimising with respect toz= log(θ).

If informative priors are available for the kernel parameters, aMaximum-A-Posteriori(MAP)

estimation is obtained by maximising the logarithm of the parameter posterior:

logp(θ|t,x) ∝ log p(t|x,θ)+ log p(θ),

wherep(θ) is the parameter prior.

A method known asRestricted Maximum Likelihood(REML) (Neumaier and Groeneveld,

1998) arises when a non-zero linear-in-the-parameters mean function is used in the GP prior.

Under such a setup it is possible to assign an uninformative improper prior on the mean function

parameters and analytically integrate them out of the likelihood. This method is not examined

further in this thesis as we do not utilise non-constant meanfunctions in the GP prior.

In a fully Bayesian approach, the conditioning of the likelihood on the kernel parameters can

be integrated outp(t|x) = ∫
p(t|x,θ)p(θ). However this integral is highly intractable andMarkov

Chain Monte Carlomethods have been employed to perform the integration numerically (Neal,

1997). In Section 5.7 we utilise a Markov Chain method to examine the effect of optimal designs

on inference for parameter posteriors.

2.4.5 Example

In this section a simple example of GP inference and prediction is presented. A zero-mean GP

Prior with a squared exponential kernel and a constant nugget σ2
n is placed on the unknown simu-
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lator function f :

E[ f (x)] = 0,

Cov(xi ,x j) = σ2
p e−

(xi−x j )
2

λ2 +δi j σ2
n.

The nugget parameterσ2
n is constant across the entire input domain. This variance model is known

as homoscedastic and will be extended in Chapter 4 to allow for the modelling of input dependent

variance. Even in the case of deterministic simulators, a nugget is included in the GP covariance

specification as it helps with numerical stability issues.

The parameters are inferred using the ML method on a trainingset of six points. The predictive

distribution is shown in Figure 2.3. As the training set is concentrated on the first half of the design

space, the predictive GP model reverts to the mean (0) away from the training points. This is a

consistent feature of stationary GPs when extrapolating - the model reverts to the mean and the

predictive variance reaches a maximum value equal to the sumof the process-varianceσ2
p and

the nuggetσ2
n (known as the sill). These features can be understood by examining the predictive

equations (2.1)-(2.2) and setting the training-test pointcorrelation to zero.

Another feature of the GP fit is that variance does not collapse to zero at the training points but

is equal to the nugget varianceσ2
n. If no nugget term was included, the GP mean would interpolate

exactly at the training points with zero variance at those points.
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Figure 2.3: An example of a Gaussian Process inference and prediction. The blue dots denote
the training points, the red line the simulator, the green solid and dashed lines the GP mean and
variance prediction respectively.

2.4.6 Extensions

The GP formalism described previously has been extended in avariety of ways to extend its

applicability. In this section we describe some of the extensions relevant to the field of computer

experiments. A more complete discussion of GP extensions isgiven in Rasmussen and Williams
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(2006).

GP methods are limited to small designs due to the inversion of the training covariance matrix

K +σ2I which appears in the likelihood (Equation (2.3)) and requires orderO(N3) computations

whereN the number of training points. A range of sparse approximation methods have been

developed to overcome this limitation and a general theoretical framework to describe them is

presented in Quinonero-Candela and Rasmussen (2005). In Chapter 4 we review one such method,

the Sparse Pseudo-Input GP, where the effect of theN training points is projected to a smaller set

of M basis points to reduce the computational load toO(NM2).

Another approach to extend GPs to larger datasets is to distribute the training set into a set

of disjoint sets and perform inference and prediction separately. In Latouche (2007), a method of

combining the individual joint predictions using the Bayesian Committee Machine (Tresp, 2000)

is presented. In addition, by factorising the GP parameter posterior and employing the Laplace

propagation algorithm (Smola et al., 2004), a joint optimisation across nodes is also proposed.

GPs can also be extended to multivariate outputs. The simplest approach where each output is

treated independently ignores correlations between outputs, that can be utilised for more accurate

inference and prediction. In the separable model (Conti andO’Hagan, 2007; Bonilla et al., 2008)

the GP covariance is represented by a Kronecker productΣO⊗ΣI whereΣO is the between-output

covariance andΣI the input correlation. The drawback of this approach is thatalthough output

correlations are explicitly modelled, the smoothness of all outputs is assumed to be identical as a

common set of input correlations length-scales is used. TheLinear Model of Coregionalisation

(Goulard and Voltz, 1992) allows the modelling of each output through a linear combination of

kernels thus removing the input-output separability assumption. However a larger number of

parameters needs to be inferred.

Lastly, when no nugget parameter is included in the GP covariance function, as is the case

for the emulation of deterministic simulators, and a Gaussian prior or an improper uninformative

prior is used for the process-variance parameter, the integration of the parameter uncertainty can

proceed analytically leading to the Student-t process (Kennedy and O’Hagan, 2001). However

when adding a nugget parameter to the GP covariance the integration can no longer proceed unless

the nugget is entangled with the process-variance parameter (Rasmussen and Williams, 2006,

Section 9.9). The latter refers to a reparametrisation of the covariance asτ(k(., .) + ν) whereτ

captures both the nugget and process-variance effects on the output. The nugget in this case is

entangled,τ× ν, and interpretation becomes more difficult as the observations cannot be written

as the sum of independent signal and noise contributions (Rasmussen and Williams, 2006).
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2.5 Validation

Various diagnostics are used in the literature to validate emulators. The Mean Squared Error

(MSE) is used to assess the predictive accuracy of the GP withregards to the mean only. We

utilise a standardised form (divided by the sample varianceof the observations):

MSE=
1

NVar[y]

N

∑
i=1

(E[t i]−yi)
2 ,

whereE[t i] the GP predictive mean defined in Equation (2.1) for test point i ∈ {1, . . . ,N}, yi the

observation at that point and Var[y] the sample variance of the observations. This is referred to

as the Standardised MSE in Rasmussen and Williams (2006), page 23. For a trivial model which

predicts using the mean of the training targets, the value ofthe MSE will be close to 1. Smaller

values can be interpreted as the model doing better than thistrivial model.

The Negative Likelihood Predictive Distribution (NLPD) weighs the errors on the mean by the

predictive variance, therefore penalising incorrect variance estimates (Rasmussen and Williams,

2006, page 23):

− logp(y∗|D,X∗) =
1

2Nv

Nv

∑
i=1

(

log(2πσ2
i )+

(yi − t i)
2

σ2
i

)

,

where the likelihood is evaluated at the test setX∗. However this is a univariate measure which

ignores the correlation structure between test points and takes a simple average across all test

points. For this reason we utilise the Dawid score, a multivariate extension of the NLPD, which is

defined as a loss:

Dawid= log|Σ|+(y− t)TΣ−1(y− t)

where| . . . | denotes the determinant andΣ the covariance matrix of the joint predictive distribution

at the set of test points. Bastos (2010) notes that the difference between the Dawid scores of two

competing models can be seen as a numerical approximation tothe log Bayes factor.

Finally the Mahalanobis error (DMD) is a more precise error measure than the NLPD since

the full predictive covariance is utilised without assuming the errors are uncorrelated. Unlike the

Dawid score, the Mahalanobis error sampling distribution can be derived analytically and allows

for various decompositions to help identify the sources of error.

DMD = (y−E[t∗])TCov[t∗, t∗]−1(y−E[t∗]),

where Cov[t∗, t∗] is the predictive GP covariance defined in Equation (2.2). Sampling theory given

in Bastos and O’Hagan (2009) allows interpretation and further analysis of the Mahalanobis error.

In the case of GPs the asymptotic distribution of the Mahalanobis distance is proven to be aχ2
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distribution withn degrees of freedom wheren is the size of the test set. In particular the theoretical

mean value ofDMD for GPs is the number of validation points. Lower values thanthe theoretical

mean can signify an underconfident GP where the predictive variance it too high. Higher values

on the other hand typically occur when the GP predictions areoverconfident.

The Mahalanobis error may be decomposed using the Cholesky decomposition toDMD = vTv

where the components of thev vector are termed uncorrelated errors and allow for the identifi-

cation of the contribution to the total error of each validation input point. As the uncorrelated

errors have a theoretical distribution ofN(0,1), errors larger than two standard deviations may be

indicative of an issue with the emulator and can be further investigated by examining the emulator

behaviour at the corresponding input locations. Lastly, Bastos and O’Hagan (2009) propose the

use of the Pivoted Choleksy Decomposition (PCD) to decompose the Mahalanobis error. In PCD

the data is permuted such that the first element is the one withthe largest variance, the second

element is the one with the largest predictive variance conditioned on the first element and so on.

The benefit of this decomposition is that the ordering of the errors aids in the identification of

possible causes. For instance, errors early in sequence aretypically on test points far from train-

ing data where the predictive variance is high and possible causes include non-stationarity of the

function output and misidentification of the process-variance/nugget terms. Errors at the end of

the sequence are typically from test points close to training points or test points close to other test

points and point to a problem in the identification of the correlation structure, i.e. the covariance

parameters (Bastos and O’Hagan, 2009). The PCD decomposition is utilised in Section 5.6.6 to

validate emulators trained on different designs.

When comparing optimal designs in Chapter 5, the emulators will be structurally identical

with the only difference being the training set used in each case. We utilise both the Mahalanobis

error and Dawid score to evaluate the impact of the designs onemulator performance. In the case

of invalid emulators where the Mahalanobis error is found tobe larger than the expected range

from its theoretical distribution, the PCD of the Mahalanobis error allows for the identification of

the likely cause of the error. The difference of the Dawid scores of two emulators is equivalent to

the log likelihood ratio of the two models evaluated at the same test set. In the case of Bayesian

inference (Section 5.7) as the same priors are used for the hyperparameters of competing emula-

tors, the difference in Dawid score is proportional to the Bayes factor allowing for direct model

comparison.
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2.6 Summary

In this chapter, an introduction to the concepts behind experimental design and emulation was

offered. In Section 2.1 definitions for terms that are frequently used in this thesis have been

provided.

The emulation framework was introduced in Section 2.2. The role of emulation within the

context of simulation of systems was discussed and each stage of emulation briefly described.

An overview of experimental design for computer experiments was provided in Section 2.3. The

distinction of geometric designs, that can be used for a widerange of simulators, to model-based

optimal design theory, where the design stems from the optimisation of a functional criterion of

a probabilistic model, was discussed. Classes of geometricdesigns such as the Latin Hypercube

were reviewed and will be contrasted to optimal designs in chapters 5 and 6 through a set of

simulation experiments. A more extensive discussion of optimal design, which is the focus of this

thesis, is given in Chapter 5.

In Section 2.4 the GP framework was presented. The frameworkwas derived (Section 2.4.1) by

considering a finite linear-in-the-parameters fixed basis model where the kernel trick was applied

to arrive to the full non parametric GP model. The GP framework allows for flexibility in the

modelling through the specification of different covariance structures reflecting different beliefs

of simulator behaviour. The list of covariance functions used in this thesis was given in Section

2.4.2. The predictive equations of the GP were derived in Section 2.4.3 and a multitude of methods

on how to learn the GP parameters, a process known as inference, were presented in Section 2.4.4.

An example of inference and prediction was given in Section 2.4.5 and relevant extensions to the

GP framework were discussed in Section 2.4.6.

Finally, methods of validating the GP emulator approximation to the simulator were presented

in Section 2.5. In particular the Mahalanobis diagnostic was described which is extensively used

in the subsequent chapters to validate the emulator fit underdifferent designs.
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Chapter 3 SCREENING

In this chapter we discuss the issues of screening within context of emulating of stochastic

simulators. The material presented is based on Boukouvalaset al. (2010).

Screening involves identifying the relevant input factorsthat drive a simulator’s behaviour

(Saltelli et al., 2000). Screening, also known as variable selection in the machine learning litera-

ture, is a research area with a long history. Traditionally,screening has been applied to physical

experiments where a number of observations of reality are taken. One of the primary aims is to

remove, or reduce, the requirement to measure inconsequential quantities (inputs) thus decreasing

the time and expense required for future experiments. More recently, screening methods have

been developed for computer experiments where a simulator is developed to model the behaviour

of a physical, or other, system. In this context, the quantities represent the input variables and

the benefit of reducing the dimension of the input space is on the emulator model complexity and

training efficiency rather than on the cost of actually obtaining the input values themselves.

With the increasing usage of ever more complex models in science and engineering, dimen-

sionality reduction of both input and output spaces of models has grown in importance. It is

typical, for example in complex models, to have several tensor hundreds of input (and potentially

output) variables. In such high-dimensional spaces, efficient algorithms for dimensionality reduc-

tion are of paramount importance to allow effective probabilistic analysis. For very high (say over

1000) sizes of input and/or output spaces open questions remain as to what can be achieved. Even

in simpler models, efficient application of screening methods can reduce the computational cost

and permit a focused investigation of the relevant factors for a given model.

Screening is a constrained version of dimensionality reduction where a subset of the original

variables is retained. In the general dimensionality reduction case, the variables may be trans-

formed before being used in the emulator, typically using a projection. The transformation, or

projection, may be linear as is the case for the commonly usedPrincipal Components Analy-

sis method (PCA) or non-linear as is the case in the Neuroscale algorithm, where a radial basis

function network is used to perform the mapping (Lowe and Tipping, 1997). An overview of

dimensionality reduction methods for emulation is given inBoukouvalas and Cornford (2008).

Both screening and sensitivity analysis may be utilised to identify variables with negligible

total effects on the output variables. They can provide results at various levels of granularity

from a simple qualitative ranking of the importance of the input variables through to more exact

quantitative results of the percentage of output variance explained by each factor. Sensitivity

analysis methods provide more accurate variable selectionresults but require larger number of

simulator evaluations, and thus entail higher computational cost as we show empirically in Section

3.1.3.2.

Screening methods can be seen as a form of preprocessing and the simulator evaluations used
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in the screening activity can also be used to construct the emulator.

The benefits of screening are many fold:

1. Emulators are simpler; the reduced input space typicallyresults in simpler models with

fewer (hyper)parameters that are more efficient, both to estimate and use.

2. Experimental design is more efficient, in a sequential setting; the initial expense of applying

screening is typically more than recouped since a lower dimensional input space can be

filled with fewer design points.

3. Interpretability is improved; the input variables are not transformed in any way and thus the

practitioner can immediately infer that the quantities represented in the discarded variables

need not be estimated or measured in the future.

Screening can be employed as part of the emulator construction and in practice is often applied

prior to any statistical analysis.

Single-output simulators are the focus of this chapter. Themethods presented may be extended

to the case of multiple outputs by treating each output independently and active inputs for each

output identified separately. In Section 3.1 an overview of existing screening methods is given.

Examples of the most commonly used methods are provided and their performance compared.

In Section 3.2 a novel sequential screening approach based on the Morris screening method is

presented. A summary is provided and possible future research directions are discussed in Section

3.3.

3.1 Overview of existing methods

Screening methods can be placed in two broad categories. Unsupervised methods operate solely

on the inputs. An example of such a method is Principal Variables (McCabe, 1984) which is

closely related to Principal Components where the factors are ranked according to a variance mea-

sure. Supervised methods, where input factors are ranked according to their effect on a response

variable, are the main focus of this thesis.

Supervised screening methods have been broadly categorised in the following categories (Guyon

and Elisseeff, 2003):

1. Screening Design methods. An experimental design is constructed with the express aim of

identifying active factors. This approach is the classicalstatistical method, and is typically

associated with the Morris method (Section 3.1.3). Other methods are available (Saltelli

et al., 2000) but the Morris method has been found to be the most effective in practice

(Saltelli et al., 2006).
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2. Ranking methods. Input variables are ranked according tosome measure of association

between the simulator inputs and outputs. Typical measuresconsidered are correlation, or

partial correlation coefficients between simulator inputsand the simulator output. Other

non-linear measures of association are possible, but thesemethods tend not to be widely

used due to overly restrictive assumptions such as output monotonicity.

3. Wrapper methods. A model is used to assess the predictive power of subsets of variables.

Wrapper methods can use a variety of search strategies:

(a) Forward selection where variables are progressively incorporated in larger and larger

subsets.

(b) Backward elimination where variables are sequentiallydeleted from the set of active

inputs, according to some scoring method, where the score istypically the root mean

square prediction error of the simulator output (or some modification of this such as

the Bayesian information criterion).

(c) Efroymson’s algorithm, also known as stepwise selection, proceeds as forward se-

lection but after each variable is added, the algorithm checks if any of the selected

variables can be deleted without significantly affecting the Residual Sum of Squares

(RSS).

(d) Exhaustive search where all possible subsets are considered.

(e) Branch and Bound strategies eliminate subset choices asearly as possible by assuming

the performance criterion is monotonic, i.e. the score improves as more variables are

added.

4. Embedded methods. For both variable ranking and wrapper methods, the model is consid-

ered a perfect black box. In embedded methods, the variable selection is integrated as part of

the training of the model, although this might proceed in a sequential manner, to allow some

benefits of the reduction in input variables to be considered. The ARD approach discussed

in Section 3.1.1 is an example of this class of methods.

In this chapter we focus on methods most appropriate for computer experiments that are the

most general, i.e. the assumptions made are not overly restrictive to a particular class of models.

For a more general discussion of all screening methods see Boukouvalas and Cornford (2007).

If the simulator is available, the Morris method (see Section 3.1.3) can be effective where a

one factor at a time (OAT) design is used to identify active inputs. The Morris method is a simple

process, which can be understood as the construction of a design to estimate the expected value

and variance (over the input space) of the partial derivatives of the simulator output with respect
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to the simulator inputs. The method creates efficient designs to estimate these; to use the method

it will be necessary to evaluate the simulator over the Morris design and the method cannot be

reliably applied to data from other designs.

If the simulator is not easily evaluated (maybe simply because we don’t have direct access

to the code), or the training design has already been created, then design based approaches to

screening are not possible and the alternative methods described above need to be considered. If

the critical features of the simulator output can be captured by a small set of fixed basis functions

(often simply linear or low order polynomials) then a regression (wrapper) analysis can be used

to identify the active inputs. An example of a commonly used wrapper method is Least Angle

Regression (Efron et al., 2002) which is a less greedy version of traditional forward selection and

chooses a linear model from a large collection of possible covariates. We do not consider these

methods general enough, however, as their performance is directly related to the specification of an

appropriate list of fixed basis functions and thus are suitable for only relatively simple input-output

mappings or where strong prior information is available on the mapping.

An alternative to the wrapper methods above is to employ an embedded method, such as

Automatic Relevance Determination (ARD) which is described in Section 3.1.1. ARD essentially

uses the estimates of the input variable length scale hyperparameters in the emulator covariance

function to assess the relevance of each input to the overallemulator model. The method has the

advantage that the relatively flexible Gaussian Process model is employed to estimate the impact

of each input, as opposed to a finite parametric linear in parameters regression model, but the cost

is increased computational complexity.

3.1.1 Automatic relevance determination

We describe here the method of Automatic Relevance Determination (ARD) where the correlation

length scalesδi in a covariance function can be used to determine the input relevance. This is also

known as the application of independent priors over the length scales in the covariance models.

The relevance of the input factors is determined by optimising the model marginal likelihood,

described in Section 2.4. When the number of input factors issignificantly high in relation to

the number of training points, Qi et al. (2004) note that the ARD method can overfit due to the

large number of parameters that need to be estimated. They suggest optimising the parameters by

maximising the leave-one-out cross-validation score estimated using the expectation propagation

algorithm (Minka, 2001). In the methodology presented in this section, we suggest that by proper

validation of the emulator such overfitting can be detected.The purpose of the procedure is to

perform screening on the simulator inputs, identifying theactive inputs.

ARD is typically applied using a zero mean GP emulator. Provided the inputs have been stan-
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dardised, the correlation length scales may be directly used as importance measures. Another case

where ARD may be used is with a non-zero mean function GP wherewe wish to identify factor

effects in the residual process. For example with a linear mean, correlation length scales indicate

non-linear and interaction effects. If the effect of a factor is strictly linear with no interaction

with other factors, it can still be screened out by subtracting from the simulator output prior to

emulation.

To implement the ARD method, a range of covariance functionscan be used (see Section

2.4.2). In fact any covariance function that has a length scale vector included can be used for

ARD; for example the commonly used squared exponential covariance. Another example of an

ARD covariance is the Rational Quadratic (RQ) (Rasmussen and Williams, 2006):

v(xp,xq) = σ2[1+(xp−xq)
τP−1(xp−xq)/(2α)]−α,

whereσ is the scale parameter andP = diag(δi)
2 a diagonal matrix of correlation length scale

parameters. Taking the limita→ ∞, we obtain the squared exponential kernel.

Assumingp input variables, each hyperparameterδi is associated with a single input factor.

Theδi hyperparameters are referred to as characteristic length scales and can be interpreted as the

distance required to move along a particular axis for the function values to become uncorrelated

(Rasmussen and Williams, 2006). If the length-scale has a very large value the covariance becomes

almost independent of that input, effectively removing that input from the model. Thus length

scales can be viewed as a total effect measure and used to determine the relevance of a particular

input.

Lastly, if the simulator produces random outputs the emulator should no longer exactly inter-

polate the observations. In this case, a nugget termσ2
n should be added to the covariance function

to capture the response uncertainty.

Given a set of simulator runs, the ARD procedure can be implemented in the following order:

1. Standardisation. It is important to first standardise the input data so all input factors op-

erate on the same scale. If rescaling is not done prior to the inference stage, length scale

parameters will generally have larger values for input factors operating on larger scales.

Standardisation methods are described in Appendix B.2.

2. Inference. The Maximum-A-Posteriori values of the length scale hyper-parameters are typi-

cally obtained by iterative non-linear optimisation usingstandard algorithms such as scaled

conjugate gradients, although in a fully Bayesian treatment posterior distributions could be

approximated using Monte Carlo methods. Maximum-A-Posteriori is the process of identi-

fying the mode of the posterior distribution of the hyperparameter and is described in more
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detail in Section 2.4.4. One difficulty using ARD stems from the use of an optimisation

process since the optimisation is not guaranteed to converge to a global minimum and thus

ensure robustness. The algorithm can be run multiple times from different starting points to

assess robustness at the cost of increasing the computational resources required. In case of

a very high-dimensional input space, maximum likelihood may be too costly or intractable

due to the high number of free parameters (one length scale for each dimension). In this case

Welch et al. (1992) propose a constrained version of maximumlikelihood where initially all

inputs are assumed to have the same length scale and iteratively, some inputs are assigned

separate length scales based on the improvement in the likelihood score.

3. Validation. To ensure robustness of the screening results, prior to utilising the length scales

as importance measures the emulator should be validated as described in Section 2.5.

3.1.1.1 ARD example on synthetic data

We demonstrate the implementation of the ARD method on a simple 1D synthetic example. The

simulator function isf (x1,x2) = sin(x1/10)+0×x2, i.e. a two variable function which ignores the

second input altogether. A 7 point design was used to train a emulator with a squared exponential

function:

x1 0.10 0.23 0.36 0.50 0.63 0.76 0.90

x2 0.24 0.37 0.91 0.64 0.11 0.51 0.77

f (x1,x2) 0.84 0.72 -0.50 -0.95 0.05 0.98 0.41

Note that both input factors are operating on the same scale so no standardisation is needed

in this case. The inference is done by using a scaled conjugate gradient algorithm to maximise

the log likelihood of the Gaussian Process emulator (that isin this case no priors are placed over

the length scales). To check the fit of the emulator a grid testset of 1000 points is used. We can

clearly see from Figure 3.1 that both the simulator and emulator responses are insensitive to the

value ofx2.

To further validate the emulator and examine the output predictive variance, we plot in Figure

3.2 a profile of the simulator function atx2 = 1 andx1 a grid design of 1000 points. The emulator

fits the simulator function well and the uncertainty captures the prediction error away from the

training points.

The length scales obtained through maximum likelihood areδ1 = 0.16 andδ2 = 48.6 which

can be interpreted as the emulator using the first variable and ignoring the second. The ARD

method therefore correctly identifies the second variable as redundant.
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Figure 3.1: Validation of ARD Emulator. The simulator values are plotted in black dots and the
emulation mean prediction is the smooth coloured surface.
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Figure 3.2: Profile of emulator and simulator along thex1 factor. The simulator function is shown
in green against the emulator prediction in black with the predictive variance in grey. The training
data are shown as crosses (although thex2 coordinate varies in the training data but this clearly
has no effect on the output value from the simulator).
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3.1.2 Variance-Based Methods

The method of Sobol’ (Sobol, 1993) is a variance decomposition method where Monte Carlo

integration yields sensitivity indices. The presentationin this section is based on Saltelli et al.

(2000) to which the reader is referred for further details. Variance-based methods estimate the

variance of the conditional expectation (VCE) of each inputfactor Xi in relation to the function

outputY. The importance of factors is then calculated with the correlation ratio:

η2
i =

VarXi [E(Y|Xi)]

Var[Y]
,

where VarXi [E(Y|Xi)] =
∫
[E(Y|Xi)−E(Y)]2 p(Xi)dXi is the VCE and Var[Y] the variance ofY.

The Sobol’ method offers an effective approach to estimating the VCE.

Let x be the k-dimensional input vector(x1, . . . ,xk) andΩk = (x|0 ≤ xi ≤ 1;i = 1, . . . ,k) the

design region. The Sobol’ method relies on a decomposition of the simulator functionf (x) into

summands of increasing dimensionality:

f (x) = f0+
k

∑
i=1

fi(xi)+ ∑
1≤i< j≤k

fi j (xi ,x j)+ · · ·+ f1,2,...,k(x1, . . . ,xk), (3.1)

where f0 =
∫

Ωk f (x)dx.

For Equation (3.1) to hold the integrals of every summand over any of its own variables must

be zero: ∫ 1

0
fi1,...,is(xi1, . . . ,xis)dxik = 0 if 1 ≤ k≤ s.

Given this condition, Sobol’ proved that all summands in Equation (3.1) are orthogonal and all

terms can be evaluated via multidimensional integrals:

fi(xi) =− f0+
∫ 1

0
. . .

∫ 1

0
f (x)dx∼i ,

fi j (xi ,x j) =− f0− fi(xi)− f j(x j)+

∫ 1

0
. . .

∫ 1

0
f (x)dx∼(i j ).

where dx∼(i j ) denotes the integration over all variables exceptxi and x j . The variance-based

sensitivity indices can now be derived. The total varianceD is defined as:

D =

∫
Ωk

f 2(x)dx− f 2
0

and the partial variances are computed for each term in Equation (3.1):

Di1,...,is =
∫ 1

0
. . .

∫ 1

0
f 2
i1,...,is(xi1, . . . ,xis)dxi1 . . .dxis

40



Chapter 3 SCREENING

where 1≤ i1 < · · · < is ≤ k ands= 1, . . . ,k. By squaring and integrating Equation (3.1) overΩk

and by the orthogonality constraint we obtain:

D =
k

∑
i=1

Di + ∑
1≤i< j≤k

Di j + · · ·+D1,2,...,k.

The sensitivity indices used to measure the factor effects are given by:

Si1,...,is =
Di1,...,is

D
for1≤ i1 < · · ·< is ≤ k.

The indices are identified by anorder which is the number of input factors for that effect, e.g. an

index of order one measures the effect of a single input factor on the response, while an index of

order 2 measures interaction effect between two input factors. If k is the number of input factors,

there are
(k

1

)

, . . . ,
(k

k

)

Sobol’ indices of order 1,2, . . . ,k. SpecificallySi is called the first order

sensitivity index for factorxi and measures the main effect ofxi on the output, i.e. the fractional

contribution ofxi to the variance off (x). Si j , wherei 6= j, is known as the second order sensitivity

index and measures the interaction effect, that is the part of the variation off (x) due to factorsxi

andx j that cannot be explained by the sum of the individual effectsof xi andx j . We also note that

a consequence of these definitions is the sum of the sensitivity indices is 1 which helps interpreting

the magnitude of each sensitivity index.

The total effect index is defined as the sum of all Sobol’ indices for a specified input factor.

In particular, by partitioningx into x∼i andxi one can compute with a single Monte Carlo integral

the total effect for factorxi :

TSi = 1−S∼i,

whereS∼i is the sum of allSi1,...,is terms that do not include the indexi. The computation of

the total effect indexTSi does not fully characterise the effect of the factorxi on the system but

is much more reliable that the first order indexSi while avoiding the computation of all 2k − 1

sensitivity indices that involve the factorxi . In practice both the first order and total order indices

are computed for each factor as part of the sensitivity analysis of a simulator.

The Sobol’ formulation of sensitivity indices is very general and includes as special cases most

other sensitivity analysis methods (Archer et al., 1997).

3.1.3 Morris Method

The Morris method (Morris, 1991) is a popular and simple methodology for the sensitivity analysis

of computer simulators. The method, which is also known as the Elementary Effect (EE) method,

is predicated upon global approximations to the simulator partial derivatives.
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The method works as follows. Letk be the number of input variables for the simulator. The

design region for these factors is assumed to be linearly normalised to[0,1]k. The simulator

Y(·) is assumed to be a smooth real-valued function with domain containing the design region.

The elementary effect for thei-th input variable atx ∈ [0,1]k is the classic approximation to the

derivative ofY(·) with respect toxi evaluated at pointx:

EEi(x) =
Y(x+∆ei)−Y(x)

∆
. (3.2)

The divisor∆ is a fixed step size, andei is the unit vector in the direction of thei-th axis for

i = 1, . . . ,k. Each elementary effect is computed with observations at the pair of pointsx, x+∆ei

that differ in thei-th input variable by the fixed step size∆.

The classic approach for computing elementary effects is tostart from a pointx, from which

a trajectory is constructed withk random moves of size∆, each movement in the direction of a

coordinate axe, to end in the pointx+∆(e1+ · · ·+ek). In this form,k+1 evaluations of simulator

Y(·) are performed, ending with elementary effectsEE1(x), . . . ,EEk(x), see Morris (1991).

Now consider a set ofR pointsx1, . . . ,xR in the input space. At each pointxr , r = 1, . . . ,R,

we performk one-at-a-time (OAT) runs and compute elementary effectsEEi(xr) for every input

factor. The following sample moments are computed for each input factor:

µi =
1
R

R

∑
r=1

EEi(xr),µ
∗
i =

1
R

R

∑
r=1

|EEi(xr)| andσi =

√

R

∑
r=1

(EEi(xr)−µi)2

R−1
. (3.3)

The sample momentµi is an average-effect measure, and a high value suggests a dominant con-

tribution of thei-th input factor in positive or negative response values. The sample momentµ∗i

is a main-effect measure; a high value indicates large influence of the corresponding input factor.

The momentµ∗i was proposed in Campolongo et al. (2004) sinceµi may prove misleading due to

cancellation of effects. Non-linear and interaction effects are estimated withσi. The total number

of model runs needed in Morris’s method is(k+1)×R.

An effects plot can be constructed by plottingµi or µ∗i againstσi. This plot is a visual tool to

detect and rank effects. Factor effects close to the origin are the least influential. region

There is interest in doing input screening with as few runs aspossible but as the number of

input factorsk is fixed, the size of the experiment is controlled byR. Usually small values ofRare

used; for instance, Morris (1991) usedR= 3 andR= 4 in his examples. A value ofRbetween 10

and 50 is mentioned in the more recent literature, see (Campolongo et al., 2004, 2007). A larger

value ofRwill improve the quality of the estimations, but at the priceof extra runs.

The step size∆ is selected in such a way that all the simulator runs lie in theinput space and
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the elementary effects are computed within reasonable precision. The usual choice of∆ in the lit-

erature is determined by the input space considered for experimentation, which is ak dimensional

grid constructed withp uniformly spaced values for each input. The numberp is recommended

to be even and∆ to be a multiple of 1/(p−1), for example∆ = p/(2(p−1)), see (Morris, 1991;

Campolongo et al., 2004). The step∆ is usually kept at the same value for all the inputs, but the

method can be generalised to instead use different values of∆ andp for every input.

In Morris’s original proposal, the pointsx1, . . . ,xR were taken at random from the input space

grid. Campolongo et al. (2007) proposed spreading runs overthe design space by generating a

large number of trajectory designs and selecting a subset bymaximising the minimum distance

between them.

In the case of deterministic systems, a potential drawback of the OAT designs used in the EE

method, is that design points fall on top of each other when projected into lower dimensions. This

disadvantage becomes more apparent when the design runs areto be used in further modelling

after discarding unimportant factors. An alternative is toconstruct a randomly rotated simplex at

every pointxr , from which elementary effects are computed (Pujol, 2009).The computation of

distribution momentsµi ,µ∗i ,σi and further analysis is similar to the EE method, with the advantage

that projections of the resulting design do not fall on top ofexisting points, and all observations

can be reused in a later stage. A potential disadvantage of this approach is the loss of efficiency in

the computation of elementary effects, i.e. computing effects from a rotated simplex is suboptimal

when compared with the Equation (3.2) which is optimal for computing elementary effects.

3.1.3.1 Morris Example

An example of a two factor Morris design with the discretisation level set top= 10,∆ = p/(2(p−
1)) = 0.55 andR= 5 trajectories is used to identify the active factors of the following function:

f (x) = 3x1+x2
2. (3.4)

As evidenced by Figure 3.3(a) the ensemble of the trajectorydesigns cover the input space reason-

ably well. The distributional moments of the Elementary Effects are plotted in Figure 3.3(b) and

are tabulated below:

Factor µ∗ µ σ

x1 3 3 0

x2 0.86 0.86 0.37

The linear effect of factorx1 is evident as the EE deviationσ is zero while forx2 σ is 0.37

pointing to the non-linear effect of the factor. For factorx1 we note the highµ and lowσ values
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signify a linear effect. For factorx2 the largeσ value demonstrates the non-linear/interaction

effect. The agreement ofµ to µ∗ for all factors shows a lack of cancellation effects, due to the

monotonic nature of the input-output response in this simple example. In general this will not be

the case, particularly for models with non-linear responses.
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(a) Design with five trajectories marked 1-5.
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(b) Moments of Elementary Effects

Figure 3.3: Morris design and first two moments (µ∗, σ) of Elementary Effects for the synthetic
simulator function given in Equation (3.4).

3.1.3.2 Comparison To Sobol’

We demonstrate the efficiency of the Morris method compared to more traditional variance-based

sensitivity analysis methods described in Section 3.1.2. Campolongo et al. (2004) compared the

efficacy of the Morris method to the variance-based methods for relatively low-dimensional prob-

lems.

A simple yet highly multidimensional function is used to demonstrate the efficacy of the Mor-

ris screening technique compared to the Sobol’ method. Details of the function are given in the

Appendix B.4. The function has 99 inputs, and each of these inputs has one of five effects on the

function’s response: linear, periodic, polynomial of order 2 or greater, near-linear and step-linear

(Figure 3.4). In particular, gradient-based methods such as Morris’s will fail to identify step-linear

effects without sufficient coverage of the input space.

We note that since the function used to generate the synthetic data set is not monotonic, meth-

ods such as the partial rank correlation coefficient (Saltelli et al., 2000) which make such an as-

sumption are not appropriate and performed poorly as expected. We therefore do not include these

results here.

In Figure 3.5, we show the Morris variable ranking computed from 103 and 104 simulator

evaluations. The results are qualitatively stable suggesting the lower sample-size effect estimates
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Figure 3.4: Five types of functions represented in the multidimensional example: linear (dotted),
periodic (dotted), polynomial (dashed), near-linear (solid) and step-linear (dot-dashed).

are informative.

As Campolongo et al. (2007) point out, the sample sizes required for the Sobol’ method to ob-

tain reliable estimates of the main and total effect indicesare higher than those used in the Morris

method. Our experiments confirm this conclusion. Using 103 model evaluations, the uncertainty

of the Sobol’ indices is very high and no conclusions can be drawn with respect to factor relevance

(Figure 3.6(a)). The Sobol’ method provides satisfactory results when the sample size is increased

to 105(Figures 3.6(b) and 3.6(c)). As we would expect, the Morris method provides reliable qual-

itative results that are useful in the early stages of model analysis. In subsequent analysis, many

more simulator runs can be obtained in the reduced input space enabling the usage of the more ac-

curate variance-based methods. Our synthetic experimentsempirically demonstrate the efficiency

of the Morris method in a high-dimensional setting.

3.2 Sequential Morris

Computer simulators are often expensive to run, sometimes taking between several minutes to

hours in order to compute a single run. In such a case, screening across a large number of inputs

with Morris’s method requires a relatively large number of computer simulations, which may turn

into a very expensive computation.

We propose a sequential screening method. Such a method allows the experimenter to per-

form a initial number of runs, and, depending on the results obtained, continue with extra runs if

required. The methodology aims to separate between factorswith linear effect and with non-linear

effect. The rationale behind it is that ifσi is small for a given factor, then we should investigate

whetherσi remains small over other areas of the design region. At the end of experimentation,

those input factors for whichσi remained small are considered to have linear effect, and factors for
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Figure 3.5: Morris method applied to the 99-dimensional synthetic data set. The x-axis indicates
main effects (µ∗) and the y-axis non-linear and interaction effects (σ). Results are shown for 103

and 104 simulator evaluations.

which σi was bigger than a threshold have a non-linear effect on the output. A method of eliciting

the choice of threshold is presented in Section 3.2.1.

The justification of thresholding solely on the variance of the elementary effectsσi is that

independent linear effects of factors may be removed from the simulator output at a preprocessing

stage or during the emulation phase. The emulator GP function may be parametrised such that

factors with linear effects are incorporated in the mean function while omitted from the covariance

specification. If we denote byA the subset of{1, . . . ,k} which indexes factors with linear effects,

the GP prior may be written asY(x) = β+∑i∈A aiXi +Z∗ whereZ∗ is a stochastic process whose

covariance structure depends only on the variables with nonlinear effects, i.e. thosexi with i ∈
{1, . . . ,k} \A. The residual processZ∗ is therefore placed in a reduced dimensionality space

simplifying the design and inference tasks.

For our algorithm to run, a space filling design withM points is created. This design provides

the sequence of points at which the Morris OAT runs will be tested. Initially we select a good

space filling design, such as a Maximin Latin Hypercube (LH) (Morris and Mitchell, 1995). The

value ofM is selected such that(k+1)M is the maximum number of runs that can be performed

during the whole screening process.

A preprocessing stage orders the design points according tothe biggest distance between
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Figure 3.6: Sobol’ method applied to the 99-dimensional synthetic data set. The x-axis shows the
input index and the y-axis the mean and 95% confidence intervals. The confidence intervals were
obtained using 8000 bootstrap samples (Archer et al., 1997).
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points. The first two points are those whose Euclidean distance is largest; then the third point

maximises the minimum distance between itself and the first two points, then a fourth point is

ordered in the same way, and so on. This procedure of orderingpoints mirrors nearest-neighbour

clustering, but acts in an opposite manner as points are ordered from those farthest apart to end up

with closest points.

Example 1. For k = 3 input factors andM = 6 runs, consider a Maximin LH design in[0,1]3

with point coordinatesx1 = (4/5,1,3/5), x2 = (1/5,0,2/5), x3 = (2/5,3/5,0), x4 = (3/5,2/5,1),

x5 = (0,4/5,4/5) andx6 = (1,1/5,1/5). The preprocessing stage first selects the pointsx5 and

x6, which are furthest apart. The next point,x1, maximises the distance between those remaining

points and the first two points chosen. The procedure continues by selectingx2, then x3 and

finishes withx4. In summary, the preprocessing stage produces the ordered sequence of points

x5,x6,x1,x2,x3,x4, which are relabelled asx(1), . . . ,x(6).

The screening algorithm starts with the computation of elementary effects for all input fac-

tors at the first two points. OAT runs are created at those two points and elementary effects are

computed. With this initial data, a poor estimation of the momentsµi ,µ∗i andσi is available. If

for a given input factor, its sample momentσi is larger than a specified thresholdσ0 then we say

that this output is responding non-linearly to the corresponding input. We declare that input as

active and remove it from the list of current input factors. The technique continues by adding OAT

runs at the next point, but only for those factors not active.Elementary effects are computed and

moments are updated for each added point. Factors are then removed if the condition forσi is

met. The methodology ends when all input factors have been removed, or after computing ele-

mentary effects for allM points. On ending, the input factors are separated into two groups: those

having non-linear effect and those with linear or no effect on the output. Algorithm 3.1 sets out

the procedure in pseudo-code form, and a proposal for the thresholding valueσ0 is presented in

Section 3.2.1.

Example 2. To show how the proposed sequential algorithm works, consider Y(x1,x2,x3) =

cos(x3/5)(x2 + 1/2)4/(x1 + 1/2)2 on the design region[0,1]3. The functionY is treated as a

simulator, from which the only information we require are its values at design points. We use

the same pre-ordered LH design of Example 1; setp = 10 for step size∆ = 5/9 and threshold

σ0 = 0.15. See Section 3.2.1 for details on the construction of the thresholdσ0.

Random trajectories are constructed with the first two ordered points, giving the following mo-

ments of elementary effects(µ1,µ2,µ3)= (−6.37,−1.16,0.02) and(σ1,σ2,σ3)= (13.25,4.10,0.02).

The values ofσ1,σ2 are greater than the thresholdσ0 and thusx1 andx2 are separated as hav-

ing non-linear effects. Asσ3 < σ0, further investigation is required forx3. At the third design
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Algorithm 3.1 The procedure for completing our screening technique.

Screening algorithm

Input : SimulatorY(·) with k inputs; total number of one-at-a-time experimentsM; step size∆;
thresholdσ0.
Output : Momentsµi ,σi,µ∗i ; lists of factors with linear (C) and with non-linear effect (A).

A. Preprocessing stage

1. Set design region to[0,1]k and create space filling design withM pointsx1, . . . ,xM.

2. Order the design points using maximum distance between points. Label the ordered points as
x(1), . . . ,x(M).

B. Calculating the elementary effects

1. SetR := 2 and the initial design to beD :=
{

x(1),x(2)
}

. Set list of current factors toC := {1, . . . ,k}
and list of active effectsA := /0.

2. For every point inD, create one-at-a-time runs only for those input factors indexed byC. Run the
simulator at those points. This totals|C|+1 experiments for every point inD.

3. Using simulator runs from B2 and Equation (3.3), compute elementary effects{EEi(x) : x ∈ D, i ∈
C}.

4. If R= 2, compute momentsµi ,µ∗i andσi using elementary effects for all factors. IfR> 2, only
update moments for the current list of input factors, indexed byC.

5. Fori ∈C, if σi > σ0 then updateC :=C\ {i} andA := A∪{i}.

6. If C= /0, then all the inputs were identified active. Algorithm ends.

7. If R= M, then all the design points available are exhausted. Algorithm ends.

C. Producing the next design point

1. Update R:=R+1; setD = {x(R)}.

2. Goto B2.
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point, OAT experimentation only for the factorx3, produces updated momentsµ3 = 0.05 and

σ3 = 0.05< σ0, that is,x3 is still under investigation. The sequential methodology continues

for x3 until finishing with all the design points. At this final step,updated moments forx3 are

µ3 = 0.03 andσ3 = 0.05, i.e. the linearity of the response in terms ofx3 over the design region

could not be rejected. In fact, in the design region, the factor x3 has a near-linear effect, as defined

in Section 3.2.1.

The total experimental effort was 16 runs, from which the first 8 runs involved trajectories for

all factors, while further 8 runs were required for the linear factor under investigation. This is a

33% reduction from the(3+1)∗6= 24 runs needed to perform the complete EE method.

The moment estimates obtained for the non-linear factors are only rough approximations of

the true moment values, but the moment estimates for the linear factor were computed with more

information. This asymmetry is apparent when comparing with exact analytic sensitivity results

µ= (−5.34,6.62,−0.04) andσ = (8.88,7.42,0.06).

An alternative to using (and preprocessing) a design with a fixed number of runsM is to

instead consider points from an infinite sequence, from which points can be taken sequentially as

required. For example, points can be generated from alow discrepancyspace filling sequence,

such as Sobol’s or Niederreiter’s sequences (Niederreiter, 1992). The only change required in the

pseudo-code of Algorithm 3.1 is to remove step A2. Sampling from low discrepancy sequences

has the advantage of sequential generation of points. However, for small sample sizes the spread

of points of a low discrepancy sequence may not be as good as a space filling design with fixed

size.

3.2.1 Selection of variance threshold

In the sequential pseudo-code given in Algorithm 3.1, the elementary effect variance thresholdσ0

is an input. However it may be quite hard in certain cases to elicit. In this section an approach

to estimateσ0 indirectly by eliciting the expected divergence from linear of the factor effect is

presented. An application of the sequential procedure is presented on a synthetic test function in

Section 3.2.1.1 and on a real world simulator in Section 6.2.In Section 3.2.1.2 a simulation study

is used to empirically demonstrate the effectiveness of thethreshold calculation even in cases

where the factor effect deviates slightly from linear.

A linear (or near-linear) effect of the variablexi is represented by an additive noise model:

Y(xi) = axi +b+ ε, (3.5)

whereε is a normal random variable with zero mean and varianceγ and observations ofε are
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assumed to be independent. In other words, the marginal effect due to the factorxi is modelled

with a simple regression line. We will assume that the variance γ is known. In practice, this

varianceγ will be elicited prior to the screening experiment and it cantake several meanings:

1. We believe the factorxi has a linear effect but the simulator runs contain a numerical error.

In this case we expectγ to be set to small value, such as a multiple of machine precision.

2. We believe that small non-linear effects will not have an appreciable impact on the model

output. Hereγ should be chosen to reflect the level of variation from a straight line that we

will tolerate.

The capturing of information about the variance parameter is in sharp contrast to (Kadane

et al., 1980) and (Garthwaite and Dickey, 1988) where full probability distributions are elicited

that reflect beliefs about the parameters of the linear model. In the present application, we do not

wish to prejudge the behaviour of the model: we want a point estimate of how far from being

linear we can tolerate.

Given the varianceγ, the sampling distribution of the variance of the elementary effects can be

calculated according to the following lemma, whose proof isgiven in Appendix B.3.

Lemma 3.2.1. Let x1, . . . ,xR be univariate design points, at each of which trajectories are con-

structed. Assume that observations taken at design points and trajectories follow the model given

in Equation (3.5). Let elementary effects and moments be defined as in Equations (3.2) and (3.3)

and letσ2
Φ = 2γ

∆2 . Then

σ2 ∼ σ2
Φ

R−1
χ2

R−1. (3.6)

whereχ2
R−1 denotes a chi-square distribution with R−1 degrees of freedom.

Since the sampling distribution of the EE variance is now known we propose to use the 99%

quantile of the cumulative distribution function of the chi-square distribution to derive the EE

variance thresholdσ0. The following equation

P
(

σ2 ≤ σ0
)

= P

(

σ2
Φ

R−1
χ2

R−1 ≤ σ0

)

= 0.99,

which inverted yields the threshold

σ0 = χ2
0.99,R−1σ2

Φ/(R−1), (3.7)

whereχ2
0.99,R−1 is the 99% quantile of a chi-squared distribution withR−1 degrees of freedom.

In other words,σ0 defines a threshold over which the effect is considered non-linear, i.e. if
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σ2 > σ0 then the input variable will be retained. Note that Lemma 3.2.1 applies directly in a

multivariate setting, in which case the comparison is performed separately for each input variable.

In Example 2 we used a single thresholdσ0 for all variables. The valuesR= 6, ∆ = 5/9,
√γ = 8.7×10−2 and quantileχ2

0.99,5 = 15.08 were used to obtainσ0 = 0.15.

The method we propose might be thought of as a sequential hypothesis test, where the null

hypothesis is that data follows linear model described in Equation (3.5). To simplify the algo-

rithm the thresholdσ0 may be kept fixed for all computations rather than adaptingσ0 to the actual

number of trajectories involved. The main difference is in the degrees of freedom for the scaled

chi-square distribution in Equation (3.7). The adaptive approach, which is utilised in the simu-

lation experiments presented, involves recomputingσ0 with updated degrees of freedom prior to

step B5 in Algorithm 3.1. If the simplified approach, i.e. using only a single valueσ0 is used, the

method becomes more conservative, i.e. the rejection rate of a simple, linear model is higher with

fixed threshold than with a variable one.

3.2.1.1 Simulated high-dimensional example

In this section we illustrate the sequential screening method on the synthetic test function intro-

duced in Morris (1991). The function is defined on 20 inputsx ∈ [0,1]20 as follows:

y= β0+
20

∑
i=1

βiwi +
20

∑
i< j

βi j wiw j +
20

∑
i< j<l

βi jl wiw jwl +
20

∑
i< j<l<s

βi jlswiw jwlws, (3.8)

wherewi = 2(xi − 1
2) except fori = 3,5,7 wherewi = 2

(

1.1xi/(xi +0.1)− 1
2

)

. The coefficients

are set toβi = 20 for i = 1, . . . ,10, βi j = −15 for i, j = 1, . . . ,6, βi jl = −10 for i, j, l = 1, . . . ,5

andβi jls = 5 for i, j, l ,s= 1, . . . ,4. The remaining first and second order coefficients are generated

independently from a zero mean unit variance normal distribution and the remainder third and

fourth order coefficients are set to zero.

Given the range of the function defined in Equation (3.8) is approximatelyy∈ [−225,139], the

threshold value is set toγ = 2.6 corresponding to an approximate standard deviation from linear

of 0.005%.

As both Morris (1991) and Pujol (2009) show, factorsx1, . . . ,x7 have a non-linear effect on the

function output while factorsx8,x9,x10 have a linear effect and factorsx11, . . . ,x20 have negligible

effect.

The screening experiment was performed under the configuration used in (Pujol, 2009) for 100

realisations. As in Pujol (2009) the discretisation level has been set top= 20 and the number of

trajectories toR= 10. A total of 210 function evaluations are required for the batch EE procedure

while for the sequential EE procedure on average 150 are required with a standard deviation of 13.
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Factorsx1, . . . ,x7 are correctly identified as having non-linear effect 99 out of the 100 realisations.

Factorsx8, . . . ,x20 are found to have linear effects in 92% of the realisations. The full batch

EE screening results and the first step of one realisation of the sequential algorithm is shown in

Figure 3.7.

We conclude that the sequential approach results in significant computational savings com-

pared to the batch EE method as factors with clear non-lineareffects can be eliminated in the early

screening stages with high confidence.
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(b) Average batch results.

Figure 3.7: Applying the batch and sequential EE screening method on the 20 input factor Morris
test function. X axis isµ∗ and Y axisσ of Elementary Effects. Horizontal dashed red line denotes
theσ0 threshold value for the given step.

3.2.1.2 Simulation Results

We test the previous distributional results on two functions:

f (x) = 3x1+x2
2+N(0,γ) (3.9)

g(x) = 3x1+sin(x2)+x2
3 (3.10)

For f (x) we examine the threshold under a vary small prior varianceγ simulating the numerical

error scenario. The prior variance is set to
√γ = 1010ε ≈ 2−6. The Morris design was constructed

with p= 10 and∆ = p/(2(p−1)).

We perform 104 realisations of a simulation experiment withR= 3, R= 10 andR= 100

trajectories and plot the sampling distributions for both the linear and non-linear factor in Figure

3.8. ForR= 3 the quadratic effect factorx2 is incorrectly identified as near-linear 446 out of the 104

Morris experiments. In these cases, we would incorrectly classify the effect ofx2 as near-linear.

For the higher number of trajectories, no such errors occur.As the assumption of independent and
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Gaussian noise is satisfied for this scenario the theoretical distribution of the EE variance matches

very well the empirical distribution.
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Figure 3.8: Sampling distributions for EE variance for eachfactor using 104 realisations of the
experiment. Thef (x) function in Equation (3.9) is used.x1 has a noisy linear effect whilex2 has a
noisy quadratic effect. Dashed line is theoretical sampling distribution. Vertical dashed line is the
99% threshold.

For functiong(x) we use a truncated Taylor series to estimate the varianceγ which stems from

the linear approximation. We wish to consider sin(x) as having a near-linear effect and aim to

derive an appropriate value forγ. The first two terms of the Maclaurin series arex− x3

3! . Hence

we can approximate sin(x) with the linear functiony = x+N(0,γ). We get an estimate of the

varianceγ by examining the approximation errorε = supx∈[0,1] |x|3/3!. We treat the approximation

error bound as three standard deviations, i.e. 3×√γ = ε. Henceγ = (ε/3)2. The approximation

is shown in Figure 3.9.

The distribution of the EE variance is given in Figure 3.10 for R= 10 andR= 100. The vari-

ance has been set toγ= 0.0031 following the Taylor approximation. We can see clearlya mismatch

of the theoretical distribution to the empirical due to the non-Gaussianity and heteroscedasticity of

the noise. This does not improve asR is increased although the separation of the non-linear term

x3 becomes clearer. Therefore, despite the approximation error the non-linear term is correctly

identified.
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Figure 3.9: Approximation of sin(x) with a linear function and an appropriate varianceγ to capture
the discrepancy.
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Figure 3.10: Sampling distributions for EE variance for each factor using 104 realisations of the
experiment. Theg(x) function in Equation (3.10) is used. Dashed line is the theoretical sampling
distribution. Vertical dashed line is the 99% threshold.
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3.3 Conclusions

In this chapter a theoretical overview of existing screening methods that are used in practice when

dealing with high-dimensional spaces, has been presented.The focus of the experiments has been

on the input space of single-output models where inputs withnon-linear and interaction effects as

well as strong and weak effects on the response variable havebeen simulated.

If the simulator is quick to execute and a more detailed analysis of the effect of input variance

on the output variance is required, standard analysis of variance methods such as Sobol’ indices

(Section 3.1.2) can be used. They typically require many more runs than the Morris method as

was empirically demonstrated in Section 3.1.3.2 which precludes their usage on complex high-

dimensional problems but for simple simulators they can provide quite accurate results.

For complex high-dimensional systems even the standard Morris method (Section 3.1.3) can

require a prohibitively large number of simulator runs. In Section 3.2 a sequential version of the

Morris method is proposed where factors with non-linear effects are removed from subsequent

stages of the screening experiment. Factors that are shown to have a near-linear or no effect

on the output can be discarded from further analysis as theireffect can be removed during a

preprocessing stage through an appropriately specified mean function as discussed in Section 3.2.

Factors identified as having linear effects by the screeningprocedure can be treated independently.

The resulting screening procedure requires fewer simulator runs than the standard batch Morris

method. In order to apply the sequential Morris method, the analyst must make a number of

choices. To create the ordered design of OAT-experiment start-points, the maximum number of

trajectoriesM must be specified.M is recommended to be chosen with respect to the effort needed

to run the simulator; at worst, the simulator will need to be run (k+1)×M times. The step size∆

should be chosen so that the screening method will cover a large portion of the input space. The

threshold value,σ0, for discarding an input from subsequent OAT experiments can be set to zero

so that only true linear- and no-effect inputs are investigated. Even in the case of deterministic

simulators however, it is suggested to use a thresholdσ0 > 0 due to the computational errors in

simulators.

The threshold may be set using the elicitation method described in Section 3.2.1. This method

allows the prior specification of the divergence from linearof the factor effect in terms of a variance

term. More restrictive forms may be desired that allow deviation from linear only in certain regions

of the input domain and this is a direction for future research. In Section 6.2.4 an application of

the sequential Morris method to a stochastic model is presented and contrasted to the batch Morris

method.

A direction for future research would be to utilise higher-economy trajectory designs in the
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Morris method and to theoretically prove for a given number of simulator evaluations the optimal-

ity of a design with respect to economy. LetK be the number of variables, withR trajectories in

a Morris design,λ the total number of elementary effects calculated andM the total number of

model executions. Then as defined by Morris (1991) the economy is:

E =
λ
M
.

For the standard Morris trajectory design, a single point isshared for two elementary effect cal-

culations. The starting point is random and then shifted in each coordinate in sequence. The

economy then isE = K
K+1.

As noted by Morris (1991) higher-economy designs can be achieved if the number of points

in each trajectory is increased beyondK +1. The higher-economy designs modify the sampling

strategy so the samples for each set of elementary effects per variable are no longer taken inde-

pendently. As shown in Morris (1991) this is equivalent to cluster sampling and valid inferences

about the population can still be made. In Section 5.1 of Morris (1991) a class of designs similar

in structure to the standard Morris design but with higher-economy is proposed but no proof is

offered that for a given number of model evaluations the proposed design offers the maximum

possible economy. In Boukouvalas and Cornford (2007) we prove that for a design size of 2K the

maximum economy design is a hypercube. However a more general result for any design size

would be needed in practice.
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4.1 Introduction

Gaussian Processes (GPs) offer a principled way to perform many tasks including non-linear re-

gression. They are applied in a multitude of problem domainsand recent developments have

shown how they can be extended to handle large datasets (see Quinonero-Candela and Rasmussen

(2005) for a review). In this chapter we are specifically interested in large datasets which contain

replicate observations of outputs for given inputs. Examples of such datasets, which arise where

the underlying process truly behaves as astochastic processinclude WiFi network signal strengths

and stochastic computer (simulation) models.

In this chapter we present two novel methods of performing GPregression on complex datasets

with replicated observations under heteroscedastic, i.e.input dependent, noise. An overview of

existing work on heteroscedastic GPs is given in Section 4.2.

The Coupled Model presented in Section 4.4 extends the work of Kersting et al. (2007) by

considering replicate observations and applying corrections due to finite sample size effects. The

method of Kersting et al. (2007) is first discussed in Section4.3 and a new interpretation of its

working is offered that offers insight into the implicit approximations made in the method. We

also describe how to correct a systematic bias error in the method which results in significations

gains in predictive accuracy.

We introduce the issue of experimental design, that is the placement of input points, and

provide empirical evidence on the effectiveness of utilising replicate observations compared to

a space-filling design. The Coupled Model however is too complex to be utilised in the model-

based design approach we develop in Chapter 5. The Joint Likelihood model, in which a simpler

parametric variance model is used, retains tractability for the design framework and is discussed

in Section 4.5.

A comparison of the Coupled Model and two variations of the Joint Likelihood model on a

one-dimensional synthetic data set is given in Section 4.5.4. Finally in Section 4.6 we discuss

possible model extensions.

4.2 Relation to Existing Work

One approach to modelling heteroscedastic noise within a GPframework is to use a system of

coupled GPs modelling the mean and variance functions respectively. In Goldberg et al. (1998)

a Monte Carlo approach was utilised to incorporate the uncertainty of the variance GP into the

overall predictive uncertainty. The computational expense of this method however motivated an

approximation whereby only the most likely value of the variance is utilised and the associated

uncertainty around this estimate is discarded (Kersting etal., 2007). In both methods, the logarithm
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of the variance is modelled using an independent GP on the transformed spacez(x) = log(r(x))

wherer(x) is the variance. A different training set may in principle beused for the log variance

GP although in practice the same training set as for the mean GP is used.

Specifically, the predictive distribution at a new pointx∗ given a training setD = (xi , ti)N
i=1 is:

P(t∗|x∗,D) =

∫ ∫
P(t∗|x∗,z,z∗,D)P(z,z∗|x∗,D)dzdz∗,

wherez= log(r(x1), r(x2), . . . , r(xN)) the vector of variance predictions at the training points and

z∗ = log(r(x∗)) the predictive noise level at the new test pointx∗. Goldberg et al. (1998) use Monte

Carlo to evaluate this integral by sampling fromP(z,z∗|x∗,D). Kersting et al. (2007) propose to

use only the most likely values for the noise levels and approximate the predictive distribution

P(t∗|x∗,D) ≈ P(t∗|x∗, ẑ, ẑ∗,D) where ẑ, ẑ∗ the most likely values for the noise levels estimated

using the mean value of the log variance GP. As pointed out by Kersting et al. (2007) this approx-

imation is reasonable when the predictive variance of the log variance GP is sufficiently small so

ignoring it will not have a significant impact on prediction accuracy. The Kersting et al. (2007) is

extensively discussed in Section 4.3 as it forms the basis for the Coupled model we proposed in

Section 4.4.

The Goldberg et al. (1998) and Kersting et al. (2007) type of approach which we follow for

the Coupled Model in Section 4.4 allows for the specificationof different GP priors for the mean

and variance response. It is quite straightforward to incorporate most of the sparse approximations

(Quinonero-Candela and Rasmussen, 2005) to handle very large datasets in these methods.

Snelson and Ghahramani (2005) proposed the Sparse Pseudo-Input GP (SPGP) as a sparse

representation of a GP. The GPN2 dimensional covariance, whereN the number of training points,

is approximated by a lower dimensional projection of sizeM. TheM support points, known as

pseudo-points, need not be a subset of the original training set and are treated as model parameters

optimised through the maximisation of the likelihood. The construction allows for the implicit

modelling of heteroscedastic variance through the location and density of the support points.

Snelson and Ghahramani (2006) propose a modification to SPGP(hereafter SPGP+HS) where

an uncertainty parameter is associated with each pseudo-point and results in more accurate het-

eroscedastic prediction. The extra set of model parameterscontrol the influence of each pseudo-

input on the predictive distribution. The SPGP+HS predictive distribution is:

E(t∗|x∗,D) = Q∗NΣ−1t,

Var(t∗|x∗,D) = K∗−Q∗NΣ−1QN∗+σ2
nI ,
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whereσ2
n is a nugget parameter, the training data matrixΣ = QN + diag(KN −QN)+σ2

nI and t

the training data observations. The full GP covariance is denoted asKN andK∗ for the training

and test data respectively. The sparsity is achieved through theQ matrix whereQN = KNM(KM +

diag(h))−1KMN for training data andQ∗N = K∗M(KM +diag(h))−1KM∗ for the test data.h denotes

the vectorh= (h1,h2, . . . ,hM) of M parameters introduced in the SPGP+HS model to control the

influence of each support point. Examining the equations, wesee that the approximation is exact

for the diagonal of the training data matrixΣ. Theh vector affects the predictions through theQ∗N

matrix where the correlation of the test to support points iscalculated.

However no functional form of the variance is available so incorporating prior beliefs on the

smoothness of the variance response as well as certain analyses such as variable selection for the

variance of the output are not handled naturally in this framework.

Also as was noted in Snelson and Ghahramani (2006), this method does not perform well when

small numbers of observations are available due to the flexibility of the model. Large training set

sizes are uncommon in the emulation context where simulatorruns are typically expensive to

obtain – where the simulator is very cheap, its direct use might be preferred. The SPGP+HS

method could be used in our design framework discussed in Chapter 5 as the method is equivalent

to the specification of a non-stationary kernel for the GP andthe calculations remain tractable.

However the large number of free parameters would be problematic for small design sizes and for

larger designs experimental design has less impact on inference efficiency. Walder et al. (2008)

extend the SPGP method so that each basis function can have its own length scale. This improves

predictive performance in some scenarios but requires the optimisation of twice the number of

parameters.

Kleijnen and van Beers (2005) consider transformations of the output to remove the het-

eroscedasticity of the variance but are quite limited in their application. A “Studentising” trans-

formation is suggested to transform the simulator output ateach design pointx:

Z̃(x) =
Z̄(x)− Ŝ(x)
σ̂(x)/

√
m

,

whereZ̄(x) the mean value of the simulator output,S(x) the “signal function” used to detrend the

data,σ̂(x) a variance model andm the number of replicate observations. The signal function is

specifieda priori such that the data are of zero mean in the transformed space. Using the same

number of replicates at each design point, a zero-mean GP with a single nugget parameter can be

used in the transformed space as the distribution of the transformed variables is:

Z̃(x) ∼ N(0,
m

m−2
).
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For the variance function̂σ(x) the authors recommend to use the empirical sample variance if x is

a training point and otherwise use piecewise linear interpolation between the variances of the two

neighbouring training points. This method of interpolation avoids predicting negative variances.

4.3 The Kersting method

An extensive overview of the Kersting method is first provided in Section 4.3.1. We subsequently

correct a systematic bias in the method in Section 4.3.3 and offer a new interpretation of the method

in Section 4.3.4 which allows for a fuller understanding of the implicit approximations made. In

Section 4.4 we extend the Kersting model to allow for efficient inference when the training data

contain replicated observations.

4.3.1 Overview of the Kersting method

In this section we describe the Kersting approach (Kerstinget al., 2007) referring to it when we

say “the authors”. We thank the authors for providing code toreplicate most of the simulation

experiments presented in their paper.

As in Goldberg et al. (1998) the noise variance is modelled using a second GP in addition to

the GP governing the noise-free output value. In contrast toGoldberg et al. (1998), rather than

using a Monte Carlo approach to approximate the posterior noise variance, a most likely approach

is adopted, i.e. the uncertainty of the variance GP is not utilised.

The authors describe an iterative optimisation scheme for learning both the hidden noise vari-

anceszand the kernel hyperparametersθ = {θy,θz}. Unlike Goldberg et al. (1998), the noise free

y values are not explicitly represented. In fact Kersting alter the Goldberg et al. (1998) notation

and write down the observation model asti = f (xi)+N (0, r(xi)) wherer(xi) the input dependent

variance noise and the noise free values are denoted asf rather thany. However here we will use

y to keep the notation consistent with Goldberg et al. (1998).The noisy observed output value at

locationxi is denoted byti . As in Goldberg et al. (1998) the authors place a GP prior ony and

conditional on the noise levelsR= diag[exp(zi)] the predictive distributionp(t∗|t,R,θy) is:

E[t∗] = K∗
y (Ky+R)−1t (4.1)

Var[t∗] = K∗∗
y +R∗−K∗

y(Ky+R)−1K∗T
y . (4.2)

In Kersting et al. (2007) the squared exponential or a Matérntype covariance function is used

for Ky andKz. In the code an estimated nugget is used on both the y and z processes, i.e.R=

diag[exp(zi)]+σ2
nI whereσ2

n the nugget variance.
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To ensure the predicted variances are always positive, the variance GP prior is placed on the

logarithms of the noise levels, denoted byz(x) = log(r(x)). The authors state that in principle the

training set locationsX for the z-process could be different than for they process but for notational

convenience they are taken to be the same.

The authors state that as the noise rateszi are independent latent variables in the combined

regression model, the predictive distribution is:

p(t∗|t) =
∫ ∫

p(t∗|z,z∗, t)p(z,z∗|t)dzdz∗. (4.3)

This is equation (4) in the Kersting paper where we have changed the notation slightly to remove

the explicit conditional onX and have replacedD with t to be consistent with the Goldberg et al.

(1998) notation. The explicit inclusion ofz∗ in Equation (4.3) is not important and the equation

can be understood by considering only the training points asGoldberg et al. (1998) do (see first

equation in Section 2.1 of the paper).

The first termp(t∗|z,z∗, t) is a Gaussian prediction with mean and variance given by Equations

(4.1)-(4.2). As the authors note the problematic term in Equation (4.3) isp(z,z∗|t). In Goldberg

et al. (1998) a set of samples{(z1,z∗1),(z2,z∗2), . . . ,(zz,z∗k)} is generated and the integrals in Equa-

tion (4.3) are approximated by:

p(t∗|t) = 1
k

k

∑
k=1

p(t∗|z j ,z∗j , t).

This sampling procedure is computationally demanding so the authors propose to approximate the

integral by the most likely values:

p(t∗|t) = p(t∗|z̃, z̃∗, t). (4.4)

where(z̃, z̃∗) the most likely values, that is:

(z̃, z̃∗) = argmax
z,z∗

p(z,z∗|t). (4.5)

This will be a good approximation if most of the probability mass ofp(z,z∗|t) is concentrated

around the most likely values.

The authors state that now computing the most likely noise levels (Equation (4.5)) and the

predictive densityp(t∗|t) (Equation (4.4)) requires only standard GP inference. For the latter

this is clearly the case as computing the predictive densitygiven the most likely noise values is

straightforward. However the former is not clear, since a maximisation overp(z,z∗|t) is required.
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The approach taken by the authors is described in the following section.

4.3.2 Optimisation

In this section we discuss how Kersting et al. (2007) proposeto solve the maximisation problem

in Equation (4.5). In fact as we shall see the authors break upthe problem by estimating the

empirical noise levels first without direct reference to thevariance GP and subsequently utilising

the variance GP to smooth the estimates.

In particular the iterative optimisation algorithm proposed separates the estimation of the noise

levels and the parametersθ = {θy,θz}. The authors state that learning would be easy if the noise

level values were known for all data points.

The algorithm involves the following steps:

1. Given the observed datat, we estimate the parametersθy of a standard homoscedastic GP,

G1 by maximum likelihood. Specifically the optimisation problem is argmaxθy,σ2
n
p(t|θy,σ2

n)

whereσ2
n an input-independent nugget parameter. After this step we have a density estimate

for the noise-free values, i.e.p(y|t,σ2
n).

2. GivenG1, the empirical noise levelŝz for the training data are estimated, i.e. log(var[ti,G1(xi , t)]).

This is a crucial step in the algorithm and is discussed below. Essentially this is a smoothing

step across the (very noisy) empirical noise estimates using another GP,G2. In this stepθz

is estimated by maximum likelihood.

3. The combined heteroscedastic GPG3 is estimated usingG2 to predict the logarithmic noise

levels. In this stepθy is re-estimated. In the Kersting code a nugget term is also estimated.

Hence the optimisation problem solved is:

(θy,σ2
n) = argmax

θy,σ2
n

p(t|σ2
n,θy,z), (4.6)

wherez the smoothed logarithmic noise levels estimated using the most likely value ofG2.

4. If not converged, setG1 = G3 and go to step 2. In the code the number of iterations is

actually set a priori and no convergence criterion is used. Alternatively a metric of the

difference of the current parameter estimates to the previous step estimates could be utilised

as a convergence criterion.

The authors note that the algorithm is not guaranteed to improve the likelihood at each step

(as it is not strictly speaking EM) and may oscillate as it considers only most-likely completions

of the data.
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The authors identify the estimation of the empirical noise levels (step 2) as the crucial step in

the algorithm. The authors describe the problem thus:Giventhe observationst and the predictive

distribution of the current GP estimates (G1), find an estimate of the noise levels var[ti ,G1(xi , t)],

i.e. the variance of the observations at sitei with respect to the GP prediction at that site. The GP

predictive densityp(t∗|t,θy,z) utilises the most likely prediction of the smoothed noise levels z

obtained at the previous iteration. In the first iteration they are set to the input-independent nugget

of the homoscedastic GP, i.e.z= log(σ2
n).

A set ofssamples is obtained from the GP predictive density and are denotedt j
i , j ∈ {1, . . . ,s}

for training pointi. The authors state that viewing the observationti and each samplet j
i as two in-

dependent observations of the same noise-free, unknown target, their arithmetic mean(ti − t j
i )

2/2

is a natural estimate of the empirical noise level at sitei. The usage of the arithmetic mean is

further discussed in Section 4.3.4. Finally they take the expectation of the arithmetic mean with

respect to allssamples:

var[ti ,G1(xi , t)]≈
1
s

s

∑
j=1

1
2
(ti − t j

i )
2. (4.7)

The authors conclude by stating that this calculation minimises the average distance between the

predictive distribution and the observationti and hence for a large enough number of samples (s>

100), will be a good estimate for the empirical noise levels.We note the authors took a different

optimisation approach for a similar modelling scenario in Plagemann et al. (2008) where an outer

cross-validation loop is used to infer the GP hyperparameters whereby within each iteration a

numerical minimisation of the model likelihood is used to infer the noisy observations for the

latent GP.

4.3.3 Correcting systematic bias

As we saw in Section 4.3 only the most likely prediction of thenoise levels is used in the Kersting

framework to keep the calculations tractable. However in Kersting et al. (2007) the mean value of

the prediction from the variance GP is directly exponentiated. This results in under-predicting the

true noise levels by introducing a bias from the log transformation. The correct way to account for

the transformation can be found in the description of WarpedGPs (Snelson, 2007):

E[r∗] =
∫

exp(z∗)N(z∗|µ∗,σ2
∗)dz∗, (4.8)

whereN(z∗|µ∗,σ∗) the posterior variance GP prediction. This integral can be analytically solved

and corresponds to the mean value for the Log Normal distribution, i.e.E[r∗] = exp(µ∗+σ2
∗/2). A

simulation experiment demonstrating the effectiveness ofthe correction is shown in Figure 4.1. It

can be clearly seen that without the correction, the Kersting method does not recover the true func-
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tion even using an very dense training data set whereas utilising the log correction, the prediction

is accurate with no systematic error apparent.
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(a) Variance No Correction
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(b) Variance with Correction

Figure 4.1: Correcting the bias in the Kersting method due tothe log transformation. Synthetic
experiment using 1080 training points, showing the variance prediction for the Yuan and Wahba
test function (Equation (4.17)). Red solid line denotes thetrue variance and blue dashed lines
denote the prediction obtained using the heteroscedastic GP framework proposed by Kersting
with and without the log correction described Section 4.3.3. The systematic bias due to the log
transformation is evident when not corrected as the variance is underestimated everywhere in the
design region.

4.3.4 A new interpretation

The crucial step in the Kersting algorithm is the sampling from the GP of the previous step (ini-

tially a homoscedastic GP) to create variance observationsfor the variance GP inference (see

Equation (4.7)).

Examining the Monte Carlo sampling described by equation (4.7) we realise it is approxi-

mating an integral. Denoting ˆrτ+1
i the estimated variance observation at iteration stepτ+ 1, the

integral is:

r̂τ+1
i =

1
s

s

∑
j=1

1
2
(tobs

i − t j
i )

2 ≈ 1
2

∫
(tobs

i − ti)
2p(ti |t, r τ,θy)dti , (4.9)

wheretobs
i the observation at pointxi , t the training data observations andr τ the estimated noise

levels obtained at the previous iterationτ. Initially r τ is obtained from the homoscedastic GP and

is equal to the nugget term, i.e.r1 = σ2
n. The hyperparameters for the heteroscedastic GPθy are

fixed during this step. The conditioning on the training inputs x andxi is omitted for brevity. The

reason for the12 term will be explained later in this section.
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The distributionp(ti |t, r τ,θy) is simply the predictive GP distribution for training pointi:

E[ti] = K∗
y (Ky+Rτ)−1t

Var[ti ] = K∗∗
y + rτ

i −K∗
y (Ky+Rτ)−1K∗T

y ,

whereRτ = diag(rτ
1, . . . , r

τ
N) is the diagonal matrix of variances obtained at the previousstepτ

from the variance GP prediction.

Note that the observationtobs
i appears both in the conditioning ofp(ti |t, r τ,θy) and in the vari-

ance expression(tobs
i − ti)2. The resulting double counting may be rectified by conditioning on all

the sites excepti, i.e. p(ti |t−i, r τ,θy) wheret−i denotes the set of all training observations except

theith. This density differs in that the training data matrixRτ does not include the variance at point

i, rτ
i - see Equations (4.13)-(4.14).

We can reformulate the above expressions in terms of the distribution of the latent noise-free

variablesy:

E[ti] = E[yi]

Var[ti ] = rτ
i +σ2

yi
,

whereyi ∼ N(E[yi],σ2
yi
) the predictive distribution of the noise-free latent variable at sitei. Note

than both the predictive meanE[yi] and varianceσ2
yi

depend on the estimated variance levels ob-

tained at the previous iterationτ through theRτ matrix.

The integral in Equation (4.9) can be solved analytically:

r̂τ+1
i =

1
2

∫
(tobs

i − ti)
2p(ti |t−i , r τ,θy)dti =

1
2

[

(tobs
i −E[ti])

2+ rτ
i +σ2

yi

]

. (4.10)

If we treat the predictive densityp(ti |t−i, r τ,θy) as a likelihood and maximise with respect to

r i we obtain the maximum likelihood solution:

rML
i +σ2

yi
= (ti −E[ti])

2. (4.11)

If we fix the observed valueti = tobs
i we can re-express Equation (4.10):

r̂τ+1
i =

rML
i + rτ

i

2
+σ2

yi
. (4.12)

We can interpret this expression as the variance estimate atiteration stepτ+1 which is taken to be

the average of the maximum likelihood noise estimationrML
i and the previous smoothed estimate
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of the noise levelrτ
i . The termσ2

yi
expresses our uncertainty of the noise free function valueyi .

The inclusion of the noise-free varianceσ2
yi

in the estimation of the noise levelr i stems from

our inability to disambiguate the two sources of uncertainty, the intrinsic function variance and

our uncertainty due to not knowing the true noise-free modelvaluesy. When a large amount of

training data is available,σ2
yi
→ 0 and can be ignored. In sparse training data scenarios however

it acts as a regulariser by ensuring the variance estimate isgreater than a minimum threshold.

Examining the maximum likelihood expression for the noise level in Equation (4.11), we note if
(

tobs
i −E[ti]

)2
< σ2

yi
the sampletobs

i is too small and no useful estimate ofrML
i is available. In

such cases the inclusion of the noise-free uncertaintyσ2
yi

in Equation (4.12) prevents the algorithm

from considering very small or zero empirical variance estimates which would lead to overfitting

the observed data by the variance GP. An alternative viewpoint is to state that when(tobs
i −E[ti])2 <

σ2
yi

, the uncertainty on the noise free valueyi does not allow for a direct estimation of the variance

r i at that point.

In summary the Kersting method may be directly implemented without need for sampling by

directly evaluating:

r̂τ+1
i =

1
2

∫
(tobs

i − ti)
2p(ti |t−i , r τ,θy)dti =

1
2

(

(tobs
i −E[ti])

2+Var[ti ]
)

,

where

E[ti] = K∗
y(Ky+Rτ

−i)
−1t−i (4.13)

Var[ti ] = K∗∗
y + rτ

i −K∗
y(Ky+Rτ

−i)
−1K∗T

y , (4.14)

whereRτ
−i = diag(rτ

1, . . . , r
τ
t−i , r

τ
t+i , . . . , r

τ
N) the diagonal matrix of variances obtained at the previous

stepτ for all training points exceptxi .

The use of the previous estimate of the noise variance, i.e. therτ
i term in Equation 4.12, which

stems from a GP regression step on the log variances, allows the algorithm to take into account

the correlation between the variances of neighbouring points. Other approaches such as doing di-

rect maximum likelihood of the multivariate likelihoodp(t|r) lead to overfitting as the correlation

between variances is not considered. By placing a GP prior onr direct optimisation is challeng-

ing and a sampling type approach may be preferable such as theMetropolis algorithm originally

proposed by Goldberg et al. (1998), which is guaranteed to converge to the optimal solution. We

therefore see that the iterative nature of the Kersting algorithm allows for the variance correlation

to be considered without the need for computationally expensive sampling or high dimensional

non-linear optimisation. The heuristic nature of the approach however implies that no conver-
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gence guarantees are available although as both Kersting and we have observed, in numerical

experiments it performs reasonably well.

In Appendix A.1 we provide an alternate interpretation of the Kersting method by explicitly

deriving the empirical variance estimation step (Equation(4.9)) from the posterior distribution of

the noise process (Equation (4.5)). The derivation allows us to better understand the nature of the

approximations implicit in the Kersting method:

• Univariate optimisation: The optimisation of the empirical noise levels is performed one

point at-a-time rather than jointly. Further, a batch optimisation is used where the new

estimates for each variance level are not used in the estimation of the other noise levels until

the subsequent iteration.

• Noise-free targets: The noise-free latent variablesy are assumed to be known, i.e. the

varianceλy = 0. This is a reasonable assumption only under strong prior knowledge on the

noise-free process or for very dense training data where thevarianceλy is negligible.

• Equal-weighing: The maximum likelihood estimate of the noise level at each iteration is

averaged with the smoothed noise level from the previous iteration (see Equation (4.12)).

The two terms are weighed equally by taking their arithmeticmean.

• Variance of variance GP ignored: At no point in the algorithm is the variance of the variance

GP taken into account. Therefore in scenarios where the uncertainty of the variance GP

varies significantly (for e.g. under a clustered training set), the estimates of the variance

GP are all treated equally despite the differing amount of uncertainty associated with each

prediction.

In our opinion therefore the method can only be justifiably used in scenarios where either dense

training data are available or strong prior knowledge can beused to justify some of the approxi-

mations.

4.4 Coupled Model

We show how to extend the most likely heteroscedastic GP framework of Kersting et al. (2007) to

use replicate observations which permits more accurate andefficient learning of heteroscedastic

GPs. This section is an extension of Boukouvalas et al. (2009).

As in Kersting et al. (2007) we use a coupled system of GPs to predict the mean and het-

eroscedastic variance. Our framework can learn the GP usinga mixture of single and replicate ob-

servations, utilising the first two moments of the latter. The variance GP operates on log space to

69



Chapter 4 HETEROSCEDASTIC EMULATION

ensure the predicted variance is always non-negative. The log transformation however introduces

a bias whose effect can be significant since we expect relatively few replicates at each input point.

For this reason we introduce a correction to the sample log variance described in Section 4.4.1.

The modifications to the Kersting model and optimisation method used to infer the parameters

is described in Section 4.4.2.

Another issue commonly occurring in the context of complex datasets is that of experimental

design, i.e. where to obtain the observations in input space, and the related sequential problem of

active learning. Using our framework we assess in Section 4.4.3 the efficiency of different designs,

comparing the use of replicates against single observations, which better cover the input space. A

more principled approach to design is presented in Chapter 5.

Lastly, in Section 4.5.4 we demonstrate the Coupled Model method on a known test function

and compare it with the Joint Likelihood model described in Section 4.5.

4.4.1 Log sample variance bias correction

When computing the logarithm of the sample variance a bias isintroduced in the estimation due

to the non-linear transformation. The bias can be significant especially when using relatively

few observations. Standard theory (Cox and Solomon, 2003) allows us to estimate the bias and

variance of the log sample variance estimator:

z= log(S2)−ψ
(

n−1
2

)

− log2+ log(n−1) (4.15)

wherez is the true log variance,S2 is the sample variance estimate andΨ the digamma function.

The uncertainty of the estimate of the log variance can also be computed (Cox and Solomon,

2003):

σ2
S2 = Ψ2((n−1)/2), (4.16)

whereΨ2 is the trigamma function. A proof of these results is given inAppendix A.2.

These corrections can be applied directly to the estimationof G2 by using Equation (4.15)

to correct the sample log variance for each design point. Thecorresponding uncertainty of the

log variance estimates can be included in the likelihood ofG2 using Equation (4.16). The main

rationale for suggesting these improvements is to make the method more robust to smaller sample

sizes where the bias due to the log transformation can be significant.
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4.4.2 Utilising repeated observations

Explicitly considering replicated observations requiresonly small modifications to the Kersting

model. In particular for design points where only single observations are available, the inference

proceeds as in the original Kersting method described in Section 4.3.

We split the observations to two sets,r=replicate observations ands=single observations. For

replicated observations, the sample mean output ¯yi and corrected sample variance,r i is calculated

for each input pointi in the training set.

To initialise the algorithm, a standard homoscedastic GP (G1) is estimated by by maximum

likelihood on the two sets of observationstµ = {ts, tr} wherets = (y1, . . .ys) the vector of single

observations andtr = (ȳ1, . . . ȳr) the vector of empirical means for the replicated observations. For

the settr the observation error can be estimated as the distribution of the sample mean for Gaussian

variables is ¯yi ∼ N
(

µi ,
σ2

i
ni

)

whereµi the true mean,σ2
i the true variance andni the number of

replicate observations. By using the sample variances2 as an estimate of the true variance, a fixed

nugget of sizeσ2

n can be used in the covariance ofG1.

As in the original Kersting algorithm,G1 is used to provide an initial estimate of the variance

at design points where only single observations are available (see Step 2 in Section 4.3.2). For

replicate observations, the empirical variance of the training data atxi is computed. To correct for

the biased estimate due to the log transformation Equations(4.15) and (4.16) are used.

The combined set of estimated empirical variances for single observations and corrected log

samples variance for replicated observations is used in thetraining of the variance GP,G2. We

note here that typically the number of replicated observations is much smaller than the samples

obtained fromG1 when no replicate observations are available at the design point. Thus the

training ofG2 takes into consideration the noise on the variance, computed using Equation (4.16),

which is particularly important in the small sample case where the second moment estimates can

be quite noisy. This allowsG2 to smooth the variance estimates based on the prior GP specified,

and produces more reliable estimates of the underlying noise variance. Specifically the predictive

distribution equations forG2 are:

µG2∗ = K∗(K +RG2)
−1tS2,

ΣG2∗ = K∗∗+R∗
G2

−K∗T
(K+RG2)

−1K∗,

where the target valuestS2 are the sample log variances either estimated in the previous step in

the case of single observations or computed directly from the samples in the case of replicated

observations.K is the training point covariance,K∗∗ the test point covariance andK∗ the training-
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test point covariance. The matrixRG2 is defined as:

RG2 = σ2
G2

I +





Vs 0

0 Vr



 ,

whereσ2
G2

is the noise hyperparameter (nugget).Vs = diag(σ2
v1, . . .σ2

vS) is the variance of the log

variance from Equation (4.16) for the single observations where typically the number of sam-

ples is high since sampling from a GP is cheap. HenceVS will be nearly zero in most cases.

Vr = diag(σ2
S2

1
, . . . ,σ2

S2
r
) on the other hand contains the variance of the log variance for repeated

observations where the assumption is that there will be few replicates per training point and hence

the variance calculated in Equation (4.16) will be higher. The variance at the replicate pointsr

should in fact be lower than for the non-replicate sets but we are not aware of any suitable uncer-

tainty estimate of the variances for the latter. Heuristicssuch as settingVs = maxVr are possible

but have not been used in the simulation experiments.R∗
G2

= σ2
G2

I is the predicted noise level at

the test points.

As in the Kersting method, the hyperparameters of the heteroscedastic GP,G3, are then inferred

to jointly predict the mean and variance. The equations forG3 are slightly more involved since

the most likely value of the variance fromG2 is included and the effect of utilising moments of

replicated observations must be considered. The derivation of G3 is given in Appendix A.3. The

predictive distribution equations forG3 are:

µG3∗ = K∗ (K+RG3P
−1)−1

tµ,

ΣG3∗ = K∗∗+R∗
G3

−K∗T (

K+RG3P
−1)−1

K∗,

whereP= diag(n1, . . . ,nN) the number of samples at each training point,RG3 = diag[r(x1), . . . , r(xN)]

the variance estimate fromG2 at the training points andR∗
G3

theG2 variance estimate at the test

points. Note that the training target valuestr within tµ are the sample means and not individual ob-

servations of the underlying random process. Since the variance of the empirical mean is inversely

proportional to the number of replicated observations (seeAppendix A.3) the variance prediction

from G2 has to be divided by the number of replicatesni .

The algorithm is iterated until a suitably defined convergence criterion is satisfied (see the

discussion in Section 4.3.2 for a discussion of convergence).

4.4.3 Experimental Design Simulation Study

In this section we compare the approach of Kersting et al. (2007) with the replicate approach

presented in Section 4.4.2 on a variety of designs to examinethe effect of replication on predictive
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performance.

The synthetic datasetY originally used by Yuan and Wahba (2004) is utilised in this section:

y= 2(e−30(x−0.25)2
+sin(πx2))−2+esin(2πx)N (0,1), (4.17)

whereN (0,1) is the standard normal distribution. In Figure 4.2 a visualisation of the function is

provided. The validation measures used are the Mean SquaredError (MSE) and the Dawid score

described in Section 2.5 to assess the goodness of the mean and covariance prediction. A 2000

point single observation random design is used for validation.
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Figure 4.2: Visualisation of the Yuan and Wahba function (Equation (4.17)) used in the simulation
study in Section 4.4.3. (a) Mean (solid line) and two standard-deviation error bars (dashed line).
(b) Variance.

The training design we have used is space-filling where we either have single observations only

or the same number of replicate observations across all design points. For each realisation of the

experiment, 1000 realisations of random designs were generated and the design with the maximum

minimum distance is selected as the training set. Clearly inour framework more complex designs

are allowed with different number of replicates per training point but we have focused on these two

extremes to highlight the effect of replicate observationswithout making unrealistic assumptions

of prior knowledge on the shape of the true function mean and variance. Note that for the case

where only single observations are made for all design points, i.e. no replicate observations are

made, our method reduces to that of Kersting et al. (2007).

In Figure 4.3 the predictive performance of the Coupled Model on a progressively sparser set of

designs with more replicated observations is examined. Thetotal number of simulator evaluations

is kept fixed at 90, 300, 400, 600 and 1600. The benefit of a completely space-filling design

where only single observations are used is contrasted with asparser training design with more
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replicate observations per design point. For example, the bottom box corresponds to a total of 90

observations, being either a training set 90 observations or 30 training points of sample means and

variances computed using 3 replicate observations.
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Figure 4.3: Performance of replicate and non-replicate designs with the total number of observa-
tions fixed. Notation 30T3 = 30 training points each with 3 replicates. Results shown for a total of
90, 300, 400, 600 and 1600 observations used in the training set. A test set of 2000 points is used
for validation. For each input configuration 100 realisations of the experiment were performed
except for the 1600 simulator evaluation designs where only20 realisations have been used.

Overall there is little difference in terms of MSE and Multivariate NLPD signifying similar

performance with regards to the accuracy across all designsas can be seen in Figure 4.3. The dif-

ferences in Mahalanobis error are discussed below. For the smallest training size examined where

only 90 model observations are available, the highly clustered 30×3 design performs worse than

the space-filling 90×1 design in terms of both validation measures. In fact as willbe confirmed

in Chapter 5, highly clustered designs generally achieve worse MSE compared to space-filling

designs as the latter allow for more accurate interpolationdue to the better coverage of the space.

For the larger training sizes examined, the input space is sufficiently covered so all designs achieve

similar errors.

The replicate designs are however substantially faster to use from a computational perspective,

i.e. inference time, as the number of replicates increases.This can easily be understood since as
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the number of replicates increases, the number of training points decreases. The latter of course

determines the size of the GP training covariance matrix that needs to be inverted during inference.

We have replicated these results on the synthetic dataset originally used in Goldberg et al. (1998)

and obtained similar results.

We note here that the results presented here differ from Boukouvalas et al. (2009) where the

replicate designs were shown to achieve lower Mahalanobis errors and the conclusion drawn was

that they more accurately capture the variance response. However the large errors observed were

due to the bias error in the most likely variance prediction (Section 4.3.3) which has a larger

impact on single observation designs rather than replicatedesigns. Correcting the bias error, the

Mahalanobis error is smaller for all designs and especiallyso for the single replicate cases as can

be seen in Figure 4.3(d). Furthermore as noted by Bastos (2010) the Multivariate NLPD is more

appropriate for emulator comparison where different training sets are used. We will see however

in Chapter 5 that in higher-dimensional scenarios with sparse designs, replicate designs do in fact

capture the variance response more accurately than single observation designs.

We conclude from these experiments that using the first two moments of replicate observations

proves beneficial in terms of inference time without significantly affecting predictive accuracy

given sufficient coverage of the design space. In Chapter 5 wefurther investigate the effect of

replicated observations through a more rigorous experimental design approach.

4.5 Joint Likelihood Model

The model we develop in this section is similar to the SPGP+HSdescribed in Section 4.2 but

allows different mean and variance response structures.

In the most likely heteroscedastic framework of Kersting etal. (2007) and the extension pre-

sented in Section 4.4 only the predictive mean value of the variance GP is used whereas its predic-

tive variance is discarded. The complexity of explicitly optimising the variance GP therefore seems

unnecessary and a simpler interpolation model could suffice. We introduce a new heteroscedas-

tic model, which simplifies previously proposed models, making the optimal experimental design

problem more tractable. In addition, we believe that for some systems the variance response will

be less complex than the mean response allowing for the adoption of a simpler model for the

former while retaining the full non-parameter probabilistic GP for the latter.

In this section we present the Joint Likelihood model where the optimisation of the mean

and variance model parameters proceed jointly. The crucialsimplification is the consideration

of only deterministic variance models. The stochastic process for the variance GP is discarded

and replaced with a variance model of the formfσ2(x,β) with unknown parametersβ. The het-
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eroscedastic GP prior is thus:

p(µ|θ,x) = N
(

0,Kµ+diag(exp( fσ2(x,β))P−1)
)

,

where diag denotes the diagonal matrix of the input vector,Kµ is the usual covariance matrix

which depends on parametersθµ representing process variance and length scales,β the variance

model parameters andP a diagonal matrix containing the number of replicated observations at

each training point site. The set of free parameters for thismodel isθ = {θµ,β}.

The likelihood for the model when considering replicated observations is derived in Section

4.5.1. The two forms forfσ2 used in this thesis, the Fixed Basis and Latent-Kernel models, are

described in Sections 4.5.2 and 4.5.3 respectively.

4.5.1 Derivation of Likelihood

Assuming normality, the sample variance is distributed as ascaledX 2 distribution with ni − 1

degrees of freedom:

s2
i ∼

fσ2(x,β)
ni −1

X 2
ni−1

whereni the number of replicates at locationxi . This can also be expressed as a Gamma distribu-

tion:

p(s2
i |β,xi ,ni)∼ Γ

(

ni −1
2

,
2 fσ2(x,β)

ni −1

)

,

A zero-mean GP prior is placed on the mean:

p(µ|θ) = GP(0,Kθ), (4.18)

whereKθ is the input dependent correlation andθ the kernel hyperparameters.

The joint log likelihood of the sample mean ˆµ and variances2 for N observations can then be

derived:

log p(µ̂,s2|X,θ,β) =

(

N

∑
i=1

logp(s2
i |β,xi ,ni)

)

+ logN(µ̂|0,Kθ +RP−1), (4.19)

whereR the diagonal matrix with elements exp( fσ2(xi ,β)) andP the diagonal matrix of the number

of replicated observations. The derivation is given in Appendix A.4.

4.5.2 Fixed Basis

In the Fixed Basis variance model, the log variance functionis modelled as a linear-in-parameters

regression using a set of fixed basis functions:
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fσ2(x,β) = exp
(

H(x)Tβ
)

, (4.20)

whereH(x) is the set of fixed basis functions with known parameters. A simple example in 2D

space is a linear variance model:fσ2(x,β) = exp(β0+x1β1+x2β2).

Two types of basis functions have been considered in this thesis, local (e.g. radial basis func-

tions) and global (e.g. polynomial) to provide the input dependent nugget term. An advantage

of local basis functions is the interpretability of priors on the β coefficients as they relate to a

particular region of input space. However the number of local basis functions required for do-

main coverage grows exponentially with the input dimension. Polynomial and other global basis

are therefore better suited for higher-dimensional spacesbut imply a relatively simple variance

response.

4.5.3 Latent-Kernel

In high-dimensional cases a non-parametric method could beconsidered using an additional ‘vari-

ance kernel’. For the Coupled Model, the variance prediction of G2 is not utilised in the prediction

of G3. We further simplify this model by explicitly incorporating the mean prediction ofG2 as a

deterministic function intoG3:

fσ2(x,z) = kT
Σ (KΣ +σ2

n)
−1z,

whereKΣ = k(Xz,Xz) andkΣ = k(Xz,Xt) are the variance kernel functions, depending on parameters

θΣ andσ2
n a nugget term. In this casez is a variance ‘pseudo observation’ vector. In principle the

latent pointsXz could be set to the entire training data setXt of the GPKµ but for quicker inference

it can be set to a much smaller set without the need to be a subset of Xt .

Note that sparse approaches to this parametrisation, similar to Snelson and Ghahramani (2006),

are likely to be more computationally attractive. The main difference of this model from the model

of Snelson and Ghahramani (2006) is that we do not entangle the mean and variance response, al-

lowing separate kernels for each. This will be important where the complexity of the mean and

variance response is different. This model also bears resemblance to the Kersting et al. (2007)

model, however here we directly represent the log variance function as a non-parametric kernel

regression rather than employing a Gaussian process model and then using the most likely value.

This enables us to write down a simpler model, with the same flexibility as Kersting et al. (2007),

for which we can evaluate the design criterion in Chapter 5.

The parameters of the model areXz, z andθΣ the parameters of the kernel functionkΣ. Al-

though all could in principle be optimised, in the experiments presented we simplify the optimisa-
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tion task by fixingXz to a Latin Hypercube design and fixingθΣ to constant values. For example

for a squared exponential kernel (Section 2.4.2), the length scale is replaced by the location of the

latent variablesXz and the process variance by the optimised coefficientsz.

This model is of intermediate complexity. It is more flexiblethan the Fixed Basis model (Sec-

tion 4.5.2) allowing the specification of any kernel function for the variance response. However it

is more limited than the Coupled Model as the simulator variance is no longer treated as a random

variable but rather the variance responses are interpolated deterministically. An example of the

Latent-Kernel model is provided in Section 4.5.4.

4.5.4 Example of all three variance models

In this section a comparison of the Coupled (Section 4.4), Latent-Kernel (Section 4.5.3) and Fixed

Basis (Section 4.5.2) variance models via a simple one-dimensional example is provided.

The test function used in Section 4.4.3 is utilised as the stochastic simulator and a Latin Hy-

percube 200 point design with 4 replicates at each point is used as the training design. A squared

exponential kernel is used in all models, including for the variance GP in the Coupled Model.

The Coupled Model also includes a nugget parameter in the variance GP kernel specification.

The Latent-Kernel model consists of three latent pointsXz chosen to be equally spaced in the de-

sign space. Finally a quadratic function is used for the Fixed Basis variance model. All models

therefore have a total of five free parameters.

In Figure 4.4 the mean and variance prediction for all modelsis given. In terms of predictive

performance, the Coupled Model offers the best match to the simulator output. The Latent-Kernel

overestimates the variance in the high variance region of the simulator output when the distance

from the closest latent point increases. The variance prediction for the quadratic model is poor due

to the inherent inflexibility of the model. Due to the large training set size, the Coupled Model,

being the most flexible of the three, does best in this example.

4.6 Conclusions

The investigation of the Kersting method in Section 4.3 has allowed for a clear understanding

of the theoretical underpinnings of the method and the approximations implicit in its original

formulation. Furthermore the correction of the bias due to the non-linear transformation of the

most likely variance (Section 4.3.3) has significantly improved the accuracy of the method.

In Section 4.4 we have introduced the Coupled model which further extends the Kersting

model to the case of designs with a mixture of single and replicated observations. The introduction

of finite sample size corrections to the variance estimator,in conjunction with the corresponding
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Figure 4.4: Comparison of the Coupled, Latent-Kernel and Quadratic polynomial variance models.
(a)-(b)-(c) combined plots of mean and two standard deviation prediction. (d)-(e)-(f) standard
deviation prediction. Training set consists of using 200 point design with 4 replicate observations
at each site. Dots are the empirical means of the samples. Theblack solid lines are the true
function mean and standard deviation and the blue dashed lines the GP predictions.

uncertainty estimates allowed us to create coupled mean andvariance GPs using only small num-

bers of replicates per design point. Through a set of simulation experiments discussed in Section

4.4.3, the inference speed up when using replicated observations was clearly demonstrated. In

Chapter 5 we will develop a model-based design methodology that explicitly considers replicated

observations.

The Coupled Model however is still too complex to allow for tractability in the design calcu-

lations described in Chapter 5. We have therefore presenteda simpler class of variance models in

Section 4.5 where a deterministic function explicitly models the variance. Unlike existing meth-

ods which are either not tractable (Kersting et al., 2007; Goldberg et al., 1998) or do not allow

for a straightforward specification of the variance model (Snelson and Ghahramani, 2006; Walder

et al., 2008), the Fixed Basis class of models allow for both tractability and convenient elicitation

of prior beliefs about the simulator variance response. In the future, alternative parametrisations of

the Latent-Kernel model (Section 4.5.3) can be investigated rather than fixing the variance kernel

parameters or using a Latin design for the latent points.

In Section 4.5.4 we compared the Coupled and Fixed Basis models on a simple one-dimensional

toy example. Using a dense training set the Coupled Model performed best. However we envisage

that for sparser data sets the constrained nature of the Fixed Basis models will prove beneficial.
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All models presented in this chapter can be combined with existing GP extensions such as

online learning, dependent outputs, non-stationary covariance functions and sparse approxima-

tions. In the original paper Kersting et al. (2007) had also extended the heteroscedastic model to

include a projected process approximation (Rasmussen and Williams, 2006) and more sophisti-

cated sparsity approximations (e.g. Csato (2002); Snelsonand Ghahramani (2005)) can easily be

incorporated to help deal with larger data sets.

Our framework allows further analysis to be carried out in a straight-forward and efficient

manner using the emulator as a proxy for the simulator. Furthermore the computer model parame-

ter space can be explored without the necessity of a large number of (computationally demanding)

simulator runs. In combination with a discrepancy model andreal-world observations, these meth-

ods could facilitate the efficient statistical calibrationof stochastic models.
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5.1 Introduction

Experimental design plays a crucial role in the building of an emulator (Sacks et al., 1989), where

unlike data-driven learning we are able to choose the inputsat which the simulator is evaluated

with almost complete freedom. The simulator is typically expensive to run, thus it is beneficial to

optimise the input points at which the simulator is run giventhe availablea priori knowledge. The

GP emulator is then trained on the selected design set and corresponding simulator evaluations.

Section 5.2 reviews the current literature on experimentaldesign with a particular focus on

optimal design for parameter estimation. Our optimal design approach is presented in Section

5.3 which allows the calculation of optimal designs under heteroscedastic models with replicated

observations. The Bayesian formulation of optimal design where the design criterion is integrated

over the parameter prior is review in Section 5.4. The issue of optimisation in optimal design is

discussed in Section 5.5. The properties of our design approach are examined through a series of

simulation studies for Maximum Likelihood estimation in Section 5.6 and for Bayesian inference

using Hybrid Monte Carlo in Section 5.7. Conclusions and directions for future research are

discussed in Section 5.8.

5.2 Optimal Design For Parameter Estimation

In this section a brief overview of the theory of optimal design is presented. We begin with

an overview of traditional optimal design theory (Section 5.2.1) followed by a discussion of the

asymptotic results motivating the usage of the finite sampleFisher information in the presence of

correlated errors in Section 5.2.2. A description of the issues that arise in the correlated error setup

are given in Section 5.2.3. A discussion of extensions to theheteroscedastic, multiple objective

and adaptive setups and a review of criticisms of optimal designs is given in Section 5.2.4.

5.2.1 Optimal Design For Linear Models

Optimal design theory was first developed for linear models where several analytical results are

known on the properties of optimal designs. The relevant theory is reviewed and the most impor-

tant theorems described. The theory described here is only applicable to linear models. Where an

extension to a specific class of non-linear models has been proven, it is explicitly stated. In opti-

mal design theory for linear models a function of the information matrix of the model parameters

is optimised. Formally the design criterion is defined in terms of the Fisher Information Matrix

(FIM), a p× p symmetric matrix, wherep is the number of unknown parametersθ. The FIM for

a designξ is defined as:
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F (ξ,θ) =−
∫ ( ∂2

∂θ2 ln [L(X|θ,ξ)]
)

L(X|θ,ξ)dX,

whereL(X|θ,ξ) is the likelihood function. The most common design criteriaare D-optimality

where the negative log determinant of the FIM is minimised, i.e.− log|F (ξ,θ)| and A-optimality

where the trace of the inverse is minimised, i.e. tr(F (ξ,θ)−1) (Atkinson and Donev, 1992).

A designξ of sizeM is typically denoted as :

ξ =







x1, x2, · · · , xM

ω1, ω2, · · · , ωM







wherex1,x2, . . . ,xM are theM design points. Denote byN = ∑M
i=1Ni the total number of simulator

evaluations. The weights associated with each design pointωi = Ni/N usually represent or are

proportional to the number of replicate observations. The weightsωi can also be regarded as

precision or duration of the measurements (Müller, 2005). WhenNi andN are positive integers the

design is known as exact but a large part of optimal design theory aims to approximate the discrete

ξ with a continuous-in-ω design measureξ(x) such that the optimisation problem is reduced in

complexity (Müller, 2005). The design in the latter case is termed approximate.

For approximate optimal designs, the General Equivalence Theorem (GET) can be used to

check the optimum design is minimally supported, i.e. designs with fewer points are not optimal.

Also for approximate designs, G-optimal design where the predictive variance is minimised is

equivalent to D-optimality where we minimise the generalised variance of the parameter estimates

or equivalently maximise the information gain of the parameter likelihood (Atkinson and Donev,

1992, p57).

Chaloner and Larntz (1989) derive a generalisation of the GET for concave design criteria for

non-linear models and present simulation results on a logistic regression example for Bayesian D

and A optimality. In Bayesian optimal design, the criterionfunction is the integral of the corre-

sponding criterion function over a parameter prior, i.e.
∫
F (ξ,θ)p(θ). In their simulation exper-

iments they demonstrate that as the prior becomes less informative, the number of support points

required for a minimally supported optimal design grows without bound. This intuitive result was

later proven formally by Braess and Dette (2007).

Formally the GET is defined below. If the design criterion isconcavethen aφ-optimal ξ∗

design can be equivalently characterised by any of the threeconditions:

1. ξ∗ maximisesφ(ξ).

2. ξ∗ minimises supx∈X d(ξ,x) where d(ξ,x) the directional derivative ofφ(ξ) atξ in the direc-

tion of x.
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3. supx∈Xd(ξ∗,x) = 0

whereX is the candidate set. For the theorem to applyX must be a compact set, the derivatives

for φ must exist and be continuous in x. The directional derivative d(ξ,x) is also known in the

literature as the sensitivity function. The GET allows one to check the optimality of a given design

by examining the sensitivity function.

The GET can be used to construct an efficient optimisation routine for optimal designs known

as the exchange algorithm which proceeds sequentially by adding the pointx that maximises the

sensitivity function and removes the point that has the least impact on the sensitivity function

(Müller, 2005).

For linear models the number of support points can be boundeddue to additivity of information

matrices top(p+ 1)/2. Additivity does not hold for non-linear models so no boundis known.

Bayesian or composite designs for linear models are not bounded since the criterion is a linear

function of multiple information matrices (Atkinson and Donev, 1992, p165). The GET however

still holds for the Bayesian design of linear models (Atkinson and Donev, 1992, p165).

Optimal designs for linear models place points on the edges of the design space (Fedorov,

1972). MacKay (1992) proves this results also holds for Bayesian optimal design of linear models

with homescedastic noise. This can also hold for non-linearmodels where a Gaussian approxima-

tion used in the proof is valid, i.e. the second derivative ofthe interpolator function with respect to

the parameters is neglected in the expansion of the interpolator around its most probable value. In

particular MacKay (1992) finds that to obtain maximal information about the parameter posterior

of the interpolant, the next observation should be sampled where the variance of the interpolant is

largest. For many interpolators, including linear models,the variance is largest beyond the most

extreme points where data has been gathered. This approach would therefore place the design

points on the edges of the design space.

5.2.2 Justification for FIM under Correlated Errors

When considering correlated processes, the majority of theresults described in the previous sec-

tion do not apply. The theoretical basis on which the usage ofFisher information for design under

correlated errors relies is described here.

In GP regression, a parametric covariance function is used to model the variance and corre-

lation of the unknown function. The parameters of the covariance are usually estimated using

Maximum Likelihood (ML) or sampling. By utilising asymptotic results of parameter estimators,

useful approximations to finite sample properties can be constructed. Two asymptotic frameworks

are used in the literature (Zhang and Zimmerman, 2005; Stein, 1999a):
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• Increasing domain. The minimum distanceδ between neighbouring points does not collapse

to 0, i.e. δ > 0, as the number of design points goes to infinity. The domain of the design

space is unbounded.

• Infill domain. The design domain is bounded and as the number of points goesto infinity,

δ → 0.

Zhang and Zimmerman (2005) have found that for certain consistently estimable parameters of

exponential kernels with and without a nugget under ML estimation, approximations correspond-

ing to these two asymptotical frameworks perform about equally well. A parameter is consistently

estimable under a given estimator (e.g. ML) if the sequence of estimators converge in probabil-

ity to the quantity being estimated as the sample size grows without bound. Mathematically, a

sequence of estimatorstn;n≥ 0 is a consistent estimator ofθ if and only if, for all ε > 0, we have:

lim
n→∞

Pr{|tn−θ|}< ε}= 1.

For parameters that are not consistently estimable however, the infill asymptotic framework is

preferable. The finite sample Fisher information is found tobe a compromise between the two

frameworks.

Mardia and Marshall (1984) showed under increasing domain asymptotics that the Maximum

Likelihood (ML) estimatorθ̂ converges in probability to the true parameterθ, θ̂ → N(θ, I−1(θ))

whereI(θ) is the Fisher information matrix. Unfortunately no such general results exist under

infill asymptotics. Abt and Welch (1998) show that under infill asymptotics for the triangular,

exponential and Gaussian kernels, the variance of the ML estimator still asymptotically converges

to the inverse of the Fisher information matrix. The Gaussian kernel result was demonstrated using

simulation and not a formal proof.

Pázman (2007) provides justification of the FIM for small noise levels without using asymp-

totics in the proof but rather using a truncated function expansion which is only valid for very low

process noise levels. No bound is given on how small the process variance has to be for the proof

to be valid. Furthermore no nugget is included in the model.

An experimental justification for the use of the FIM under homoscedastic noise was given in

Zhu and Stein (2005) where simulations from Matérn covariance-function based GPs were used to

study whether the inverse Fisher information matrix is a reasonable approximation to the empirical

covariance matrix of ML estimators.
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5.2.3 Issues in Optimal Design for Correlated Processes

When non-linear models with non-concave design criteria are considered the GET and additivity

of the information matrices do not hold. The focus of this thesis is on optimal design when a

correlation structure is present and the aim of the design isthe estimation of the parameters of

the correlation function. Unfortunately the nice featuresof well established design theory, such

as additivity of the information matrix and concavity of design criteria, do not carry over to this

setting (Müller and Stehlík, 2009). In the particular case of computer experiments, Müller and

Stehlík (2009) identify the following issues:

• Asymptotic unidentifiability. As Zhang and Zimmerman (2005) show the finite sample

Fisher information matrix approximation breaks down when certain kernel parameters are

not consistently identifiable under infill asymptotics.

• Non-replicability. In the field of computer experiments, replication in experimental design

is not desirable in the case of deterministic simulators. Therefore, some authors (Bursztyn

and Steinberg, 2006) use other approaches to design of computer experiments such as space-

filling designs, discussed in Section 2.3. Another approachis via optimisation to consider

only replication-free designs altough the resulting design is no longer optimal. When con-

sidering stochastic simulators as in this thesis, this is not an issue as replicated observations

are informative.

• Non-additivity of the information matrix. The informationfrom different design points

cannot be separated as in standard theory.

• Choice of correlation structure and design robustness. Forcertain kernels such as the ex-

ponential, the optimal design without a nugget collapses toa single point which for other

choices of kernel would carry little information. Thus misspecification of the covariance

function can lead to very ineffective designs.

• Nugget effect. For certain kernels such as the exponential,the optimal design has been

shown to collapse to a single point for two point designs. Such behaviour is avoided by the

introduction of a nugget parameter.

5.2.4 Extensions and Criticisms of Optimal Design

Most of the literature on optimal experimental design assumes homoscedastic noise. Tack et al.

(2002) examine optimal design under a fixed basis linear-in-the parameters model. Although

stochastic processes are not considered, the variance model used is similar to the fixed basis model
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utilised in this work. They follow a Bayesian approach to design and demonstrate that informative

priors lead to more efficient designs.

In certain cases there may exist multiple objective functions which depend upon different infor-

mation matrices. Compound optimal design provides a general approach of combining multiple

such objective functions such as model discrimination (T-Optimality) and parameter estimation

(A- or D-optimality) via a weighted average of their information matrices (McGree et al., 2008).

Compound designs may also be used to generate designs with non-equal emphasis on the trend

and covariance parameters (Müller and Stehlík, 2010).

Hybrid criteria that explicitly combine prediction and parameter estimation also have been

developed (Zimmerman, 2006; Zhu and Stein, 2006). Zimmerman (2006) proposes local EK-

optimality, a linear combination of the maximum predictivevariance and a scalarisation of the

covariance of the ML parameter estimate. While this criterion selects observations which reduce

parameter uncertainty and predictive uncertainty given the current parameter, it does not take

into account the effect of parameter uncertainty on prediction error (Krause et al., 2008). To

address this issue, Zhu and Stein (2006) propose an amended criterion, which they term Estimation

Adjusted, and derive an iterative algorithm which alternates between optimising the design for

covariance estimation and spatial prediction. Krause et al. (2008) note that the hybrid design

criterion is not a submodular function and no theoretical bounds are available on its optimisation.

Optimisation issues are discussed further in Section 5.5.

Seeger (2008) presents a sequential adaptive optimal design method using a linear model with

a sparsity prior on the model parameters. The expectation propagation (EP) algorithm is used

for inference. For optimal design the information gain of the parameter posterior is used as the

design criterion. Seeger (2008) does not contrast the proposed design to other designs such as

space-filling (see Section 2.3).

In the case of GPs, Krause and Guestrin (2007) present an exploration-exploitation approach,

where initially the parameter uncertainty is reduced followed by the near-optimal selection of

observations where the parameters are assumed known. They derive a bound on the benefit of

continuing the exploration phase which is used as a stoppingrule to decide to switch to the ex-

ploitation phase. Intuitively, if the parameter posterioris highly peaked, very little benefit can be

gained from further exploration steps as opposed to ana priori batch exploitation design.

Several papers criticise traditional optimal design for linear models as the points are placed on

the boundary of the design region. O’Hagan and Kingman (1978) suggest such a design strategy

is not robust to model error and specifying the design regioncan in practice be very difficult. To

protect against model error, the authors argue the resulting design should cover the space well and

use as many distinct points as possible in order to detect every form of deviation from the proposed
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model.

MacKay (1992) states that placing points on the edges of the input space might be considered

non-ideal behaviour because in fact the practitioner is notinterested in the interpolant behaviour

in those regions. He proposes a transductive approach wherean entropy criterion is maximised

with respect to future unsampled design locations. A transductive approach is also taken by Yu

and Bi (2006) where the predictive variance of a linear modelis minimised. The authors apply

reproducing kernels to kernelise the criterion and addressthe scalability issue with an EM-like

iterative two step optimisation algorithm. The non-linearkernel criterion is maxX tr[KVX(KXX +

µI)−1]KXV] subject toX ⊂V, |X|= mwhereV is the candidate andX the selected set of sizem, µ a

positive regulariser and K the specified kernel matrix with kernel functionk(., .). This criterion can

be interpreted as maximising the trace of the test-train point correlation in the variance prediction

of a GP.

5.3 Fisher information for Replicated Observations

In this section we derive the Fisher information for the Joint Likelihood model (Section 4.5).

In the case of multivariate normal distributions the FIM canbe computed analytically. The

parameters may also appear in the mean function of the prior GP but the focus of this work is on

identifying covariance function parameters and we will assume the mean function parameters are

known or of no interest. Therefore letX be distributed asN(0,Σ(θ)), the j, pth element of theF

is:

F
jp

N =
1
2

tr

(

Σ−1 ∂Σ
∂θ j

Σ−1 ∂Σ
∂θp

)

, (5.1)

where tr denotes the trace. For a proof see Pázman (2004).

The( j, p)th element of the FIM for parametersθ j , θp of the heteroscedastic model with repli-

cate observations is:

F jp =
M

∑
i=1

F jp
si +F jp

N , (5.2)

where

• M is the number of design points.

• F jp
si = ni−1

2
∂ fσ2

∂θ j

∂ fσ2

∂θp
whereni is the number of replicate observations at design pointi and

∂ fσ2

∂θ j
the derivative of the variance modelfσ2(θ) (Section 4.5) with respect to parameterθ j .

In the case of the fixed basis model (Section 4.5.2)fσ2(x,β) = exp(H(x)Tβ) and F jp
si =

1
2(ni −1)H(xi)

TJjH(xi)
TJp whereJj the zero vector withjth element 1 andH(x) the basis
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function matrix.

F jp
si reflects the contribution of the sample variance to the parameter uncertainty. If we

examine the formula,F jp
si = 0 unless bothθ j andθp are parameters of the variance modelf

and the number of replicates is at least 2, i.e.ni > 1.

• F jp
N = 1

2tr(Σ−1 ∂Σ
∂θ j

Σ−1 ∂Σ
∂θp

) as defined in Equation (5.1).

A complete proof is given in Appendix A.5.

For illustrative purposes, the FIM for a fixed basis variancemodel is derived. The GP prior

is N(0,K +RP−1) andR= diag(exp(βx)) the Log-Linear fixed basis variance model for a one-

dimensional input space with zero nugget. AlsoP= diag(ni) the diagonal matrix of the number

of replicate observations. The model specification is completed by specifying the kernelK with a

single parameter, the length-scaleλ. For this model, the FIM is:

↓ θi , θ j → λ β

λ 1
2tr
(

Σ−1 ∂K
∂λ

)2
1
2tr(Σ−1 ∂K

∂λ Σ−1 ∂R
β P−1)

β 1
2tr(Σ−1 ∂R

β P−1Σ−1 ∂K
∂λ )

1
2tr
(

Σ−1 ∂R
β P−1

)2
+∑M

m=1
ni−1

2 β2

whereΣ = K +RP−1, ∂R
β = R⊙ x, and⊙ denotes the Hadamard element-wise matrix multiplica-

tion.

5.4 Bayesian Design

The calculation of the FIM is defined for a given parameter value vector,θ0. If a point estimate for

θ is used the design is termed locally optimal, in the sense that an optimal design is obtained for

that specific parameter valueθ0. In practiceθ will not be knowna priori so a Bayesian approach

is preferred. In full generality, a Bayesian design criterion (Chaloner and Verdinelli, 1995) is

specified as:

U(ξ) =
∫ ∫

U(θ,ξ,Z)p(θ|Z,ξ)p(Z|ξ)dθdZ,

whereξ the proposed design,p(θ|Z,ξ) the parameter posterior,p(Z|ξ) = ∫
p(Z|θ,ξ)p(θ)dθ is the

marginal distribution of the response dataZ over the prior distribution ofθ. The utility function

U(θ,ξ,Z) is problem specific. When the design goal is the minimisationof parameter uncertainty,

several authors (Chaloner and Verdinelli, 1995; Zhu and Stein, 2005) have proposed Shannon

information as a useful utility.

Defining the utility as the Shannon information and utilising a Normal approximation to the

parameter posteriorp(θ|Z,S), Chaloner and Verdinelli (1995) arrive at the following design crite-

rion:
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U(ξ) =−
∫

ln |F (ξ,θ)| p(θ) dθ (5.3)

where p(θ) is the prior on the parameters and|F (ξ,θ)| the determinant of the FIM given by

Equation (5.2).

Intuitively, as the finite sample FIM approximates the asymptotic distribution of the ML esti-

mator (Section 5.2.2), this criterion integrates the log variance of the ML estimates of the param-

eters over the prior distribution (Zhu and Stein, 2005).

The integral in (5.3) can be approximated using Monte Carlo techniques:

U(ξ)≈− 1
N

N

∑
i=1

ln |F (ξ,θi)| (5.4)

for N samples from the priorp(θ). As in Zhu and Stein (2005), in the simulation studies (Section

5.6) a coarse uniform discrete priorp(θ) is used to speed up the evaluation of the design criterion.

5.5 Optimisation

To complete the specification of the experimental design algorithm the method of optimisation

must be defined. The most commonly employed approach is to select a subset of points from a

large candidate design set (Zhu and Stein, 2005). A completeenumeration of all possible designs

quickly becomes infeasible as the number of candidate points increases. Various search strategies

have been proposed in the literature to address this limitation. Some authors have suggested us-

ing a stochastic algorithm like simulated annealing with multiple restarts to guarantee robustness

(Zhu and Stein, 2005) or random sampling where an information gain is estimated for each can-

didate point by averaging the design score over all searchesin which this point was included (Xia

et al., 2006). Computational aspects of the optimisation methods we have utilised are discussed in

Section 5.5.1.

We have implemented a simulated annealing (SA) type algorithm (Dréo et al., 2003) which

is described in Algorithm 5.1 and includes multiple restarts to ensure robustness. The algorithm

parameters were set to the following values:

Parameter Value
Degree of Parallelism d = 8
Fitness function f f (X) =− log|F |
Initial steps to determine temperatureNt = 200
Maximum iteration count M = 5×104

The perturbation function used in SA is described in Algorithm 5.2. In step A of the SA algorithm
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described in Algorithm 5.1, the design is perturbed in a continuous fashion and it is not until

step B that the optimal design is matched to the candidate set. This discretisation process may

significantly alter the continuous design depending on the coarseness of the candidate set. This

approach was taken to ensure that the SA optimisation only generates designs that are subsets of

the candidate set and may therefore be directly comparable to other optimisation schemes such as

the greedy approach discussed below.

Greedy optimisation, described in Algorithm 5.3, is a sequential procedure where at each step

the input point from a candidate set which maximises the score gain is included in the selected set.

In Xia et al. (2006) the greedy approach is shown to be superior to simple stochastic optimisation

schemes through a set of simulation experiments. We confirm this result, providing further experi-

mental results supporting the effectiveness of the greedy approach in Section 5.6.3. Computational

aspects for both the Greedy and Simulated annealing methodsare discussed in Section 5.5.1.

If the score function is in fact a monotone submodular function, then the solution obtained via

the greedy algorithm is guaranteed to be within constant factor of 1−1/eof the optimum solution

(Krause et al., 2008). A submodular function must satisfy the “diminishing returns” condition

where for setsA⊆ B⊆V andy∈V \B it holds thatF(A∪y)−F(A)≥ F(B∪y)−F(B).

In the machine learning area, the Fisher information has been used for active learning (Hoi

et al., 2009) where a submodular function was found to be a good approximation to the FIM in the

case of classification assuming small length-scales.

In the case of linear models under conditional suppressor freeness (Das and Kempe, 2008),

Bayesian A-optimality is a submodular function (Krause et al., 2008). A variableXj is a suppressor

variable if it "suppresses" the correlation between some otherXi and the predictor variable Z, in the

sense thatXi appears not correlated with Z but is much more correlated with Z onceXj has been

sampled (Das and Kempe, 2008). As an example, Das and Kempe (2008) state that if variablesXi

and Z are independent andXj =Xi +Z thenXj would be a suppressor variable. In most other cases

of optimal design such as Bayesian D-optimal design Krause et al. (2008) have demonstrated that

the corresponding objective functions are not submodular.Despite the lack of submodularity, the

greedy optimisation method has performed well in our simulation experiments.

As Zimmerman (2006) notes, the Fisher information of stationary isotropic GPs is invariant

to translations of the design so optimisation can be sped up by not considering designs that are

equivalent. Such optimisation has been not implemented in our experiments.

One challenge with the sequential greedy optimisation method is initialisation. It is necessary

to have at least two points to compute the Fisher score in Equation (5.4), with more providing

better numerical stability. A potentially useful initialisation is to evaluate the Fisher score for all

point pairs. Alternatively a space-filling design, such as the Latin Hyperube, could be used for
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initialisation. In our simulation experiments, we initialise the algorithm by selecting the centroid

point of the candidate set as the initial design point. This compromise appears to have little effect

on the final designs found as shown in Section 5.6.3.

Algorithm 5.1 Simulated Annealing algorithm based on Dréo et al. (2003).

Simulated Annealing algorithm

Input : Candidate pointsXC, Target Design sizep, degree of parallelismd, fitness function
f f (X), perturbation functionfp(x), initial steps to determine temperatureNt , maximum iteration
countM. Output : Local optimum designXO.

I. Initialisation. Generated Latin Hypercube designs to use as starting points. For each initial design use
the SA algorithm below to find optimum the designXC

i .

1. PerformNt random perturbations (Algorithm 5.2) and evaluate the average change in fitness, also
known as energy, denoted by< ∆E >.

2. Calculate the initial temperatureT0 =
−<∆E>
log(0.5) .

A. Generate Continuous DesignXC
O. Loop until one of the termination criteria is met.

1. Perform perturbation on current design and calculate energy change∆E.

2. Metropolis Acceptance Rule: if∆E ≤ 0 the perturbation is accepted. If∆E > 0 perturbation is
accepted with probability exp(−∆E/T) whereT is the current temperature.

3. Check termination conditions. If any are met proceed to step B.

(a) Has the maximum number of iterationsM been reached?

(b) Has thermodynamic equilibrium been reached and is the system deemed frozen? In prac-
tical terms, Dréo et al. (2003) suggest if 12p perturbations accepted or 100p perturbations
attempted the system may be deemed to have reached equilibrium. The system is deemed
frozen if three temperature changes have been performed without any perturbations accepted.

4. If the system has reached equilibrium and is not frozen, the temperature is lowered according to
the annealing schedule. We use a linear scheduleTk+1 = 0.9Tk.

B. Discretise Continuous Design

1. Match optimum continuous designXC
O to candidate setXC by minimising the Euclidean distance of

the optimum set to candidate points. Replicate points may beintroduced in this process depending
on the granularity of the candidate set and the clustering ofthe optimum design.

5.5.1 Computational Complexity

In the simulation experiments presented in this thesis two optimisation methods have been utilised

to generate the Fisher-optimal design, the Greedy and Simulated Annealing algorithms described

in Section 5.5. In this section we examine the computationalcomplexity of each algorithm in terms

of both the number of function evaluations of the Fisher criterion and the number of primitive

arithmetic operations.
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Algorithm 5.2 Perturbation function used in the Simulated Annealing algorithm.

Perturbation function

Input : Current designXc, current temperatureT, maximum temperatureTM. Output : Perturbed
designXO.

A. Generate a random number rinU[0,1]. If r > 0.5 use perturbation method P1, else P2.
P1. Shift Single Point.

1. Pick pointxi
c in designXc to change at random.

2. Calculate range of shift dependant on temperature ratioT/TM and shiftxi
c within the feasible

region. At maximum temperature the entire design space is feasible. Specifically given the upper
and lower bounds for each dimensionxi ∈ [l i ,ui ], a random value is generated by

xi
c =

{

xi
c+(ui − xi

c)
T

TM
r...D+1+ l i , r1 > 0.5

xi
c− (xi

c− l i) T
TM

r...D+1+ l i , r1 ≤ 0.5

wherer = {r1, r...D+1} areD+1 samples from the uniform distributionU(0,1), whereD the di-
mensionality ofXc.

P2. Replace Points.

1. Calculate the number of points to replace dependant on thetemperature ratioT/TM. At maximum
temperature all the points are replaced. Specifically the number of points replaced for a design size
M is round(M× T

TM
) where round denotes the integer rounding operation.

2. Replace the selected number of points with randomly generated points that may lie anywhere in
the design domain.

Algorithm 5.3 Greedy optimisation for optimal design generation.

Greedy Algorithm

Input : Target design sizep, design fitness functionf f (X), Candidate set designXC of size
C , Initial designXI of size l i . Output : Optimal designXO. Internal state: Current proposal
designXP.

A. Initialise current proposal design to passed in initial design, XP = XI .
B. Add to the current proposal design XO the candidate set point which maximises the fitness function
f f (X) unless the size of the proposal design has reached the targetdesign size p.

1. Append each point in the candidate set to the proposal design, i.e.X+i
P = [XP;XC(i)]∀i ∈ {1, . . . ,C}.

2. Evaluate the criterion function for each proposal,f f
(

X+i
P

)

.

3. Permanently add the point the maximises the criterion to the current proposal design. Since repli-
cation is allowed, the selected point isnot removed from the candidate set.
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The Greedy method described in Algorithm 5.3 requires

N f = (p− l i)×C (5.5)

evaluations of the Fisher criterion function, wherep the target design size,l i the initial design size

(see the discussion on Section 5.5 for how the Greedy algorithm is initialised) andC the size of

the candidate design size. The dependence of the algorithmic complexity on the candidate design

size is problematic since the candidate size is a discretisation of the design space which grows

exponentially with the dimensionality of the space. This isknown as the curse of dimensionality

and effectively restricts the usage of the presented Greedyalgorithm to low-dimensional problems.

Unlike the Greedy method, the Simulated Annealing (SA) optimisation method described in

Algorithm 5.1 does not depend on the candidate design size orthe target design size. Rather

the worse-case complexity depends on the number of initial steps used to determine the temper-

atureNt and the maximum number of iterations allowedM. Therefore the worse-case number of

evaluations of the fitness function is

N f = Nt +M. (5.6)

The SA algorithm therefore does not suffer from the curse of dimensionality. However the settings

of the algorithm have to be carefully tuned to the problem at hand as several authors have noted

(Dréo et al., 2003). In particular. we have observed that thecurrent maximum iteration limit of

5× 104 may be too low for our synthetic examples, as it is reached in most of our simulations

prior to any other convergence criterion being met. In addition, the linear annealing schedule

(Step A.4 in Algorithm 5.1) used may also be too fast as the theoretical convergence guarantees of

the algorithm apply only when a logarithmic schedule is used. As a result, in our experiments the

SA algorithm on occasions finds a worse solution than the Greedy algorithm. Therefore, although

the SA algorithm appears attractive for higher-dimensional design problems, care must be taken

to check the parameter settings and convergence of the algorithm.

For the local design simulation experiments presented in Section 5.6.4, a design of sizep= 30

is constructed using an initial design of one point (the centroid of the candidate set) and a candidate

set of 1024 points. By Equation (5.5) therefore 29,696 evaluations of the Fisher criterion function

are required. On a standard desktop this takes of the order oftwo minutes The SA algorithm using

M = 5× 104 maximum iterations withNt = 200 initial steps, requires 50,200 evaluations of the

Fisher fitness function which on the same hardware takes of the order of 5 minutes of elapsed

time. As the Greedy algorithm steps B.1 and B.2 may be run in parallel, the elapsed time may be

reduced by using multiple cores.

The computational cost of both algorithms is increased substantially when the Bayesian Fisher
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criterion (Equation 5.4) is used since the integration mustproceed numerically. In this case, the

total number of the local Fisher fitness function (Equation 5.2) evaluations has to be multiplied

by the number of Monte Carlo samples used to compute the Bayesian criterion. In the Bayesian

design experiments presented in Section 5.6.5, we utilise 16 Monte Carlo samples requiring a

total of 50,200× 16= 803,200 evaluations of the local Fisher function for the SA design and

29,696×16= 475,136 evaluations for the Greedy algorithm. We therefore conclude that a quick

low cost approximation to the integration will be of great benefit to optimal design optimisation

time and consequently to the applicability of the optimal design method we advocate.

The Fisher score criterion itself requires the evaluation of a lθ × lθ symmetric matrix where

lθ the number of model parameters. Each of thelθ(lθ−1)
2 elements of the Fisher matrix requires

the calculation of Equation (5.1). The inversion of thep× p training data covariance matrix re-

quiresO(p3) operations for the worst-case scenario of single observations. If replicated design

sites are considered, the matrix inversion reduces to the number of unique input training points.

The inversion operation can be performed once for the entireFisher matrix but the matrix multi-

plicationΣ−1× ∂Σ
∂θ j

has to be performed for each parameter separately requiringO(lθ × p2) opera-

tions. Finally for each pair of parameters the final product requires a further matrix multiplication.

Therefore the total computational cost of a Fisher criterion evaluation is:

CF = O(p3)+O(lθ × p2)+O

(

lθ(lθ −1)
2

p2
)

. (5.7)

The individual cost of a Fisher criterion evaluation (Equation (5.7)) may then be multiplied by

the cost of the corresponding algorithm (Equations (5.5) or(5.6)) given above to obtain the total

computational cost of the optimisation method.

Lastly we note that the computational cost of generating theother designs considered such as

the Latin Hypercube and Grid designs (Section 5.6.4) is considered negligible since these designs

are constructed using simple geometric criteria.

5.6 Simulation Experiments on Maximum Likelihood Estimato rs

In this section properties of Fisher-information optimised designs are investigated through a range

of synthetic examples. The focus is on Maximum Likelihood estimation and Bayesian inference is

tackled in the next section. Further, in all experiments except Section 5.6.8, the model used in de-

sign generation is the correct model, i.e. the same model is sampled from to generate observations,

used in the Fisher criterion to generate the optimal design and perform inference.

In Section 5.6.2 we show the monotonicity of the Fisher information to the empirical parameter

covariance of the kernel parameters under different noise regimes. The monotonicity is required
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to demonstrate the validity of the Fisher score as a design criterion for parameter estimations.

In Section 5.6.3 a one-dimensional example is used to demonstrate the design optimisation

problem as well as the effectiveness of the greedy optimisation approach. Profile likelihood plots

are also presented to visualise the effect on the likelihoodof a Fisher and a space-filling grid

design. The effectiveness of Fisher designs for local design is demonstrated in Section 5.6.4

utilising a range of models of increasing variance complexity.

In Section 5.6.5 a study of Bayesian designs is presented where a coarse discrete prior is used

for the kernel parameters. To better understand the differences between designs, the Bayesian op-

timal and Grid designs are examined using a single GP realisation in Section 5.6.6. The behaviour

of Fisher-optimal designs for different design sizes is discussed in Section 5.6.7 and we conclude

in Section 5.6.8 by examining the case of structural error, where the assumed model used in design

generation is incorrect.

5.6.1 Experimental Methodology

The designs are assessed using two main attributes, prediction and parameter estimation. A GP

with known parameters is sampled in order to be able to assessthe quality of the ML parameter

estimates.

In our simulation experiments the GP subsequently used for inference has an identical mean

and covariance function specification to avoid introducingstructural error in our results. This

assumption is examined in more detail in Section 5.6.8.

In order to measure the accuracy of parameter estimation therelative RMSE (rRMSE) (Zhu

and Stein, 2005) is used:
√

(θ̂−θ0)2/|θ0| whereθ̂ is the ML point estimate and|θ0| the absolute

value of the true parameter. The rescaling byθ0 ensures the rRMSEs for different parameters are

comparable. To ensure robustness in the calculation of the rRMSE, the maximum likelihood opti-

misation is restarted five times from random initial conditions for all parameters. The solution with

the highest likelihood is selected for subsequent validation. The initial value for the log length-

scale parameter was set toN (−2,0.01) , i.e. a Normal distribution centred at−2 corresponding

to a length-scale of≈ 0.1. All other parameters were initialised toN (0,1).

Another measure of parameter estimation accuracy used is termed the log determinant of the

ML estimates or in short the empirical parameter covariance. It is defined as the log determinant of

the covariance of the ML estimates of all parameters across all realisations of the experiment under

consideration. It is a measure of dispersion of the ML estimates and does not capture the error

of the estimations with respect to the true parameters (which the rRMSE does). However the log

determinant of the finite sample FIM should approximate the log determinant of the ML estimates

(see the asymptotic theory discussion in Section 5.2.2) andthe quality of this approximation is a
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useful diagnostic for the performance of the Fisher-optimal design. Confidence intervals for the

log determinant estimate are computed using the bootstrap algorithm described in Appendix B.1.

The measures used to assess predictive performance are the Mahalanobis error, the Dawid

score and the RMSE (Section 2.5). The predictive performance of the model is measured using a

random Latin Hypercube test set. Multiple realisations of the experiment are performed and the

resulting validation and parameter accuracy metrics are plotted using a box whisker plot where the

{0.05, 0.25, 0.5, 0.75, 0.95} quantiles are plotted. Values beyond the.05 and 0.95 quantiles are

not plotted.

Lastly, in our experiments the design space is set toX ∈ [0,1]d whered the dimensionality of

the space. In the simulationsd = 1 ord= 2. To demonstrate the invariance of the properties of the

FIM to the choice of kernel, two kernels are utilised in the simulation experiments, the exponential

and Matérn with fixed orderν = 5/2.

5.6.2 Monotonicity

In this section we show that under different signal-to-noise ratios the Fisher score remains mono-

tonic to the log determinant of the empirical parameter covariance.

The Matérn covariance function is used for the mean, and a linear model for the log variance.

The parameters of the generative GP were set to length-scaleλ = 0.5, process varianceσp = 0.75

and the variance model linear coefficients toβ1 = 0.01 andβ2 =−30 which correspond to a high

noise level in the initial part of the design space quickly reducing to low noise. Finally the em-

pirical parameter covariance was calculated using ML parameter estimates from 1000 realisations

of the generative GP. The resulting approximation error is shown in Figure 5.1(a) for different

design sizes where we observe that the inverse of the FIM provides a lower bound to the empirical

parameter covariance and the bound becomes tighter as the number of design points grows.

The next experiment demonstrates the monotonicity of the Fisher information to the empirical

parameter covariance. We generate six designs of 50 points with the distance between neighbour-

ing points determined by the quantiles of exponential distributions with different rate parameters

(Figure 5.1(b)). In addition three random designs and a Latin Hypercube design were also used.

In the low noise case, a Log-Linear basis variance model was used with the parameters of the

GP set to the same values as in the previous experiment. For the high noise case a two-Gaussian

basis RBF model was used. The basis functions were positioned at 0.33 and 0.66 in the one-

dimensional design space with their variance set to the squared distance between their centres.

The parameters were set to length-scaleλ = 0.33, process varianceσp = 1.8 and variance model

coefficientsβ1 = −3.7, β2 = −0.8. Finally, we calculate confidence intervals for our estimates

of the log determinant of the empirical parameter covariance using 1000 bootstrap samples (see
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(c) Low noise
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(d) High noise

Figure 5.1: Monotonicity experiment for Fisher Information: (a) The FIM (solid) and empirical
parameter covariance (dashed) for designs of size 10 to 100.(b) The non-random designs used in
(c) and (d). (c)-(d) Relation of log determinant of the Fisher information (x axis) to the log de-
terminant of the empirical parameter covariance (y axis). The approximation for 50-point designs
under different noise levels for a linear basis variance model (c) and an RBF variance model with
two Gaussian basis functions centred at the 0.33 and 0.66 of the one-dimensional design space (d).
Designs 7-9 are random and 10 is a uniform Latin Hypercube.
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Appendix B.1). The results are shown in Figure 5.1(c)-(d) where we observe that for the higher

noise level case the approximation error is larger but the monotonicity still holds.

We repeat this experiment on larger designs and varying signal-to-noise ratios. We use designs

of 100 points where we sample from a GP with different levels of heteroscedastic noise. Two

Gaussian basis functions were used with their centres and widths set as before. Samples from the

GP for the different noise scenarios are shown in Figures 5.2(d)-(f). The length-scale and process

variance of the Matérn covariance were unchanged. The linear coefficients for the variance model

were set toβ1 = −4.7, β2 = −2.8 for the low noise case,β1 = −3.7, β2 = −0.8 for the the

medium noise case andβ1 =−2.7, β2 = 1.2 for the high-noise case. We see in Figures 5.2(a)-(c)

that although the approximation of the FIM to the parameter variance gets progressively worse as

the noise level increases, the monotonicity holds even for relatively high noise levels.

The monotone relationship between the log determinant of the FIM and the log determinant

of the empirical parameter covariance holds in all scenarios tested in this section and affirms the

use of the FIM as a design criterion for minimising parameteruncertainty. This conclusion agrees

with the findings of Zhu and Stein (2005) which showed this relationship in the homoscedastic

case.
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Figure 5.2: (a)-(c) Effect of noise on the monotonicity of the FIM (x axis) to the log determinant
of the empirical parameter covariance (y axis). Designs 1-3increasing distance designs (Fig-
ure 5.1(b)), 4 a Latin design and 5 is random. (d)-(f) Illustrative GP realisations for the various
noise levels.
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5.6.3 Complete Enumeration

In this simulation study the optimisation problem is examined in more detail. Using a simple

one-dimensional example, the properties of the search space are explored through a complete

enumeration of all possible solutions.

The experiment considers the selection of 9 locations from acandidate set of 29 points in a

locally optimal design. The design is given the point parameter priorθ0 = (λ = 0.5,σp = 0.7,β1 =

0.1,β2 =−10) and the FIM score of all
(29

9

)

combinations is computed. To reduce computational

time we have not considered replicate observations in this experiment. The Matérn covariance

and a Log-Linear basis function for the variance model is used. The Fisher scores for the solution

obtained using greedy optimisation and an approximate griddesign selected from the candidate

set are also shown in Figure 5.3(b).

0 0.2 0.4 0.6 0.8 1

Greedy

Grid

Optimal

Candidate

(a) Designs (b) FIM solutions

Figure 5.3: Complete enumeration of designs for a locally optimal design. Candidate Set (green
triangle), optimal design (red circle), greedy design (blue diamond) and grid design (black square).

In terms of Fisher score, the greedy solution is very close tothe optimum while the score for

the grid design is significantly worse. Additionally, even for this simple example we notice a very

large number of local optima close to the optimum demonstrating the near equivalence of a large

number of designs.

The optimal, greedy and grid designs are shown in Figure 5.3(a) alongside the candidate set.

The relatively long length-scale of the GP means the noise signal dominates and the optimal de-

signs place the points near the boundaries due to the log-linear form of the variance function.

Since the motivation of using the Fisher information as a design criterion is to minimise pa-

rameter uncertainty, we expect the likelihood for the optimal designs be more informative about

the optimumθ than the grid design. We demonstrate this effect by plottingthe profile likelihood

for each parameter (Figure 5.4) using a single GP sample as our training data. For all four param-

100



Chapter 5 EXPERIMENTAL DESIGN FOR PARAMETER ESTIMATION

eters using only nine training points, the likelihood on theoptimal design excludes larger portions

of the parameter domain than the grid design.

(a) logλ (b) log σp (c) β1 (d) β2

Figure 5.4: Profile likelihoods for locally optimal design (dashed blue) and a grid design (solid
black). The true parameter value is also shown (vertical redline).

5.6.4 Local Design

In this section Fisher information is applied directly as a design criterion using the true parameter

values as used by the sampled GP. This is commonly referred toin the literature as locally optimum

design. This approach cannot be used in real-world applications as the parameter values of the

underlying process will not be known. However the approach allows us to examine some of the

properties of optimal designs without the complexity of prior specifications for the covariance

parameters.

The following six designs are utilised in the experiments. We also provide the acronyms that

are used to reference these designs in the plots.

1. Greedy (F). We obtain the design using greedy optimisation. The algorithm is initialised by

placing the first point in the centre of the design space.

2. Grid (G). A standard grid design where the distance between neighbouring points is a con-

stant. If the design size is not a perfect square, the remainder points are placed randomly.

For a design size of 30 points in two dimensional space for example (Figure 5.5(b)) a 25

point Grid is placed with the remainder 5 points placed randomly.

3. Replicated Grid (Rg). A standard grid design with two replicate observations ateach point.

4. Maximin Latin Hypercube (L). Maximise the minimum Euclidean distance between nearest-

neighbour points by selecting from 1000 randomly generateduniform Latin Hypercube de-

signs.

5. Replicate Maximin Latin Hypercube (R). We use the same configuration as for the Maximin

Latin Hypercube but two replicate observations are used at each design point.
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6. Simulated Annealing (S). We generate a locally optimum design using the Simulated An-

nealing algorithm described in Section 5.5 to minimise the Fisher score.

Examples of the space filling designs (G,Rg,L,R) are shown inFigure 5.5.
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(a) Grid with Replicates (Rg)
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(c) Maximin Latin Hypercube with Replicates (R)
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(d) Maximin Latin Hypercube (L)

Figure 5.5: Examples of space filling designs used in the simulation experiments. Numbers indi-
cate replicated points.

All designs were generated using a 1024 grid space of candidate points by pickingn = 30

points allowing for replication. A test set of 1024 points generated using a random uniform Latin

Hypercube design is used to compute the Mahalanobis error and the Dawid score. The GP is

sampled 500 times, with ML inference and validation performed independently for each realisa-

tion. The maximum likelihood optimisation is performed forfive independent realisations with

different initial conditions to ensure robustness in the solution obtained. The exact initialisation

and experimental methodology are described in Section 5.6.1.

Three main cases are explored in our simulation study reflecting increasing levels of complex-

ity in the variance model:

• Nugget: The variance response is constant across the designdomain.
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• Log-Linear: A fixed-basis linear polynomial model is used for the variance. Fixed basis

variance models are described in Section 4.5.2.

• Latent-Kernel: A Latent-Kernel model is used for the variance. Latent-Kernel variance

models are described in Section 4.5.3.

5.6.4.1 Nugget Model

In this simulation experiment a Matérn kernel is used to model input correlations and a ho-

moscedastic constant noise parameter, referred to as the nugget, is used to model the simulator

at-a-point variance.

The hyperparameters for the sampled GP were set to(λ,σp,β1) = (0.1,1,0.01) corresponding

to a short length-scale process with low noise. The resulting design are presented in Figure 5.6.

The Greedy and Simulated Annealing (SA) optimisation approaches yield quite different designs,

with the SA design covering the space more uniformly. These designs, as well as the replicate Grid

and Maximin Latin Hypercube (LH) designs, achieve similar Fisher score (Figure 5.7) confirming

the existence of multiple local optima in the search space. The empirical parameter covariance for

all designs calculated using the ML point estimates, which the Fisher score approximates, shows

a similar effect.

As observed by Zhu and Stein (2005), in the homoscedastic case as the noise level increases,

the design becomes more clustered with more sample points per cluster. The experiment in this

section corresponds to the smallest level of noise considered by Zhu and Stein (2005). Though

the Greedy design appears highly clustered, there is good coverage of the space. In contrast,

Zhu and Stein (2005) show for higher noise levels that the optimal designs include few clusters

spread evenly in the design space with very small inter-point distances within a cluster. Therefore

replicate observations become more prevalent as the noise level increases. The experiment in this

section establishes a baseline from which to compare the impact of the heteroscedastic variance

models on design.

The performance of the designs in terms of parameter estimation can be further investigated

by examining the relative RMSEs and biases for each hyperparameter. These are shown in Figure

5.8 and summarised in Table 5.1. All the replicate designs identify the parameters more robustly,

especially the nugget, both in terms of relative RMSE and bias. The replicate Grid, Grid and

Latin designs appear less robust in the estimation of the length-scale parameter where significantly

longer tails exist in the relative RMSE distribution compared to the other designs.

Lastly, the predictive performance of the designs is examined in terms of Mahalanobis error,

Dawid score and root mean squared error (RMSE). The distribution of errors is shown in Figure
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(b) Simulated Annealing

Figure 5.6: Fisher designs obtained for the Nugget variancemodel using Greedy and Simulated
Annealing optimisation methods under Matérn kernel.

Table 5.1: Relative Parameter RMSE for the Nugget model.
Design λ σp β1

Greedy 0.17± 0.14 0.17± 0.13 0.08± 0.06
Replicate Grid 0.64± 0.40 0.14± 0.10 0.07± 0.05
Grid 15.79± 160 0.19± 0.19 0.62± 0.29
Replicate Maximin LH 0.50± 0.34 0.15± 0.11 0.07± 0.05
Maximin Latin Hypercube 25.95± 407 0.19± 0.19 0.54± 0.27
Simulated Annealing 0.97± 14.48 0.15± 0.12 0.15± 0.13

5.9 and is summarised in Table 5.2. A Latin Hypercube test setof 1024 design points is used to

validate each ML estimate realisation. Higher Mahalanobiserror and Dawid score is observed for

the non-replicate designs. In particular, the distribution of the Mahalanobis error and Dawid score

for the Grid and Maximim Latin Hypercube non-replicate designs show significant tails reflecting

the lack of robustness in parameter estimation achieved through these designs.

In terms of the RMSE (Figure 5.9(c)), the space filling non-replicate designs achieve somewhat

smaller errors compared to the replicate designs. As the former cover the space more fully we

expect an overall smaller interpolation error on the mean. This effect is observed later in the

heteroscedastic scenarios as well. We conclude therefore that the lower Dawid and Mahalanobis

errors for the replicate designs stem from a more accurate prediction of the model covariance

which is expected from the lower parameter estimation errors, especially with regards to the nugget

parameter.

5.6.4.2 Log-Linear Model

We now use a fixed-basis Log-Linear model on the two dimensional input space of the form

exp(β1 + β2x1 + β3x2). The hyperparameters of the sample GP were set to(λ,σp,β1,β2,β3) =

104



Chapter 5 EXPERIMENTAL DESIGN FOR PARAMETER ESTIMATION

F Rg G R L S
−10

−8

−6

−4

−2

0

2

4

(a) Log Determinant

F Rg G R L S
−10

−8

−6

−4

−2

0

2

(b) FIM

Figure 5.7: Log Determinant and Fisher Scores for all designs using the Nugget model.
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Figure 5.8: Relative RMSE and parameter bias for the Nugget variance model. Designs compared
at the (F)isher design obtained through Greedy optimisation, Replicate Grid (Rg), (G)rid, Maximin
Latin Hypercube with Replicates (R), Maximin Latin Hypercube (L) and Fisher design obtained
through Simulated Annealing optimisation (S).
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Figure 5.9: Validation performance in terms of Dawid score and Mahalanobis errors using 1024
test points in a Latin Hypercube design and RMSE for the Nugget model.
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Table 5.2: Mean and standard deviation of Mahalanobis (1024), Dawid score and RMSE.
Design Mahalanobis Dawid RMSE
Greedy 1208± 420 -2220± 217 0.86± 0.11
Replicate Grid 1796± 1908 -1274± 1202 0.93± 0.18
Grid 4664± 7508 1626± 6313 0.67± 0.16
Replicate Maximin LH 1350± 1176 -1537± 777 0.84± 0.15
Maximin Latin Hypercube 2501± 3620 -241± 2703 0.60± 0.16
Simulated Annealing 1561± 1027 -1951± 677 0.74± 0.14

(0.2,1,−4.6,−1.6,−1.6). The standard deviation on the input domain using this modelis illus-

trated in Figure 5.10. The noise level at(0,0) of the design space is exactly the nugget value used

in the previous section. The GP prior mean is zero and the sample mean is not shown for brevity.
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Figure 5.10: Standard Deviation of the Log-Linear model.

The resulting designs using the Greedy and Simulated Annealing optimisation methods are

shown in Figure 5.11 where as in the previous section, the designs are quite different in terms of

domain coverage but achieve similar Fisher scores (Figure 5.12(b)). The log determinant of the

empirical parameter covariance (Figure 5.12(a)) agrees broadly with the Fisher score with regards

to separating the poorly performing, in terms of parameter estimation, non-replicate designs from

the replicate designs.

In terms of parameter estimation accuracy (Figure 5.13), all variance parametersβ are bet-

ter identified in the replicate designs in terms of relative RMSE. In terms of the length-scale and

process variance parameters, all designs achieve similar errors. In this scenario the replicate de-

signs are therefore superior in identifying the variance model parameters without sacrificing the

estimation of the other parameters.

The predictive validation results (Figure 5.14 and Table 5.3) again show a high Mahalanobis
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Figure 5.11: Fisher designs for the Log-Linear model.
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Figure 5.12: Log Determinant and Fisher score for the Log-Linear model.
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Figure 5.13: Relative RMSE of the ML parameter estimates forthe Log-Linear model.

error and Dawid score for the non-replicate designs. The errors are higher than when using a

nugget model since the variance response is more complex andthe effect of the misidentification

of the variance coefficients is thus more pronounced. In terms of mean prediction, we observe a

lower RMSE for the non-replicate designs which cover the design space more uniformly, espe-

cially when compared to the Greedy and Simulated Annealing designs which are highly clustered,

and thus achieve a larger interpolation error. We thereforeconclude that as in the Nugget model

case, the non-replicate designs have higher Mahalanobis error and Dawid score mainly due to in-

accurate variance prediction. In the approach of Krause andGuestrin (2007), discussed in Section

5.2.4, the Fisher design can be considered during the exploration phase to minimise the parameter

uncertainty and can be followed by an exploitation phase to minimise the interpolation error.

Comparing the optimal homoscedastic designs (Figure 5.6) to the heteroscedastic designs for

the Log-Linear model, the latter place emphasis on the edgesof the design space. This is especially

evident for the SA design, which achieves the best Fisher score, where only a single point is placed

in the interior of the design space. For the homoscedastic optimal designs however, the majority

of points are placed in the interior of the design space in regularly spaced clusters. The difference

arises due to the nature of the variance model in each case. Inthe homoscedastic case, the input

location where the nugget is sampled is immaterial and the magnitude of the noise level as well

as the choice of covariance function and length-scale dictate the placement of the points in the

optimal design. In addition to these considerations, for the heteroscedastic Log-Linear model
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a design that is optimal for the identification of the coefficients of the linear variance model is

required. As is well known in the case of linear regression (Atkinson and Donev, 1992), the

optimal design for parameter estimation places points on the corners of the space and this is exactly

the effect we observe in the optimal designs for the Log-Linear model. The parameter estimation

errors lend further credence to this conclusion as the optimal designs achieve lower errors for

the variance model parametersβ than the non-replicate space-filling designs while the length-

scale and process variance parameters are identified with the same accuracy across all designs.

The good performance of the replicate space-filling designsis also explained by this effect since

replicated design points are placed on the edges of the design space. As the noise level is quite

low across the design space, design points with just two replicated observations are sufficient to

capture the variance response. In the case of the non-replicate space-filling designs however, the

single observation design points on the edge of the space arenot as informative with regards to the

variance process.

Table 5.3: Mean and standard deviation of Mahalanobis (1024), Dawid score and RMSE for the
Log-Linear model.

Design Mahalanobis Dawid RMSE
Greedy 1749± 1898 -3690± 1711 0.80± 0.24
Replicate Grid 1398± 1033 -3652± 776 0.49± 0.23
Grid 32863± 79388 27460± 78524 0.23± 0.14
Replicate Maximin LH 1420± 872 -3848± 697 0.46± 0.22
Maximin Latin Hypercube 30058± 88207 24627± 87575 0.22± 0.15
Simulated Annealing 1612± 949 -3941± 584 0.59± 0.23

Greedy RGrid Grid RLatin Latin SA
0

5

10

15

x 10
4

(a) Dawid

F Rg G R L S

2

4

6

8

10

12

14

16
x 10

4

(b) Mahalanobis

F Rg G R L S
0

0.2

0.4

0.6

0.8

1

1.2

(c) RMSE

Figure 5.14: Validation results for the Log-Linear model.

5.6.4.3 Latent-Kernel Model

We conclude the set of simulation experiments for local design by examining the performance of

Fisher-based designs under a Latent-Kernel variance model(Section 4.5.3). The variance response

is more complex than in the previous experiments as shown in the standard deviation plot in Figure
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5.6.4.3. A modified isotropic Gaussian kernel is used for thevariance model where the length-scale

and process variance parameters are fixed to one. The only free parameters in the Latent Kernel

variance model are the linear coefficientsz.

The hyperparameters of the sampled GP are set to(λ,σp,z1,z2,z3) = (0.5,1,−1.1,−3.8,4.2)

and the latent points are set toXz = {(0,0)(1,1)(0.5,0.5)}, corresponding to two corners and the

mid point of the design space. Finally the exponential kernel is used to model input correlations.

The designs obtained through optimisation of the Fisher score are shown in Figure 5.15. The

Simulated Annealing design covers the design space more uniformly while the Greedy design is

highly clustered on the corners and mid-point of the design space. Both designs place clusters of

points around the latent pointsXz of the variance model which we interpret as the most informative

locations to learn the parameters of the variance model.
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Figure 5.15: Fisher designs for the Latent-Kernel model.

The Fisher score and corresponding log determinant of the parameter covariance are shown

in Figure 5.16. In terms of both Fisher score and the empirical parameter covariance both Fisher-

optimised designs are considerably better than the space-filling designs. In this case the extra

complexity of the Latent-Kernel variance model separates the model based designs from the repli-

cate space filling designs. Further the Fisher score of the Greedy design is smaller than for the

Simulated Annealing design, suggesting more optimisationeffort is required in the Simulated An-

nealing algorithm for this problem. The monotonicity of theFIM to the parameter covariance is

violated however in this case with large approximation errors apparent. The log determinant of

the parameter covariance for these designs also has the largest errors bars signifying difficulty in

estimating parameter uncertainty.

Examining the errors of individual hyperparameters (Figure 5.17 and Table 5.4) we observe the

Fisher-based designs achieve smaller relative RMSE particularly for the variance model parame-

tersz1 andz2. Thez3 parameter, corresponding to the mid latent point[0.5, 0.5], is identified by all
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Figure 5.16: Log Determinant and FIM for Latent-Kernel model.

designs while the other variance model parameters are only identified by the replicate designs. We

believe this is because the effect of thez3 parameter dominates the variance response whilez1 and

z2 which are related to the corners of the design space have lessimpact on the variance response

across the design space. Additionally the space-filling designs are informative about the mid-point

of the design space as opposed to the corners of the space in contrast to the Fisher-optimised design

which explicitly emphasize the corners of the space corresponding toz1 andz2.

Table 5.4: Relative Parameter RMSE for the Latent-Kernel model.

Design λ σp z1 z2 z3

Greedy 1625± 16610 0.36± 0.25 0.43± 0.35 0.13± 0.10 0.11± 0.09
Replicate Grid 3574± 22580 0.49± 0.34 0.89± 0.75 0.39± 0.34 0.09± 0.07
Grid 5517± 31676 0.53± 0.34 1.34± 1.86 0.56± 0.88 0.08± 0.06
Replicate Maximin LH 1580± 6128 0.54± 0.43 0.96± 0.80 0.42± 0.37 0.08± 0.07
Maximin Latin Hypercube 2057± 9172 0.57± 0.55 1.67± 2.82 0.67± 0.94 0.10± 0.31
Simulated Annealing 5980± 37893 0.42± 0.35 0.53± 0.44 0.14± 0.12 0.08± 0.07

We also note the very large errors in identifying the length-scale parameter for all the designs

considered. Examination of the profile likelihoods under the Grid and SA designs (Figure 5.18)

for one realisation of the experiment allows for a clearer understanding of the issue. The profile

likelihoods were constructed by setting the other model parameters to their ML values although as

the other parameters are identified with high precision, theprofile is not altered if the true values

are used instead. In the case of both designs, the issue is notone of an incorrect optimisation

as the true length-scale value does not lie on a minimum. In the case of the Grid design where

the rRMSE is very high, the multiple restarts avoid the usageof a low likelihood local minimum

corresponding to a very small length-scale value. The ML solution however is very far from the

true value and the likelihood is flat in the region of very large length-scales effectively signifying

that the training design is not informative and cannot exclude a large range of possible large values.

We conclude that due to the complexity of the model, the smalltraining size used (30 points) is
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Figure 5.17: Relative RMSE for the Latent-Kernel model.

unable to identify the length-scale of the process.
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Figure 5.18: Profile likelihood for the length-scale parameter under the Latent-Kernel model.
Solid green line is true value, dashed blue is maximum likelihood value under 5 multiple restarts
with different initial values. For this realisation the rRMSE is 299,397 for the Grid design and 43
for the SA design. The x-axis denotes the log length-scale value.

Examing the validation errors (Figure 5.19(b), Table 5.5) we note the differences in the metrics

are quite small. The RMSE is nearly identical for all designsreflecting the same level of accuracy

in mean prediction. The SA design achieves the lowest error in terms of both the Mahalanobis error

and Dawid score reflecting a more robust covariance estimation. Although the Greedy design has

the lowest parameter estimation error, the highly clustered nature of the design results in the model

extrapolating in large areas of the design space and hence incurring higher errors compared to the
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more space-filling SA design.

Table 5.5: Local Design Evaluation for the Latent-Kernel model: Mean and standard deviation of
Mahalanobis (1024) and RMSE.

Design Mahalanobis Dawid RMSE
Greedy 1361± 731 4170± 340 1.01± 0.01
Replicate Grid 1384± 586 4228± 352 1.01± 0.02
Grid 1549± 2010 4405± 1819 1.01± 0.02
Replicate Maximin LH 1551± 1078 4395± 992 1.01± 0.02
Maximin Latin Hypercube 1551± 1165 4397± 982 1.01± 0.02
Simulated Annealing 1258± 556 4119± 277 1.01± 0.02
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Figure 5.19: Validation results and Standard Deviation forthe Latent-Kernel model.

5.6.5 Bayesian Design

In the simulation results presented thus far only locally optimum designs have been considered.

However such designs cannot be used in practice as they require knowledge of the true parameter

values to compute the Fisher score. In this section BayesianFisher designs are examined where

the resulting design is a compromise across a range of locally optimum designs.

Following Zhu and Stein (2005) a discrete uniform prior is used for ease of computation and

interpretation. The designs are computed as in the previoussection, the only difference being

the criterion function is the Fisher score numerically integrated over the discrete prior (Equation

(5.4)).

The evaluation of the designs is performed across all permutations of values of the discrete

prior. For each permutation of discrete prior values, the set of designs is evaluated as in the local

design case. The simulation experiment in this section can therefore be considered as a set of local

simulation experiments where the sample GP parameters are fixed. All evaluation metrics such as

the Mahalanobis error and parameter accuracy are plotted across all prior permutations, that is the

errors from different prior combinations are plotted jointly in the same figure. The log determinant

of the empirical parameter covariance is computed per priorpermutation.
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We have examined two scenarios:

• Log-Linear: A Log-Linear variance model with a Matérn covariance function. The discrete

prior was set toλ = {0.1, 0.5}, σp = 1 andβ1 = {−1.1, −0.5}, β2 = {−3.8, −0.2}, β3 =

{4.2, 1.2}.

• Latent-Kernel: A three-parameter Latent-Kernel model with an exponential covariance func-

tion to model input correlations. As in the previous section, the latent points were set to

Xz = {(0,0),(1,1),(0.5,0.5)}, The discrete prior was set toλ = {0.2, 0.6}, σp = 1 and

z1 = {0.01, 0.1}, z2 = {0.01, 0.2}, z3 = {0.01, 0.2}.

For both scenarios, the discrete prior has 16 possible permutations. Each prior permutation is

treated as a local design and evaluated 30 times, given a total of 480 realisations of the experiment.

The Fisher-optimal designs are contrasted against the sametype of space-filling designs that

have been used previously (Figure 5.5). The Fisher based designs obtained through Greedy and

Simulated Annealing optimisation are shown in Figure 5.20.The Latent-Kernel optimal designs

are clustered around the latent pointsXz in both the Greedy and Simulated Annealing cases unlike

the local design case discussed in Section 5.6.4.3 where theSA design was more space-filling

than the Greedy design. We believe this is due to the consideration of a small length-scale in

the scenario examined here whereas for the local design a relatively long length-scale of 0.5 was

used. For the Log-Linear model on the other hand, the designsobtained are quite similar to those

obtained for the local design case in Section 5.6.4.2 with the Greedy design placing points on

a ridge pattern while the SA algorithm results in points being placed on the edges of the design

space. Although for both the Log-Linear and Latent-Kernel models the Greedy and SA designs are

geometrically quite different, they achieve similar Fisher scores and parameter estimation errors

(Figure 5.23) demonstrating the near equivalence of the solutions.

The predictive performance for both models in terms of Mahalanobis error, Dawid score and

RMSE is shown in Figure 5.21. For the Log-Linear model the non-replicate designs are not as

robust over the wide range of prior values as the replicate designs. In particular we see very large

errors in terms of Mahalanobis and Dawid score whilst the RMSE is smallest for these designs. As

in the local design experiment (Section 5.6.4.2), the interpolation performance of the space-filling

design is superior but in terms of the covariance predictionvery large errors are incurred.

For the Latent-Kernel model on the other hand, the RMSE performance is nearly identical

across all designs. The covariance performance is also quite similar as reflected by the Maha-

lanobis error and Dawid score, although we note longer tailsin the errors for the non-replicate

designs. These results are in agreement with the local design experiment discussed in Section

5.6.4.3.
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Figure 5.20: Fisher-based Bayesian Designs used in the simulation experiments.
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Figure 5.21: Mahalanobis error, Dawid score and RMSE for theBayesian Log-Linear and Latent-
Kernel models. 1024 test points were used.
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For the Latent-Kernel model, the large differences among the different designs become ap-

parent when the parameter accuracy is examined (Figure 5.22). As in the local design case, the

variance parameters are better identified in the Fisher-optimised designs with clear differences ap-

parent in the performance of the replicate and Fisher-optimised designs. As in the local design

case, the high magnitude of the errors in all designs of the length-scale parameter implies it is not

identifiable for this model using such a small training size.For the Log-Linear model, the variance

process parameters are better identified in the replicate designs as expected in agreement with the

local design experiment.

The log determinant of the empirical parameter covariance and the Fisher score for all designs

are shown in Figure 5.23. For the Log-Linear model, the Fisher score is similar for all replicate

designs. In the Latent-Kernel model both Fisher designs have the lowest Fisher score which is also

reflected in the empirical parameter covariance. As in the local design experiments, we therefore

see broad correspondence between the Fisher score and empirical parameter covariance for both

models.

Overall both in terms of validation and parameter accuracy we see significant benefits when

using replicate designs. For the more complex Latent-Kernel variance model, the Fisher designs

are more differentiated in terms of parameter error performance from the space-filling replicate

designs. Due to the higher complexity of the variance response in the Latent-Kernel model, space-

filling replicate designs are no longer local optima and the optimisation of the Fisher score is

justified. In this section therefore the conclusions drawn from the local design experiments pre-

sented in Section 5.6.4 have been generalised to the Bayesian design setting.

5.6.6 Specific Case Example

The results presented above summarise the various validation measures across multiple samples

of the GP. In this section the Simulated Annealing Bayesian design examined Section 5.6.5 and

shown in Figure 5.20(b) is compared to a grid design and the effect of the difference in parameter

estimation accuracy on prediction is more closely investigated.

A Matérn kernel is used as before with a Log-Linear fixed-basis variance model. The true

parameters of the GP sample areλ = 0.2, σp = 1 andβ = (−4.6, −1.6,−1.6).

The Mahalanobis score for the Grid design was 8933 and for theFisher design 741 with

1024 being the theoretical optimum. The corresponding Dawid score was 4218 and -4364 in

agreement with the Mahalanobis results. The correspondingRMSEs on the mean were 0.45 and

0.53, reflecting a more accurate prediction of the mean valuefor the Grid design. The rRMSE

score and bias for the parameters are presented in Table 5.6.The β parameters for the variance

process and the length-scale parameter are better identified when the Fisher design is utilised for
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Figure 5.22: Bayesian Design: Parameter accuracy across all discrete prior permutations in terms
of relative RMSE and bias for the Log-Linear and Latent-Kernel models.
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Figure 5.23: Bayesian Design: Log determinant of the empirical parameter covariance and the
Fisher score for the Log-Linear and Latent-Kernel models.

118



Chapter 5 EXPERIMENTAL DESIGN FOR PARAMETER ESTIMATION

ML estimation as reflected by the improved bias and rRMSE values.

Utilising a 1024 Latin Hypercube test set, the predictive mean and standard deviation for the

two designs are shown in Figure 5.24. The mean prediction is best captured by the Grid design. In

terms of the standard variance prediction both designs significantly overestimate the true standard

deviation of the sampled GP. However the predictive variance is a combination of the variance

model as well as uncertainty due to distance from the training points. The latter factor is more

critical for the Simulated Annealing design due to the highly clustered nature of the design points.

If the training set is fixed to the test set with no parameter re-estimation the two sources of

uncertainty can be separated. For this purpose, the parameters estimates obtained for the Grid

and Simulated Annealing designs were plugged in a GP with training set the entire test set with no

replicate observations. The usage of the test set as training set, essentially cancels the impact on the

variance prediction of the uncertainty due to distance of test to training points. The corresponding

mean and standard deviation predictions for the two sets of parameter estimates are shown in

Figure 5.25. The mean prediction is similar under both sets but the standard deviation is more

accurately predicted by the Simulated Annealing parameterset. Examining solely the predictive

variance model (R(X∗)) in Figure 5.26, we confirm the variance model has been more accurately

learnt by the Simulated Annealing design. Further, the variance prediction for the Grid design is

dominated by the variance model as the distance of the training set to the test points is considerably

less than for the clustered designs such as the Simulated Annealing design.

To better understand the differences in predictive performance we decompose the Mahalanobis

error to a vector of individual uncorrelated errors whose theoretical distribution isN(0, I). As pro-

posed by Bastos and O’Hagan (2009) the Mahalanobis error is decomposed using the Pivoted

Cholesky Decomposition (PCD) where the order of the individual errors is determined by their

conditional variance, i.e. the first point has the highest variance, the second has the highest vari-

ance conditioned on the first etc. Diagnostics are further described in Section 2.5.

This diagnostic allows for the interpretation of the errorsas unusually large or small errors

early in the sequence suggest poor estimation ofσp or non homogeneity while errors in the latter

part point to poor estimation of the correlation structure.The errors in this example are shown in

Figure 5.27 where an incorrectly specified correlation structure is suggested for the Grid design

which agrees with the parameter errors in Table 5.6.

5.6.7 Increasing Design Size

Thus far the simulation experiments have been performed fora single design size. In this section

we examine the performance of Fisher-optimised designs as the number of available observations

increases. For simplicity, we perform locally optimal design using the same single nugget model
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Figure 5.24: Specific Case Example: Predictive mean and standard deviation (std)) using 30 point
designs for the Grid and Simulated Annealing designs. Training design points depicted by blue
circles.
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Figure 5.25: Specific Case Example: Predictive mean and standard deviation (std) using 1024 test
point design as training set for the Grid and Simulated Annealing designs. Training design points
depicted by blue circles.
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Figure 5.26: Specific Case Example: Standard deviation of variance modelR(X∗) for the Grid and
Simulated Annealing designs. Training design points depicted by blue circles.
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Figure 5.27: Specific Case Example: Uncorrelated Errors vs Pivot Order for the Grid and Simu-
lated Annealing designs.
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Table 5.6: rRMSE and bias of parameter for Grid and Fisher designs.
Statistic Design λ σp β1 β2 β3

rRMSE
Grid 0.71 0.19 1.34 2.62 6.62
Fisher 0.0241 0.1816 0.0468 0.0446 0.06

Bias
Grid 0.14 -0.19 -6.18 4.22 10.66
Fisher -0.01 0.18 0.21 0.07 -0.10

as in Section 5.6.4.1. The design sizes considered are[30,100,200].

The Mahalanobis error and Dawid score (Figure 5.28(a)) showthe biggest differences in pre-

dictive performance for the smaller design size in agreement with the results in Section 5.6.4.1.

The Fisher optimised design provides the most robust estimation. Even for the largest design size

the Grid design underestimates the variance reflected in thehigh Mahalanobis error. In terms of

parameter error (Figures 5.28(c) - 5.28(d)) the Fisher design has the smallest error with larger

errors for the non-replicate designs. The differences in parameter estimation are greatest for the

nugget parameter where even for the largest design size considered the non-replicate designs per-

form poorly.

In terms of Fisher score (Figure 5.28(f)) and the corresponding empirical parameter covariance

(Figure 5.28(e)) a similar picture emerges where the Fisherdesign consistently achieves the small-

est error although the differences with the other designs are reduced as the design size increases.

5.6.8 Structural Error

We have so far assumed the absence of structural error, i.e. the model used in the design process

is the correct one. We now consider the effects on the performance of Fisher-optimised designs

when the true underlying model does not match the assumed model used in inference. This effect

is simulated by using GPs with different kernel specifications in the design and inference stages.

The same models and designs are utilised as in Section 5.6.5 but the methodology is modified

to introduce structural error:

• Log-Linear to Latent. The Bayesian designs generated using the “assumed” Log-Linear

model are evaluated using the Latent-Kernel model as the true process.

• Latent to Log-Linear. The “assumed” Latent-Kernel model designs are evaluated using the

Log-Linear model as the true process.

The designs utilised are shown in Figure 5.20.

In the first experiment, a design generated assuming a Log-Linear variance model is evaluated

on the more complex Latent-Kernel model variance (Figure 5.29). All designs achieve similar pre-

dictive accuracy as reflected by the Mahalanobis error. The Dawid score is omitted as it provides
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Figure 5.28: Effect of increasing design size on Fisher information (Section 5.6.7). F=Greedy
design, Rg=Replicate Grid, G=Grid, R=Replicate Maximin Latin Hypercube, L=Maximin Latin
Hypercube.
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an identical picture.

Further, in terms of parameter estimation accuracy (Figure5.29(b)) there are small differences,

mostly in the tails of the distributions between the designs. The length-scale as was noted in Sec-

tion 5.6.4.3 is not identifiable under this model for such a small training size and the differences

are not meaningful. For the variance model parameters, we note utilising the correct model leads

to more accurate estimation, especially with regards to theparameters corresponding to the corners

of the design space,z1 andz2, where the Log-Linear designs do not place as strong an emphasis

as the Latent-Kernel optimal designs. In terms of Fisher score and the corresponding empirical

parameter covariance, we confirm that model misspecification has negatively impacted the param-

eter accuracy The Fisher score (Figure 5.29(d)), computed using the correct model for all designs,

corresponds well to the empirical parameter covariance (Figure 5.29(c)). We note the impact of

the model misspecification, however, has been minor as evidenced by the small separation in the

latter and the lack of detriment on the predictive performance.

The reverse experiment of assuming a more complex variance response when the true process

has a simpler log-linear form is summarised in Figure 5.30. In this case we see large differences

in performance both in terms of the Mahalanobis error and therelative RMSE of the variance

parameters for the Latent-Kernel designs. As in the previous experiment, the Dawid score is not

included as it provides an identical ranking. In terms of parameter estimation (Figure 5.30(b)), we

observe very large errors in the identification of the higherorder variance coefficients,β2 andβ3

when utilising the Latent-Kernel designs while the length-scale, process variance and first order

variance coefficient,β1, are estimated with similar accuracy across all designs. Examining the

designs shown in Figure 5.20, we note the Latent-Kernel Designs place most points in a diagonal

across the design space while the Log-Linear design have points in at least three corners of the

space allowing for the separation of the effects of the two input factors. As was noted in Sec-

tion 5.6.4.2, the linear form of the Log-Linear variance model requires placement of points on the

edges of the design space to allow for the accurate estimation of the model coefficientsβ.

The Fisher score (Figure 5.30(d)) and empirical covariance(Figure 5.30(c)) reflect the higher

errors for the Latent-Kernel designs. Specifically with regards to the latter, we note a large separa-

tion in the performance of the optimal and model misspecifieddesigns. We conclude therefore the

Latent-Kernel designs assume a more complex variance modeland hence can capture a more lim-

ited set of models than the designs generated under the simpler Log-Linear variance model. The

latter designs thus appear more robust to structural error,i.e. the misspecification of the model.
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Figure 5.29: Structural Error: Evaluating Log-Linear designs (Figure 5.20) on the Latent-Kernel
model. F=Fisher design optimised using the Greedy optimisation under the Latent-Kernel model,
S=Simulated Annealing Design for the Latent-Kernel model,A=Fisher Greedy design optimised
under the Log-Linear model, SA=Simulated Annealing designunder the Log-Linear model.
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Figure 5.30: Structural Error: Evaluating Latent-Kernel designs (Figure 5.20) on the Log-Linear
model. F=Fisher design optimised using the Greedy optimisation under the Log-Linear model,
S=Simulated Annealing Design for the Log-Linear model, A=Fisher Greedy design optimised
under the Latent-Kernel model, SA=Simulated Annealing design under the Latent-Kernel model.
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5.7 Bayesian Inference

In this section, the effect of the Fisher, uniform replicateand non-replicate designs on the GP pa-

rameter posterior using Bayesian inference is examined. The Hybrid Monte Carlo (HMC) (Nab-

ney, 2001; Bishop, 2007) algorithm is utilised to perform sampling over a vague prior on the GP

parameters and the posterior under the different designs isdiscussed.

In Section 5.7.1 a brief overview of the sampling approach toemulation is given. The issue of

convergence is discussed in Section 5.7.2 followed by the simulation results in Section 5.7.3.

5.7.1 Methodology

A sampling approach is used to incorporate parameter uncertainty into the predictive GP vari-

ance. The HMC algorithm combines the Metropolis-Hastings algorithm with dynamical simula-

tion methods utilising gradient information to bias the directions of exploration (Nabney, 2001).

The resulting transitions have the ability of making large steps while keeping the rejection rate

small (Bishop, 2007). Specifically HMC tries to avoid randomwalk behaviour by introducing an

auxiliary momentum vector and implementing Hamiltonian dynamics where the potential func-

tion is the target density. The momentum samples are discarded after sampling. The end result of

Hybrid MCMC is that proposals move across the sample space inlarger steps and are therefore

less correlated and converge to the target distribution more rapidly. We refer the reader to Nabney

(2001) or Bishop (2007) for a detailed description and discussion of the HMC algorithm.

Given GP hyperparameter samples from the HMC procedure, thepredictive mean and vari-

ance are calculated using the corresponding mean and variance of the GP samples (see MUCM

Toolkit (World Wide Web electronic publication, Release 6,2010)ProcPredictGP page). Us-

ing N samples{θ1,θ2, . . . ,θN} from the GP parameter posterior for a training design setξ, each

sampleθi corresponds to a conditional GP prediction at a new pointx∗ with meanµi(x∗|ξ,θi) and

covarianceV i(x∗|ξ,θi). The combined predictive meanµc(x∗|ξ) and covarianceVc(x∗|ξ) are:

• µc(x∗|ξ) = 1
N ∑N

i µi(x∗|ξ,θi), i.e. the combined mean is the average of the conditional pre-

dictive means.

• The calculation of the predictive covariance is more complex:

1. Calculate the average covarianceV̄ = 1
N ∑N

i V i(x∗|ξ,θi).

2. Calculate the covariance of the conditional means

W =
1
N

N

∑
i

(

µi(x∗|ξ,θi)−µc(x∗|ξ)
)(

µi(x∗|ξ,θi)−µc(x∗|ξ)
)T

.
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3. The predictive covariance isVc(x∗|ξ) = V̄ +W.

5.7.2 Convergence Diagnostics

The convergence of the HMC chain was assessed by starting 8 parallel chains from perturbed ini-

tial conditions. The ML estimate of the parameters was perturbed by adding independent Gaussian

noise,N(0,1), which was used to initialised the HMC chain. A total of 5000 samples was used

with a trajectory size of 200 and step size of 0.025.

We also use the EPSR measure to check if the chains have converged (Gelman and Rubin,

1992). This compares the within-chain variability to between-chain variability and as a guide

should be less than 1.1 which was the case in our experiments.Following the recommendation in

Nabney (2001), the first half n/2=2500 of samples is ignored.

In the pilot runs of the HMC simulation, the chains did not converge when no prior was

used. When the vague prior described in Section 5.7.3 was used however, all chains converged.

This phenomenon was observed under both Matérn and Exponential kernels and was especially

pronounced for the length-scale parameter. An example of converging and non-converging chains

for the length-scale parameter is shown in Figure 5.31. Therefore in the subsequent experiments,

the prior was utilised as it has been shown to stabilise the HMC algorithm and ensure convergence

within the allotted 5000 time steps.

0 1000 2000 3000 4000 5000
−50

0

50

100

150

200

250

300

350

(a) No Prior

0 1000 2000 3000 4000 5000
−7

−6

−5

−4

−3

−2

−1

(b) Prior

Figure 5.31: Effect of Prior on convergence of chain for length-scale parameter. When no prior is
used the chain is not converging to a stable distribution whereas under the vague prior described
in Section 5.7.3 it does.

5.7.3 Simulation Results

A simulation study of the Nugget and Log-Linear variance models described in Section 5.6.4 is

presented. The locally optimum designs are utilised and forthe purposes of Bayesian inference a

vague prior is placed on all GP parameters.
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Independent normal priors are used for all GP parameters. For the log length-scale the prior

is N(−1,5), the log process varianceN(−1,8) and for the nugget and higher order variance

coefficientsN(0,6). This translates in the following 95 percent intervals: logλ = (−5.4,3.4),

logσp = (−6.6,4.6) andβi = (−4.8,4.8).

The true parameter values for the Nugget model are logλ =−1.6, logσp = 0, β1 = −4.6 and

for the Log-Linear model logλ =−2.3, logσp = 0, β1 =−4.6, β2 = β3 =−1.6. Thus, the priors

contain the true values within the 95 intervals but are not centred at those values and in some cases

such as for the nugget, the true parameter value is at the tailof the prior distribution. The prior was

determined to allow a wide range of length-scales and noise levels. Specifically, the length-scale

prior covers any credible value in the[0,1] design region used.

For the prediction and histograms shown in the simulation results, the HMC chain is subsam-

pled to every 25th sample to ensure the remaining samples are approximately uncorrelated. The

subsample size was derived by examining the autocorrelation. The HMC implementation in the

Netlab (Nabney, 2001) software is used.

5.7.3.1 Nugget Model

An HMC simulation experiment for the Nugget model describedin Section 5.6.4 is presented.

Three realisations of the experiment are utilised to examine the impact of the Fisher-optimal and

other designs on the parameter posterior. The Nugget model consists of three parameters, a Matérn

kernel and a single nugget. The locally optimal designs shown in Figure 5.6 are utilised.

The validation errors, presented in Table 5.7, are calculated using a 1024 Latin Hypercube test

set. The high uncertainty in most of the designs leads to verylow Mahalanobis score reflecting the

underconfidence of the predictors. The smallest error is observed for the Greedy design and the

largest for the replicate Grid, Grid and replicate Latin designs. Of note is the high Mahalanobis

error for the SA design which as explained below is caused by the high posterior variance for

the nugget parameter. In terms of the Dawid score, the Greedyand Simulated Annealing Fisher-

optimised designs are again ranked better than the competing space-filling designs confirming the

Mahalanobis score ranking.

The parameter accuracy of the ML estimates is shown in Table 5.8 in terms of the relative

RMSE score. The posterior mode accuracy results are given inTable 5.9 and in general we see

broad agreement with the ML errors signifying that the parameter posterior mode agrees with

the ML estimate. The errors for the Replicated Latin are an exception with the errors for the

length-scale and nugget parameters being significantly smaller for the posterior mode. For the

non-replicate Maximin Latin design, a significant drop of error for the length-scale parameter is

also observed. Of note is the high error of the SA design for the nugget parameterβ1 which is
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Table 5.7: HMC Validation results for the Nugget model. Meanvalue and standard deviations
across three realisations of the experiment.

Design Mahalanobis (1024) RMSE Dawid Score
Greedy 745±368 0.86±0.03 -2124±243
RGrid 249±64 0.92±0.12 -887±242
Grid 370±197 0.92±0.04 225±206
RL 164±64 0.86±0.06 -530±428

Latin 414±139 0.87±0.12 -77±418
SA 543±217 0.87±0.15 -1906±148

higher than for the other replicate designs. Overall, the Fisher-based designs have on average the

lowest parameter errors.

The posterior variances are summarised in Table 5.10 and thefull posterior distributions are

shown in Figures 5.32, 5.33 and 5.34 for a single realisationof the experiment. In general, a

larger variance in parameter posterior leads to larger variance in prediction. In the case of the

non-replicate designs large posterior variances are observed for all parameters and are reflected in

very high Mahalanobis errors demonstrating underconfidence of the HMC prediction.

For the length-scale parameter, the Fisher-optimised designs have the lowest variance in the

posterior. and appear to be more effective in restricting the range of plausible values for the length-

scale parameter than all other designs.

For the process variance parameter the replicate designs achieve similar variance in the poste-

rior while the non-replicate Grid and Latin designs have thehighest posterior variance.

Finally the posterior variance for the nugget parameter is low for the Greedy, replicate Grid

and replicated Latin designs while for the SA, Grid and Latindesigns it is higher. Examining the

relative RMSE results of the posterior mode in Table 5.9 As wehave noted the SA algorithm has a

high average relative RMSE for the nugget parameter compared to the other replicate designs (Ta-

ble 5.9) and the corresponding posterior variance is also higher which explains the large predictive

variance and hence low Mahalanobis score of the SA design. This is also supported by the Fisher

scores (Figure 5.7) where the SA design achieved a worse Fisher score than the Greedy design so

we would expect the Greedy design to have lower errors in thisexperiment.

Overall, the Fisher-optimal design, the Greedy design, is shown to lead to robust estimation

of all GP parameters and as expected by the Fisher scores (Figure 5.7) the replicate designs out-

perform and non-replicate Grid and Maximin Latin Hypercubedesigns. However we caution that

due to the small number of realisations of the experiment, the conclusions drawn are preliminary.
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Table 5.8: Relative RMSE of the ML estimate for the Nugget model. Mean and standard deviation
for three realisations of the experiment shown.

Parameter Greedy RGrid Grid RL Latin SA
Length Scale 0.28±0.21 0.48±0.64 4.56±4.85 6.68±11.19 4.08±6.22 0.30±0.34

Process Variance 0.29±0.35 0.09±0.05 0.70±0.25 0.16±0.17 0.49±0.30 0.05±0.06
β1 0.05±0.02 0.08±0.05 0.96±0.08 0.37±0.59 0.78±0.27 0.20±0.14

Table 5.9: Relative RMSE of the posterior mode for the Nuggetmodel. Mean and standard devia-
tion for three realisations of the experiment shown.

Parameter Greedy RGrid Grid RL Latin SA
Length Scale 0.29±0.21 0.56±0.16 3.66±5.29 0.44±0.14 1.16±0.48 0.26±0.20

Process Variance 0.30±0.39 0.10±0.04 0.66±0.41 0.15±0.20 0.52±0.35 0.07±0.04
β1 0.05±0.03 0.10±0.05 0.95±0.08 0.04±0.02 0.83±0.15 0.21±0.13

Table 5.10: Parameter posterior variance for the Nugget model. Mean and standard deviation for
three realisations of the experiment shown.

Parameter Greedy RGrid Grid RL Latin SA
Length Scale 0.09±0.06 1.44±0.20 4.98±1.07 1.50±0.26 3.56±1.89 0.13±0.03

Process Variance 0.07±0.01 0.04±0.01 2.69±1.65 0.04±0.00 2.99±1.07 0.04±0.00
β1 0.20±0.02 0.18±0.01 1.08±0.62 0.14±0.01 1.47±0.94 0.56±0.17
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Figure 5.32: Posterior variance for the log Length scale parameter of the Nugget model. Solid
magenta line is true value and green dashed line is the ML estimate.
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Figure 5.33: Posterior variance for the log Process Variance parameter of the Nugget model. Solid
magenta line is true value and green dashed line is the ML estimate.
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Figure 5.34: Posterior variance for the Nugget parameter ofthe Nugget model. Solid magenta line
is true value and green dashed line is the ML estimate.
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5.7.3.2 Log-Linear Model

A single instance of HMC prediction for the Log-Linear modelis examined in this section. The

Matérn kernel is also used but the variance model now has 3 parameters. The locally optimum

designs are shown in Figure 5.11 and the model is described inSection 5.6.4.

In Table 5.11 we see the validation results on a 1024 point test set in terms of the Mahalanobis

error, Dawid score and RMSE. The SA design performs well withthe Greedy design performing

less well but significantly better than the other designs which all make underconfident predictions

as reflected by the very low Mahalanobis score. The Dawid score results in an identical design

ranking with the Mahalanobis error.

Table 5.11: HMC Validation results for the Log-Linear model.
Design Mahalanobis (1024) RMSE Dawid score
Greedy 515 0.72 -4073
RGrid 35 0.59 -744
Grid 93 0.39 -1657
RL 48 0.61 -1387

Latin 128 0.37 -1947
SA 1036 0.48 -4294

The relative RMSE of the ML estimate for all parameters is presented in Table 5.12 and the

corresponding errors for the posterior mode in Table 5.13. Posterior parameter variance is shown

in Figure 5.14. As before, the posterior for the length-scale parameter is lowest for the Fisher-

optimised designs though in this example the non-replicateLatin design also has small variance.

It is worth noting that the ML relative RMSE for the length-scale is lowest for the Replicated Grid

design for which the corresponding posterior mode error variance is high. The process variance

parameter is identified with similar accuracy for all designs except the SA design, in terms of both

relative RMSE and posterior variance. The SA design in this example has a higher relative RMSE.

For the variance model parameters, the non-replicate designs have consistently high posterior

variance even though the corresponding relative RMSE is sometimes quite low. For instance, the

Latin design has the smallest relative RMSE forβ3 but the second highest posterior variance for

that parameter. The SA design which has the lowest Fisher score of all considered designs (Figure

5.12(b)) consistently achieves the lowest posterior variance even though it does not have the lowest

rRMSE for every variance parameter.
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Table 5.12: Relative RMSE of the ML estimate for the Log-Linear model.
Parameter Greedy RGrid Grid RL Latin SA

Length Scale 0.05 0.02 4.74 0.25 0.19 0.39
Process Variance 0.04 0.10 0.14 0.05 0.13 0.44

β1 0.01 0.18 0.89 0.11 0.62 0.00
β2 0.45 0.18 0.50 0.27 1.29 0.22
β3 0.12 1.12 1.28 0.53 0.01 0.10

Table 5.13: Relative RMSE of the posterior mode estimate forthe Log-Linear model.
Parameter Greedy RGrid Grid RL Latin SA

Length Scale 0.06 0.57 0.10 0.43 0.16 0.37
Process Variance 0.02 0.16 0.02 0.01 0.03 0.44

β1 0.04 0.15 0.49 0.08 0.52 0.02
β2 0.38 0.20 0.79 0.35 0.79 0.04
β3 0.16 1.17 0.44 0.32 0.01 0.04

Table 5.14: Parameter posterior variances for the Log-Linear model.
Parameter Greedy RGrid Grid RL Latin SA

Length Scale 0.11 2.18 0.43 1.36 0.13 0.10
Process Variance 0.13 0.04 0.13 0.05 0.09 0.10

β1 0.62 0.94 3.23 0.81 2.12 0.50
β2 1.77 0.93 4.01 2.49 5.14 0.73
β3 1.64 1.51 4.70 1.60 3.50 0.81
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5.8 Conclusions

This chapter has presented a new approach to model based optimal design for heteroscedastic GP

emulators and examined empirically the performance of the produced designs through an extensive

set of simulation studies.

In Section 5.2 an overview of the optimal design literature was given. When the design cri-

terion function is concave, such as for linear models, the General Equivalence Theorem applies

which allows to check whether the proposed design is the minimally supported optimal design.

Further, the additivity of the information matrices for linear models allows us to calculate a bound

for the design size. However in the correlated error setup considered in this thesis, neither result

applies as the criterion is not concave. The motivation for using Fisher information in this context

stems from the asymptotic analysis of Mardia and Marshall (1984) who showed under increas-

ing domain asymptotics that the ML estimatorθ̂ converges in probability to the true parameter

θ, θ̂ → N(θ, I−1(θ)) whereI(θ) is the Fisher information matrix. Therefore the minimisation of

the finite sample FIM is justified when the goal is to minimise parameter uncertainty. Some au-

thors (Zhang and Zimmerman, 2005) argue that infill asymptotics, where inter-point distances go

to zero, are more appropriate for interpolation and computer experiments. Under this asymptotic

framework however, the convergence of the finite sample FIM has not been proven in general and

results exist only for specific cases.

In the current design literature for computer experiments,only deterministic simulators are

considered and as a result replicated observations are not handled (Müller and Stehlík, 2009).

The extension of the Fisher criterion for replicated observations under our likelihood model was

presented in Section 5.3. The Bayesian formulation of the design problem was discussed in Sec-

tion 5.4 where the parameter uncertainty is numerically integrated out using Monte Carlo. The

design methodology is completed by specifying the optimisation method used. We have consid-

ered the Greedy and Simulated Annealing algorithms. The former is simple to implement and

requires little computational effort although as was discussed in Section 5.5.1 it cannot be utilised

in high-dimensional spaces due to the curse of dimensionality. However as the criterion used is

not a submodular function, no theoretical guarantee existson its performance. The Simulated

Annealing algorithm does not suffer from the curse of dimensionality and is a well known global

optimisation method which has been shown to avoid local minima but requires significantly higher

computational effort as well as tuning of a set of parameters.

The first set of simulation experiments in Section 5.6 focused on Maximum Likelihood (ML)

estimators. The monotonicity of the FIM to the log determinant of the parameter covariance was

demonstrated for the fixed basis variance model under different noise levels in Section 5.6.2. The
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approximation error was found to increase as the noise levelwas increased but the monotonicity

relationship was not violated.

In Section 5.6.3 a complete enumeration of all nine-point non-replicate designs from a twenty

nine-point candidate set was used to demonstrate the existence of multiple local minima in the

optimisation search space and the effectiveness of the greedy algorithm to locate a near-optimal

solution. Further, the profile likelihoods of all model parameters for the optimal and a grid design

were compared. The FIM design was found to exclude a larger range of parameter values from

consideration and hence identify the ML estimate with higher certainty.

The performance of FIM designs was examined in more depth in Section 5.6.4. The utilisation

of local designs, where the true parameters values are used in design generation, allowed for the

study of the Fisher approximation without errors due to the numerical integration of the Bayesian

criterion (Equation (5.4)). The experiments were performed across multiple realisations and the

performance examined in terms of both predictive and parameter estimation accuracy. The three

models used ranged in order of complexity. For the Nugget model (Section 5.6.4.1), where a

constant variance model is used, the predictive performance of all replicate designs was found to

be superior to that of the non-replicate Grid and Maximin Latin Hypercube designs. The finite-

sample FIM design ordering corresponded to the empirical parameter covariance with the lowest

Fisher score design also having the lowest parameter error both in terms of the empirical parameter

covariance and the relative RMSE of individual parameters.

These results extend to the Log-Linear model (Section 5.6.4.2) where a linear variance model

was used. The approximation of the FIM to the parameter covariance was worse than for the

Nugget model with the replicate designs achieving lower Fisher score and higher parameter es-

timation accuracy as reflected by the log determinant of the parameter covariance than the non-

replicate Grid and Maximin Latin Hypercube designs. The relative RMSE showed the Fisher-

optimised designs obtained through Simulated Annealing and Greedy optimisation identified the

length-scale parameter more reliably than the other designs. The variance-model parameters were

identified by all replicate designs with the non-replicate designs showing significantly higher er-

rors.

The largest approximation error is observed for the Latent-Kernel model (Section 5.6.4.3)

where the ordering of the space-filling designs as predictedby the Fisher score does not match the

empirical parameter covariance. However the Fisher-optimised designs achieve the lowest score

in terms of both measures as well as the individual parameterrelative RMSEs. Thus, although

the approximation error is larger, the Fisher designs are more differentiated from the space-filling

designs in terms of parameter accuracy than for the simpler Nugget and Log-Linear variance

models considered.
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The local design experimental results are summarised in Table 5.15 where both the computa-

tional complexity necessary to generate each design and theaverage error in the estimation of the

variance model parametersβ are shown. As discussed in Section 5.5.1, the computationalcost of

generating the space-filling designs is negligible and doesnot depend on the model complexity

as is reflected by the constant cost of generating the Grid andMaximin Latin Hypercube designs.

The Simulated Annealing design is the most expensive to generate and is roughly 10 times as ex-

pensive to calculate as the Greedy design for the configurations used in the experiments. In terms

of parameter estimation error for the variance model parameters, the computational complexity of

model-based design based on the Fisher information is only justified for the Latent-Kernel model,

where the variance model is the most complex. For the simplerNugget and Log-Linear variance

models, the geometric space-filling designs with uniformlyspread replicated observations have

performed as well as the Fisher optimal designs.

Table 5.15: Summary of design performance for all local design experiments. The elapsed time
T to generate each design is provided in seconds. The optimisation for both the Greedy and
Simulated Annealing designs was run in parallel as described in Section 5.5 and the elapsed time
is reported for the entire optimisation process. Also shownis the average rRMSE for all variance
model parametersβ where the lowest errors are marked in bold.

Design Nugget Log-Linear Latent-Kernel

T β T β T β
Greedy 28 0.08 65 0.65 68 0.22
Replicate Grid < 1 0.07 < 1 0.47 < 1 0.46
Grid < 1 0.62 < 1 2.30 < 1 0.66
Replicate Maximin Latin Hypercube 3 0.07 3 0.55 3 0.49
Maximin Latin Hypercube 3 0.54 3 2.10 3 0.82
Simulated Annealing 301 0.15 743 0.43 903 0.25

In general, these results suggest that the approximation error of the FIM to the empirical co-

variance increases with the complexity of the variance model. However the benefits of optimising

the Fisher score become more apparent under such complex models. The usage of Fisher-optimal

designs can be justified up to the point where the approximation error is too large and the mono-

tonicity of the designs considered is violated. However we are aware of no theoretical results to

help estimate the magnitude of the approximation error and heuristic approaches have to be used.

In terms of prediction error of the simulator mean as reflected by the RMSE, the non-replicate

space-filling designs on average achieve lower error. Even though such designs have higher errors

in parameter estimation, they cover the space more uniformly and hence are more likely to predict

accurately the mean value. However, as reflected by the Mahalanobis error and Dawid score, the

replicate designs capture the variance response more accurately as the length-scale and variance

parameters are estimated more precisely. The length-scaleparameter is most reliably identified
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by the lowest Fisher score design while for the non-replicate designs, consistently large errors are

observed in length-scale estimation. The variance model parameters are identified reliably by all

replicate designs in the case of the simpler Nugget and Log-Linear models or by the Fisher-optimal

designs in the case of the more complex Latent-Kernel model.The similarity in performance for

the replicate and Fisher-optimal designs in the case of the Nugget and Log-Linear models, is

reflected by the Fisher score .

We note that in the entirety of simulation experiments presented in this chapter, the Dawid

score agrees with the Mahalanobis error in the ranking of thecompeting designs. Therefore in the

subsequent chapter, for brevity of presentation we focus onthe Mahalanobis error which can be

interpreted more readily due to its known sampling properties (Section 2.5). Different rankings of

emulators are possible through the two metrics but such haveonly been observed in our experience

when the difference of the Mahalanobis error between two models is small, i.e. less than two

standard deviations of the Mahalanobis error sampling distribution. In particular as Bastos (2010)

discusses, the validity of an emulator may be judged by checking that the Mahalanobis error is

within two standard deviations of the expected value. In theresults presented in this chapter, large

differences in the Mahalanobis error have signified a comparison between a valid and an invalid

emulator. In our experience under such a circumstance, the Dawid score will provide the same

ranking as the Mahalanobis error.

Regarding the optimisation methods used, the solution found by the Simulated Annealing

algorithm for the Nugget (Section 5.6.4.1) and Latent kernel (Section 5.6.4.3) local design ex-

periments, has a larger Fisher score than the Greedy solution suggesting further effort in terms

of computational time is required for the algorithm to find a solution closer to optimal than the

Greedy solution. As was seen in Section 5.7.3.1, the lower Fisher score for the Greedy design

in the case of the Nugget model was reflected in lower parameter posterior variance and more

accurate prediction. To improve the performance of the Simulated Annealing algorithm, the an-

nealing schedule could be changed from linear to a more conservative (e.g. log) schedule and the

maximum number of iterations increased.

In Section 5.6.5 a set of Bayesian design simulation resultswas presented. For design gener-

ation, as in Zhu and Stein (2005) a discrete prior was used. The discrete values were selected to

represent a wide range of simulator behaviours with short and long correlation length-scales and

varying levels of noise. The Log-Linear and Latent-Kernel models from Section 5.6.4 were used

and the evaluation of the Bayesian designs included all permutations of prior values to ensure per-

formance was measured across the entire parameter domain defined by the prior. The conclusions

from the local design simulation experiments continue to hold under the Bayesian framework. All

variance models parameters were better identified by the replicate designs in the case of the Log-
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Linear model whereas solely the Greedy and Simulated Annealing designs captured accurately

the variance model parameters in the case of the Latent-Kernel model. The non-replicate Grid and

Maximin Latin Hypercube design perform poorly under both models with very high Mahalanobis

errors and Dawid scores evident.

The performance of the Fisher-optimal Simulated AnnealingBayesian design was examined

more closely in Section 5.6.6 where it was compared to a Grid design for a specific realisation

of the GP using the Log-Linear model. The two sources of uncertainty in prediction, code un-

certainty, (Kennedy and O’Hagan, 2001) which stems from distance of test to train points, and

intrinsic model variance, which is present only in stochastic computer models, were separated by

using the test set as the training set. In this setup, the effect of the more accurate parameter es-

timation of the Simulated Annealing design is evident as thepredictive variance closely matches

the true variance while for the Grid design the variance estimation is highly inaccurate. Under

the smaller thirty-point training design, the intrinsic model variance dominates the predictive vari-

ance for the space-filling Grid design while for the highly clustered Simulated Annealing design

code uncertainty dominates as the true variance is significantly smaller. The decomposition of the

Mahalanobis score using the Pivoted Cholesky Decomposition confirms the higher error for the

Grid designs stems from an inaccurately identified correlation structure. This validation method

suggested by Bastos and O’Hagan (2009) offers a practical method of validating emulators and

can point to the source of estimation error.

In Section 5.6.7, the performance of Fisher designs was examined under increasing design size

for the Nugget model. The parameter and prediction errors decrease for all designs but even for

the largest design size considered (200) the Grid design hashigher errors than the other designs.

The parameter estimation error as reflected by the log determinant of the parameter covariance is

smaller for the Fisher design even under the larger designs sizes.

Structural error, where the model used in design generationis not the correct one, is discussed

in Section 5.6.8. When the Log-Linear design was used with the Latent-Kernel model little loss of

predictive or parameter estimation accuracy was observed.However the reverse experiment where

the Latent-Kernel optimal design was used with the Log-Linear model resulted in large errors in

terms of both sets of measures. As the principle of parsimonysuggests, optimal designs generated

using simpler models are more robust to model misspecification.

In Section 5.7 Fisher-optimal designs were examined under Bayesian inference. The parameter

posterior for three realisations of the Nugget and one realisation of the Log-Linear models was

examined. Incorporating prior uncertainty into the prediction inflates the predictive variance for all

designs considered as reflected by the low Mahalanobis scores. However Fisher-optimal designs

achieve the lowest Mahalanobis errors and Dawid scores as they have the lowest variance in the
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parameter posterior in addition to lower ML estimation error. Even for parameters where the

ML error is higher than for other designs, Fisher-optimal designs have lower parameter posterior

variance reflecting the informativeness of the design to constrain the range of plausible parameter

values. This effect was also observed in a more limited context in Section 5.6.3 where the profile

likelihoods were examined for a one-dimensional nine-point design.

Overall explicit optimisation of the Fisher criterion has been shown to facilitate reliable infer-

ence of model parameters under a range of models of differingcomplexities. This conclusion is

corroborated by predictive and parameter accuracy resultsfor both ML and Bayesian estimation.

The effect is more pronounced under the latter where the parameter uncertainty is included in the

model prediction. Our work agrees and extends the results ofZhu and Stein (2005) where only ML

estimation of single nugget models was considered and predictive performance was not examined.

5.8.1 Future Work

The Fisher design methodology we have presented could be extended in a variety of ways.

Adaptive experimental design where the new simulator observations are requested and incor-

porated in the design approach was briefly discussed in Section 5.2.4. The Fisher-based approach

can directly be extended in this direction. Rather than examining the GP prior process, the GP

posterior may be used in the design criterion:

µ∗ = KT
Σ∗C

−1
Σ t

Σ∗ = KΣ∗∗+R∗∗−KT
Σ∗C

−1
Σ KΣ∗,

wheret the observed values. The correlation parametersθ appear both in the mean and covariance

of the GP posterior. GivenX distributed asN(µ(θ),Σ(θ)), thei, j element of the FIM is:

Fi j =
∂µT

∂θi
Σ−1 ∂µ

∂θ j
+

1
2

tr

(

Σ−1 ∂Σ
∂θi

Σ−1 ∂Σ
∂θ j

)

.

This result can be readily extended to the replicated observations using the approach presented in

Section 5.3. Further research is required however to show the usefulness of this approach.

In addition, Fisher-based designs can be incorporated intodesign approaches that minimise

other criteria. In particular, we envisage utilisation of Fisher designs for design approaches that lin-

earise the correlated process using expansions that dependon parameter accuracy. In Fedorov and

Müller (2004) the GP covariance is approximated by a truncated eigenvector expansion. Youssef

(2010) proposes the usage of Haar wavelets for the expansion. The approximation error of the ex-
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pansion critically depends on the parameter accuracy. Youssef (2010) proposes a Latin Hypercube

for the initial design but a much more natural choice would bea Fisher design where the parameter

estimation variance is explicitly minimised.

Following the discussion in Section 5.2, Zhang and Zimmerman (2005) suggest that the infill

asymptotic framework is preferable when interpolation is the aim. However when considering

infill asymptotics, the issue of parameter consistency mustbe addressed. Under increasing domain

asymptotics all kernel parameters are consistently estimable. Under infill asymptotics this is no

longer the case and consistency must be established. Zhang and Zimmerman (2005) demonstrate

through simulation that for parameters that are not consistently estimable, infill asymptotic results

seem to approximate finite sample properties more closely than increasing domain. We propose

that for specific models, consistency of parameters is established and when this is not true use

approximations based on infill asymptotic results rather than Fisher information or other increasing

domain results. However such an approach would be model specific.

In this work the focus has been exclusively on design for identifying the covariance parameters.

A mean function in the GP prior is used in practice in the emulation context as prior information

can be easily incorporated and the residual process is more likely to be stationary. It is well

known in the literature (e.g. Müller and Stehlík (2010)) that design for trend parameters is usually

antithetical to that of covariance parameters. Combining design for trend and covariance parameter

estimation in the heteroscedastic emulation context is an area for future research.

One limitation of the approach proposed in this work is the discrete nature of the optimisation.

The utilisation of a candidate set, which is typically obtained by a discretisation of the design

region, for optimisation scales poorly with the input dimensionality. This effect is known as the

curse of dimensionality (Bishop, 2007) and limits our method to low-dimensional spaces. A possi-

ble extension would be to use a continuous global optimisation method such as genetic algorithms

to remove this restriction.

The computational requirement of design generation may be further reduced by approximating

the Bayesian criterion integral in Equation (5.4) using more sophisticated approaches than Monte

Carlo. One possibility would be the emulation of the integral using a GP. The introduction of

another approximation error in the design process however would need further consideration.
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6.1 Introduction

In this chapter, the screening, emulation and optimal design frameworks discussed in the previ-

ous chapters are applied to real-world stochastic models. In Section 6.2, the sequential screening

described in Chapter 3 is applied to a stochastic rabies model supplied to us by the Food and

Environment Reseach Agency (FERA). The most important factors as identified by the screen-

ing procedure are compared to published results utilising computationally intensive methods and

verified by subsequent emulation.

The optimal design methods discussed in Chapter 5 are applied to two stochastic System Bi-

ology models in Section 6.3. The resulting designs are validated through a range of simulation

experiments.

6.2 Screening: Rabies Model

In this section we discuss the application of the Morris sequential screening method described

on Section 3.2 on a stochastic model provided by the Food and Environment Reseach Agency

(FERA) (Singer et al., 2008, 2009).

An overview of the stochastic simulator is given in Section 6.2.1, followed by a description

of the screening methodology (Section 6.2.2) and a discussion of the results (Section 6.2.3). The

effect of screening on emulation is discussed in Section 6.2.4 and the a summary of the screening

results is provided in Section 6.2.5.

6.2.1 Model Description

Although wildlife rabies was eradicated from large parts ofEurope, there is a remaining risk

of disease re-introduction. The situation is aggravated byan invasive species, the raccoon dog

(Nyctereutes procyonoides) that can act as a second rabies vector in addition to the red fox (Vulpes

vulpes). The purpose of the rabies model is to analyse the risk of rabies spread in this new type

of vector community (Singer et al., 2008). The individual-based, non-spatial, time-discrete model

incorporates population and disease dynamical processes such as host reproduction and mortality

rates as well as disease transmission. These processes are modelled stochastically to reflect natural

variability (e.g. demographic stochasticity). Thus modelanalysis (e.g. sensitivity analysis) has to

contend with stochastic, indeed heteroscedastic, model output (Boukouvalas et al., 2009).

The model includes two vector species: raccoon dogs and foxes. The model is non-spatial

and disease propagation is calculated solely with respect to population dynamics. As depicted in

Figure 6.1 the model consists of an input generation phase, the actual calculation of the model
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which is implemented in Java and two types of output, time series and summary statistics.

There are 132 individual inputs to the Java code but typically most are varied in a dependent

fashion, being separated in 16 different groups. Each individual input has a deterministic relation-

ship with its respective grouping variable. Thus the model can be run in two configurations; in the

stand-alone setup 132 inputs can be independently set for the model run, while in the hierarchical

setup 16 grouping variables are set from which the individual 132 inputs are generated.

In the experiments that follow only the hierarchical mode isused as this is the setup currently

employed by FERA. The grouping variables are shown in Table 6.1. For each input variable,

FERA has specified upper and lower bound values which are alsoshown. For our experimental

results to be comparable to Singer et al. (2008) the number ofsteps input variable was kept fixed

to 400 steps, the cross infection input at 0.002 and the area size at 5400km2. We therefore allow

13 parameters to vary freely in the simulator.

Grouped Inputs (16)

Individual Inputs (132)

User specified values

Java Model

Time Series For each Run Summary Statistics for each Scenario

Output Processing

Figure 6.1: Overview of the rabies model.

After the inputs have been generated, the model is run. It is currently implemented in the

Java programming language and is relatively computationally cheap to run; each run taking ap-

proximately one minute on a recent desktop machine. The exact computational time depends on

the ‘number of steps’ input variable (NumSteps) which determines the maximum number of time

steps in a single simulation. The simulation will terminatewhen the rabies disease becomes extinct

in both species populations or the number of steps reaches the maximum specified by NumSteps.

Thus the computational runtime depends on the input configuration at which the simulator is run.
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Table 6.1: Grouping parameters for the rabies model and their associated Lower and Upper Bounds
(LB & UB).

id Grouping Parameter Description LB UB

1
NumRuns

Number of repetitions of the experiment 200 300
at a specific parameter setting.

2 FoxStableDensityWin Fox population winter density (individuals/km2) 0.1 0.5
3 RacStableDensityWin Raccoon Dog population winter density (individuals/km2) 0.1 1
4

RacInfProb1
Shape parameter for the probability distribution 0.39 0.47
of raccoon dog infection

5 dummy Dummy variable with no influence 0.9 1.1
6 fox.death Fox population mortality 0.9 1.1
7 rac.death Raccoon Dog population mortality 0.9 1.1
8 win.hunting.prop Winter hunting proportion 0.9 1.1
9 fox.birth Fox population birth rate 0.9 1.1
10 rac.birth Raccoon Dog population birth rate 0.9 1.1
11 fox.inf Fox population infection rate 0.9 1.1
12 fox.rabid Fox population rabies individual density 0.95 1.05
13 rac.rabid Raccoon Dog population rabies individual density 0.95 1.05
14 cross.inf Cross infection rate 0.002 0.002
15 NumSteps Length of simulation run 400 400
16 AreaSize Area size (km2) 5400 5400

For input regions where the disease becomes extinct quickly, the simulator is quick to evaluate

while in other input regions, the simulator can take a maximum runtime determined by the Num-

Steps input variable. In the future, design for screening and emulation could take into account this

input-dependent simulator cost.

The model itself is stochastic in nature and thus in our analysis each simulation is repeated

multiple times to enable estimation of the stochastic process. The output of each simulation is a

time series data file, theith row corresponding to the state of the system at theith time step.

At the end of each simulation, summary statistics are calculated for the time series data and

stored as a single row in a scenario file. The latter contains one row for each repetition of a

simulation for a given set of inputs. The time series data hasnot been investigated at this point for

the purposes of screening and remains an open research area.

The summary outputs are further processed and the output that measures the probability that

the rabies disease becomes extinct in both species after 5 years is used for subsequent analysis

(Both.Inf.percent.ext.5years). This output is importantin deciding on the response to a potential

rabies outbreak since it indicates the risk of long term rabies disease persistence (Singer et al.,

2008, 2009).

The probability is calculated by first measuring the time that it took the disease to become ex-

tinct in both species. Provided the disease started in the raccoon dog population and went extinct in

both populations during the run the formula used is: max(RacInfExtTimeLast, FoxInfExtTimeLast)-

RacInfFirstInt. The output RacInfFirstInt records the time step when the rabies infection in the
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raccoon dog population commenced. Note that this formula can take the value Not Available (NA)

if the disease did not become extinct in the maximum number ofsteps allowed. The probability is

then calculated by measuring the frequency of instances fora single scenario that are less than 20

time steps since disease introduction (1 time step equalling 3 months bringing the total to 5 years).

Thus the output Both.Inf.percent.ext.5years is availableonly once for each scenario and cannot

hold the NA value by its definition (if for all the runs in the scenario the disease did not become

extinct the probability will be 0). Furthermore, to calculate the probability of disease extinction

to a high accuracy requires multiple repetitive runs of the simulator for a fixed parameter set. The

number of repetitions is determined by the NumRuns model parameter and the dataset generation

for a single output can now be computationally demanding.

The probability output for the two dominant inputs and averaged over all others is shown in

Figure 6.2.
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Figure 6.2: Probabilistic Output of Rabies simulator usinginputs Fox winter density (X axis) and
Raccoon Dog winter density (Y axis) and averaging over all others.

6.2.2 Screening Methodology

Singer et al. (2008) performed sensitivity analysis on the rabies model using a variety of standard

sensitivity analysis methods. In particular, results havebeen obtained using the Morris (Section

3.1.3) and Sobol’ (Section 3.1.2) methods.

In order for our experimental results to be directly comparable we have used the same setup
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as in Singer et al. (2008). The setup used is based on a Morris design with number of trajectories

R= 20 resulting in(k+1)×R= 14×20= 280 simulator evaluations, wherek is the number of

input variables. Two experimental designs are employed in the experiments, a Morris standard

design without clustering and a Latin Hypercube design. Thelatter design is used to validate the

emulators constructed on the screened input factors. For the Morris screening method we use

the meanµ∗ of the absolute values of the Elementary Effects to rank the input factors. Follow-

ing Singer et al. (2008) we set the number of levels top= 6.

The sequential Morris method (Section 3.2) requires the specification of a varianceγ from

which the threshold on the Elementary Effect deviationσ0 is derived. We setγ = 3.5 which

reflects a prior belief that individual factor effects on theoutput are considered near-linear if the

effect on the output is within three standard deviations of purely linear, i.e.±3
√γ = 5.6. Since

the output is hard bounded in the range[0,100] a factor has near-linear effect if the output varies

no more than 5.6% from linear. This variability encapsulates both the internal variability of the

stochastic model and our prior definition of a near-linear effect.

6.2.3 Screening Results

Singer et al. (2008) performed sensitivity analysis on thismodel using the standard Morris method

with the same setup as here as well as the Sobol’ method, described in Section 3.1.2. They noted

the most important parameters are species winter densitiesand mortalities. They also noted the

least influential factors are the dummy variable that has no explicit influence on the model output

and RacInfProb1, a shape parameter for the probability distribution of raccoon dog infection. It

is also noted that the Sobol method is prohibitively expensive and offers low accuracy with a

sample size of 300. They suggested increasing the sample size and reducing the dimensionality of

the problem by fixing some of the factors to their nominal values. For expensive simulators this

motivates the usage of the Morris method.

The standard Morris method variable ranking withR= 20 trajectories is presented in Figure

6.3(a) and agrees with the results of Singer et al. (2008) where the four dominant factors were

found to be the winter densities for both species and the associated mortality rates. Singer et al.

(2008) conclude that both Sobol and Morris methods show thatthe main effects are not sufficient

to characterise the parameter sensitivity in this model, i.e. the dominant factors have strong non-

linear and interaction effects which is reflected in the highσ value in the Morris method.

The sequential Morris method is initialised withR= 2 trajectories on all 13 factors requiring

(k+ 1)R= 28 simulator runs. We note that since the same jump,∆, is used for all factors, the

computed threshold is the same for all factors. The Morris plot with the associated threshold

value is shown in Figure 6.3(b). Two factors are significantly over the threshold, the Raccoon Dog
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winter density (3) and the Raccoon population rabies individual density (13), and are eliminated

from further consideration since they have strong non-linear effects on the simulator output.

Another trajectory design for the remaining 11 factors is evaluated and requires 12 further

simulator evaluations (Figure 6.3(c)). The NumRuns (1), Fox winter density (2) and Raccoon Dog

population birth rate (10) parameters are found to have non-linear effects and are removed from

further consideration. As evidenced by the Morris plot, theσ value for parameter 10 changed

significantly from the previous step where the effect was considerably below the threshold and

very close to linear.

For the third step, the eight-factor trajectory requires 9 more simulator evaluations (Figure

6.3(d)). Four further parameters are eliminated, the fox (6) and raccoon dog (7) mortality rates,

the fox birth rate (9) and the fox population rabies individual density (12) where large changes in

the moments of the elementary effects are again observed dueto the increased accuracy from the

increased Morris design size.

No more factors are eliminated until step 7 requiring a further (4+ 1)× 4 = 20 simulator

evaluations (Figure 6.3 (e)-(h)). At step 7 the winter hunting proportion (8) and fox population

infection rate (11) parameters are removed from further consideration.

The remaining two factors, the shape parameter for the probability distribution (4) and the

dummy variable (5) are found to be below theσ threshold for all subsequent twelve steps requiring

(2+1)12= 36 simulator evaluations.

The total number of simulator evaluations for the sequential procedure is 105 compared to the

280 evaluations required by the standard batch Morris method with R= 20 trajectories.

We have also performed the threshold calculation on the fullMorris set withR= 20 trajectories

and the same factors as with the sequential version are identified as near-linear.

In summary, the sequential Morris method for the Rabies model has been successfully used to

identify factors with no or near-linear effects on the simulator response at a significant savings to

the standard Morris method.

6.2.4 Standard Gaussian Process Emulation

In this section, the screening results are further examinedby performing emulation on the rabies

simulator using different sets of input factors. In particular the predictive performance of the

following configurations is compared:

• All. The entire set of thirteen input factors is used.

• Low Order. The shape parameter for the probability distribution (4) and the dummy variable

(5) factors identified by the sequential procedure as havingnear-linear effects are discarded.
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Figure 6.3: Morris Screening on Rabies simulator. X axis isµ∗ and Y axisσ of Elementary Effects.
Green line denotes path from previous value of(µ∗,σ) for each factor. Horizontal dashed red line
denotes theσ0 threshold value for the given step.
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• Neg Low Order. Only the shape parameter for the probability distribution(4) and the dummy

variable (5) factors are used.

• High Order. Only the four dominant factors are used by the emulator. As identified in the

previous section these are the raccoon dog and fox population winter density factors (2,3)

and their associated mortality rates (6,7).

• Neg High Order. The remaining eight factors are used by the emulator.

The emulator used is a zero-mean Gaussian Process with a fixeddifferentiability ν = 5/2 Matérn

kernel and a single nugget. A nugget is used as the simulator output is stochastic.

The emulators were trained on three instances of Morris designs of 280 model observations

(R= 20), each instance being validated using a separate Latin Hypercube test set of 280 points.

The Morris designs are used for training since model observations obtained during screening

should be usable in subsequent stages of emulation.

The validation results for all five input configurations are shown in Table 6.2 in terms of the

Mahalanobis and RMSE scores. In order to compute the probability output at each design point,

multiple repetitions of the simulator output are required.Therefore due to the computational

expense only six designs have been used, three training and three test sets, to generate three reali-

sations of the experiment. The validation measures have been averaged over the realisations of the

experiment.

When discarding the two parameters identified in the sequential procedure (Low Order) the

emulation predictive performance actually improves. Eliminating unimportant factors benefits

the emulation as the inference is performed on a lower-dimensional space which can be critical

especially when a relatively small training set is available.

When considering only the two unimportant factors (Neg Low Order) the predictive perfor-

mance both in terms of RMSE and Mahalanobis score deteriorates sharply signifying the inability

of the emulator to predict the simulator output using these inputs.

For the High Order scenario, in terms of RMSE there is little loss of accuracy from not includ-

ing the eight least influential simulator factors in the analysis. The Mahalanobis score shows a loss

of predictive power which is however much greater when the four dominant factors are discarded

(Neg High Order).

We note that for factors with linear effect on the simulator output, as reflected by a high

meanµ∗ and low deviationσ values in the Morris procedure (Section 3.1.3) a preprocessing step

whereby the linear effect is removed from the output could beutilised to further minimise the

impact of discarding such factors from subsequent emulation. This is discussed in Section 3.3.
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Table 6.2: Validation of Emulators on Rabies model using different sets of input factors as de-
scribed in Section 6.2.4. Mean and 2 standard deviations areshown based on three realisation of
the experiments. Emulators trained on Morris design and evaluated on a Latin Hypercube design
of the same size (280 points).

Input Set Mahalanobis (280) RMSE

All 381.9±145.12 28.65±4.91
Low Order 274.2±59.3 27.9±5.62

Neg Low Order 1236.9±1495.5 32.5±1.34
High Order 559.8±136.3 29.42±5.15

Neg High Order 2349±1183.26 33.75±3.14

In Boukouvalas et al. (2009) and Boukouvalas and Cornford (2009) the number of steps to

disease extinction output of the rabies simulator has been emulated using the Coupled Model

described in Chapter 4 as, unlike the probability of diseaseextinction output, the variance is het-

eroscedastic. Therein, it was found empirically that the Coupled Model utilising Latin Hypercube

training designs with replicate observations obtained better validation results than without replica-

tion. The heuristic nature of the design generation motivated us to examine model-based optimal

design (Chapter 5), an application of which is discussed in the next section.

6.2.5 Conclusions

In Section 6.2 the application of the sequential screening method described in Section 3.2 to the

rabies model has demonstrated the effectiveness of the method on a real-world high-dimensional

stochastic simulator. The number of required model evaluations was considerably less than would

be required from a straightforward application of the standard Morris method with the same num-

ber of trajectories.

The only requirement of the method is the definition of near-linear effects via the specification

of theγ variance parameter. In the case of stochastic simulators, this parameter includes the inter-

nal simulator variability whereas for deterministic simulators near-linear definitions only include

errors due to machine precision and degree of departure fromtruly linear effects on the output.

Lastly, the effect of screening on emulator performance wasexamined in Section 6.2.4 where

discarding the two factors identified as near-linear actually improves predictive performance and

using the four dominant input factors incurred a small loss of predictive accuracy compared to

a full model with a much higher degree of complexity. Such lower-dimensional representations

simplify subsequent stages of the analysis such as optimal design generation.
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6.3 Optimal Design: Systems Biology Simulators

In this section we present a case study of systems biology models with the aim of demonstrating

the emulation and design aspects discussed in Chapters 4 and5 respectively.

In Section 6.3.1 an introduction to stochastic modelling for systems biology is provided, fol-

lowed by a review of existing work on emulation of such systems in Section 6.3.2. In Sections

6.3.3 and 6.3.4 the experimental results on emulation and design are presented for two systems

biology models, the Dimerisation Kinetics and ProkaryoticAuto-regulatory Network models. A

discussion of the results and directions for future research are presented in Section 6.3.5.

6.3.1 Introduction to Systems Biology Modelling

In this section we provide a short introduction to the stochastic simulation of systems biology

models. The discussion is heavily based on the book by Wilkinson (2006) to which the reader is

referred for further details.

The traditional method of modelling the kinetics of biological processes is via the solution of

a deterministic system of differential equations. Howeverat the intra-cellular level the kinetics

are inherently stochastic and cellular functions cannot beproperly understood without explicitly

modelling that stochasticity.

The deterministic approach to kinetics fails to capture thediscrete and stochastic nature of the

molecular reactions involved, especially when at least some of the reactant molecules appear at

low concentrations where stochastic variability can dramatically change system behaviour away

from the deterministic solution.

The approach we follow is to perform exact stochastic simulation of a system of molecular

reactions. A reactionRi may be represented as:

X1+X2+ · · ·+Xu
ki−→Y1+Y2+ · · ·+Yn,

whereX∗ are the molecules reacting, known as reactant species,ki is the rate constant which is

linked to the likelihood of the reaction occurring andY∗ are the resulting molecules.

Provided the volume and temperature are fixed and the distribution of molecules is uniform,

the probability of the reaction occurring, known as the hazard, is provably constant. The rate

constantki associated with a reactionRi is necessary but not sufficient to describe the hazard of a

reaction. The hazard also depends on the quantities of the reactant molecules and can be written

ashi(x,ki) wherex= (x1,x2, . . . ,xu) the current state of the system, i.e. the number of molecules

for each reactant species.
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Formally, conditional on the state being x at time t, the probability that a reactionRi will occur

in the interval(t, t +dt] is given byhi(x,ki)dt.

The exact form ofhi depends on theorder of the reaction.

A zeroth-order reaction is of the form:

/0 ki−→ X.

The hazard function depends solely on the rate parameterhi(x,ki) = ki . In some cases, it is conve-

nient to model an external influx of molecules via a zeroth-order reaction.

A first-order reaction is of the form:

Xj
ki−→?

where ? is any outcome. Givenx j number ofXj molecules, the probability of each molecule

reacting iski . Therefore the probability of any one reacting is the combined hazardhi(x,ki) = kix j .

A second-order reaction is of the form:

Xj +Xk
ki−→?

There existx j ×xk different pairs of molecules that may react. Therefore the combined hazard is

hi(x,ki) = kix jxk. A special type of second-order reaction is:

2Xj
ki−→?

In this case onlyx j(x j − 1)/2 pairs of molecules may react and the combined hazard becomes

hi(x,ki) = kix j(x j −1)/2.

Most higher-order reactions can be modelled as a set of second-order reactions which quite

often is chemically more realistic and may result in different dynamics compared with modelling

the higher-order reaction directly. A set of second-order reactions is generally believed to be

more biologically plausible as reactions where three or more species react simultaneously are rare

(Wilkinson, 2006).

For simple systems where all reactions in a system are zero and first-order mass action kinetics,

the deterministic solution will correctly describe the expected value of the stochastic kinetic model

(Section 6.7 of Wilkinson (2006)). However no estimate of the variability will be available and

this link fails for systems with higher-order reactions.

Since the hazards only depend on the current state of the reaction systems, the dynamics can

be modelled as a continuous-time Markov process with a discrete state space. Detailed mathemat-
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ical analysis of such systems is usually not tractable but stochastic simulation of the dynamics is

straightforward. The Gillespie algorithm is one option to perform simulation from such systems

and is described in Algorithm 6.1.

Algorithm 6.1 Description of the Gillespie algorithm for exact simulation of stochastic systems.

Gillespie Algorithm

Input : U reactants with initial concentrationsX0 = {x1, . . . ,xu}, V reactionsR = {R1, . . . ,RV}
with rate constantsk = {k1,k2, . . . ,kV}, number of timestepsT.
Output : Time series of state vectorXT .

A. Iterate until the number of timesteps exceeds threshold T.

1. For each reactionRi calculate its hazardhi(x,ki).

2. Calculate the combined hazard of any system reaction occurring h0(X,k) = ∑V
i=1hi(X,ki).

3. Simulate the time to next eventt ′ by sampling from an exponential distribution withλ = h0(X,k).

4. Move the current time tot = t + t ′.

5. Probabilistically select which reaction will occur by sampling from a discrete distribution with
probabilitieshi(X,ki)/h0(X,k) for i = 1,2, . . . ,V.

6. Update the current stateX according to the selected reaction and append it to the time seriesXT .

6.3.2 Existing Work

Emulation of systems biology stochastic systems is a relatively new research area and we are

only aware of the work of Henderson et al. (2009a) that directly tackles the emulation of these

biologically inspired models.

Henderson et al. (2009a) present a method to perform emulation and calibration of a five re-

action system that describes mitochondrial DNA deletions in Substantia Nigra neurons. Due to

conservations laws in the system only two rate parameters are needed. The authors state that al-

though exact Bayesian inference via Markov Chain Monte Carlo can still proceed in theory, using

simulations from the biological model, it becomes infeasible in practice due to the computationally

demanding simulator. They propose to replace the simulatorby an inexpensive statistical surro-

gate, an emulator. Due to the heteroscedasticity of the simulator variance, the proposed emulator

is an independent set of two GPs that model the mean and log standard deviation of the response

respectively. Both GP priors are set with a constant mean anda squared exponential kernel with a

nugget parameter.

The authors tackle the design by heuristically combining three designs (Henderson et al.,

2009b). The design space is four-dimensional, the two rate parameters, a threshold value for

cell death and the age of the individual. A 250-point design is constructed from the following

combination of designs:
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• A 24 factorial design on the extreme points of the input space. Anoverview of factorial

designs is given in Section 2.3.

• A Cartesian product of an 8-point Latin Hypercube on the firstthree parameters with a 13

unique value design for the age parameter where observational data are available

• A 130-point design consisting of a random sample from the prior distribution of the rate

and threshold parameters and a corresponding sample from a uniform distribution of integer

values for the age parameter.

The authors state this composite design aims to give good coverage over the support of the prior

distribution, i.e. provide an emulator that is a good approximation to the simulator across the

whole parameter space. Furthermore, it is hoped that the large number of inter-point distances

available in this design will be of benefit when estimating GPparameters.

The simulator is run for each of the 250 input configurations 1000 times to obtain replicated

observations. In some cases the simulation experiment concludes prematurely due to cell death and

these runs are discarded. The authors do not utilise the biascorrection due to the log transformation

of the sample variance described in Section 4.4.1.

In order to speed up computation two GP emulators are trainedon the mean and log standard

deviation of the replicated observations where to achieve robustness in the estimation of the sample

moments, the authors further restrict the training design to points where at least four replicates

observations resulted in successful runs. The final design is 171 points.

Finally uniform priors are assigned to all kernel parameters and a two step MCMC scheme is

used to perform emulation and calibration. The authors mention two further simplifications they

have found had little impact on the performance of their scheme. The MAP estimate is used for

the GP hyperparameters and only the mean predictions of the mean and variance GPs are utilised

in the MCMC inference.

In the case study we present, the focus is exclusively on the design and emulation aspect of the

analysis and calibration is not considered. The emulation models we use also utilise the moments

of replicated observations but the mean and variance modelsare coupled for better predictive

performance. Since the emphasis is on design, the variance model we use is simpler than a full

GP although in Section 6.3.4.3 we present emulation resultsbased on the latent GP model which

is similar to a GP model for the log variance.

The design question is approached using the Fisher information criterion to obtain an optimal

design for parameter estimation rather than heuristicallyconstructing a design with a large set of

inter-point distances.
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6.3.3 Dimerisation Kinetics

The first model simulates the dimerisation kinetics reversible reaction (Wilkinson, 2006). It con-

sists of two reactions:

2P
k1−→ P2

P2
k2−→ 2P

The two reactants are the proteinsP andP2. The rate parametersk1 andk2 control the proba-

bility of the reaction firing.

Given the initial conditions, i.e. the number ofP andP2 molecules, and values for the rate con-

stantsk1 andk2 the ordinary differential equation describing this model can be solved analytically

to describe the full dynamical behaviour of the system. The focus in this section is on emulation

of the stochastic simulator under uncertain rate values.

The Gillespie algorithm described in Section 6.3.1 is used to simulate from this model. The in-

put domain space is two-dimensional with the domain fork1 ∈ [0.0005,0.03] andk2 ∈ [0.0005,0.5].

The initial number of molecules were set toP= 301 andP2 = 0. The model was run to timeT = 10

with stepdt = 0.1.

The mean and standard deviation of the simulator across the input domain is shown in Figure

6.4.

The distribution of the output at a point for this model is approximately normal as discussed

in Wilkinson (2006) so we expect the mean and variance to describe the output reasonably well.

Simulation results confirming the normality approximationare shown in Figure 6.5.

The near-normal output and the input dependency of the modelvariance motivates the usage

of the heteroscedastic emulation methods.

More details on this model can be found in Wilkinson (2006).

6.3.3.1 Design and Emulation Results

As the variance plot of the simulator (Figure 6.4(b)) shows,a linear variance model would appear

to be appropriate.

We discretise the input space into a grid of 2025 candidate points from which we wish to select

a 30-point design allowing for replication. A Latin Hypercube design of 2025 design points with

1000 replicates at each design point is used to validate the emulator.

The model used both in design and emulation is a zero-mean GP prior with a Matérn kernel

with fixed differentiability ν = 5/2 and a log-linear function for the variance. A non-stationary
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Figure 6.4: Mean and standard deviation of dimerisation model at time step 10, using 1000 reali-
sations on a grid of 2025 input points. The inputs are the rateparameters and the initial conditions
are kept fixed.

(a) 5 realisations of dynamics. X axis
signifies time steps.

(b) Histogram of values atT = 10. (c) QQ-plot of values atT = 10.

Figure 6.5: Dynamics from the Dimerisation Kinetics model showing 10 realisations. Initial con-
ditions P= 301,P2 = 0 andk1 = 1.66e−3, k2 = 0.2. Output plotted is number ofP molecules.
Also plotted histogram and QQ-plot of 1000 realisations of model output at time stepT = 10
which can be seen to be approximately normal. The QQ-plot shows the Standard Normal Quan-
tiles (X-axis) vs the Quantiles of the input sample (Y-axis).
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GP prior with non-constant mean function would be more appropriate as the exploratory plots

of the simulator output in Figure 6.4 suggest. However elicitation and design for such a model

is more complex and could be pursued as a future research direction. A discrete prior is placed

on all the model parameters; for the length-scaleλ ∈ (0.2,0.6,1.5), the process varianceσp = 1

and the variance coefficientsβ1 ∈ (−4.6,−2.3), β2,β3 ∈ (−1.6,1.6). The prior is constructed to

allow for short and long length-scale values, a range of noise levels and slopes for the variance

function. Following Zhu and Stein (2005) a point prior is setfor the process variance since only

the signal-to-noise ratio is of important for model-based design.

The validation results are obtained using Maximum Likelihood (ML) optimisation without

reference to the discrete prior. This was done to separate the impact of the design on the ML

parameter estimates from the impact of the prior on the generated Fisher designs.

Lastly the model is fit on the entire candidate set with four replicates at each design point to

obtain a reliable estimate of the model hyperparameters which are treated as the true values for

the purposes of calculating the RMSE of the ML parameter estimates of the different candidate

designs. The estimated parameter values from utilising theentire candidate set areλ = 3.8, σp =

3×108, β1 = 3.9, β2 =−0.99 andβ3 = 0.99.

The Fisher-generated design are shown in Figure 6.6, where both Greedy and Simulated An-

nealing optimisation methods result in the placement of a significant proportion of the design

points on the corners of the design space. As the variance model used in the emulator is linear,

this is consistent with traditional optimal design where the variance of the coefficients of a linear

model is minimised.

The predictive validation results are shown in Table 6.3. Interms of Mahalanobis score the

non-replicate designs do badly with significant high valuesin the tail of the distribution which

skew the mean values. The RMSE score is worse for the Greedy design whose Mahalanobis score

is closest to optimal which leads to the conclusion that the variance prediction is the source of the

predictive improvement. The replicated Latin design achieves the smallest RMSE. We note here

that as was described in Section 5.8, the Dawid score is not included as it provides an identical

emulator ranking under such large differences in the Mahalanobis error.

The predictive performance results can be better understood by examining the parameter ac-

curacy of the designs. In terms of relative RMSE on the parameters (Figure 6.7), the biggest

differences are observed in terms of the estimation of the noise variance termsβ1 andβ2. Of note

is also the error for the length-scale parameter when the inference is done under the Greedy design.

The Fisher information and the empirical log determinant ofML estimates are calculated using

the logarithm of the length-scale parameter while the relative RMSE is computed on the natural

space. For this reason larger differences in RMSE may not correspond to large differences in the

158



Chapter 6 APPLICATIONS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4

5

2

4

3

5

(a) Greedy

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3

2

2

3

(b) Simulated Annealing

Figure 6.6: Fisher Designs Produced for the Protein Dimerisation model.

empirical log determinant.

The Fisher information score for each design is provided in Figure 6.8 and we see a clear

correspondence to the empirical log determinant. The fact that all replicate designs achieve similar

Fisher scores may stem from either optimisation getting trapped in local minima for the Greedy

and Simulated Annealing schemes or from the fact that uniform replicate designs are close to

optimum for this choice of prior. Due to the good performanceof the Greedy/SA algorithms in

our previous experiments we believe the latter is more likely in this scenario.

In summary, in terms of both parameter accuracy as reflected in the empirical log determinant

and prediction accuracy the replicate designs outperform the non-replicate designs.

Table 6.3: Mean and standard deviation of the Mahalanobis score (2025) and RMSE for the Protein
Dimerisation model. 1000 realisations of the experiment were used.

Design Mahalanobis RMSE
Greedy 2866.28± 1476.09 23.14± 3.24
Replicate Grid 3985.77± 2346.76 20.28± 2.04
Grid 38×106±355×106 15.65± 2.71
Replicate LH 3399.83± 1873.07 13.91± 2.38
LH 7×106±82×106 14.13± 2.09
Simulated Annealing 3704.42± 2261.49 16.65± 3.05

6.3.4 Prokaryotic Auto-regulatory Network

The simulator used in this section describes a simple gene expression auto-regulation mechanism

often present in prokaryotic gene networks. It is composed of five reactant species, the geneg,

proteinPand its dimerP2, and the mRNA molecule. The eight reactions complete the specification

of the model:
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Figure 6.7: Parameter Estimation Relative RMSE for the Protein Dimerisation model. F=Greedy
design, Rg=Replicate Grid, G=Grid, R=Replicate Maximin Latin Hypercube, L=Maximin Latin
Hypercube.
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Figure 6.8: Parameter Fisher score and Empirical Log Determinant for the Protein Dimerisation
model.
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g+P2
k1−→ g.P2 Repression

g.P2
k2−→ g+P2 Reverse Repression

g
k3−→ g+ r Transcription

r
k4−→ r +P Translation

2P
k5−→ P2 Dimerisation

P2
k6−→ 2P Dissociation

r
k7−→ /0 mRNA degradation

P
k8−→ /0 Protein degradation

Dimers of the protein P (P2) coded for by the geneg repress their own transcription by binding

to a repressive regulatory region upstream ofg. This model is minimal in terms of biological detail

included but contains many of the interesting features of anauto-regulatory feedback network

(Wilkinson, 2006).

Figure 6.9 shows the dynamics for all five species for 5000 time steps. The mRNA tran-

script events producing the reactantg are comparatively rare and random in their occurrence (top

Figure 6.9(a)). The number of protein dimersP2 jumps abruptly at random times and coincides

with the mRNA transcription events. So even though there exist a large number of protein dimer

molecules, their behaviour is strongly stochastic due to the fact they are affected by the number

of mRNA transcripts which are few in number (Wilkinson (2006) page 173). Due to this inher-

ent randomness, a continuous deterministic model will not adequately capture its behaviour and

stochastic simulation is justified in the analysis of this model.

(a) r,P,P2 (b) g.P2,g

Figure 6.9: Dynamics for all five species up to time T=500, dt=0.1 of the Prokaryotic Auto-
regulatory Network. Initialised withg.P2 = 10,g= r = P= P2 = 0 number of molecules.

Figure 6.10 shows histograms of the empirical distributions of all species. Due to the approxi-

mate normality of speciesg.P2, it is utilised for the design and emulation experiments that follow
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in next section.

0 5 10
0

1000

2000

g.P
2

0 5 10
0

1000

2000
g

0 1 2 3
0

5000

10000
r

0 10 20 30
0

2000

4000
P

0 50 100 150
0

5000

10000

P
2

(a) 10 step histogram

−5 0 5
−5

0

5

10

15

g.P
2

−5 0 5
−5

0

5

10

15
g

−5 0 5
−4

−2

0

2

4
r

−5 0 5
−10

0

10

20

30
P

−5 0 5
−50

0

50

100

150

P
2

(b) QQ-plot

Figure 6.10: Histograms of all five species taken at time T=10, dt=0.1 using 10,000 realisations
for the Prokaryotic Auto-regulatory Network. The QQ-plot shows the Standard Normal Quantiles
(X-axis) vs the Quantiles of the input sample (Y-axis).

In Section 6.3.4.1 different design strategies are evaluated using multiple realisations of the

experiment. In Section 6.3.4.2 a specific validation instance is examined for the Greedy and Grid

designs to better understand the sources of design error andin Section 6.3.4.3 the impact on design

performance of a more complex variance model is examined.

6.3.4.1 Design and Emulation Results

In this section the performance of six different designs arecompared both in terms of predictive

performance and parameter estimation error.

A single nugget variance model is used as a more complex modelwould require the specifica-

tion of prior beliefs for parameters whose effect on the response is complex and does not facilitate

elicitation. Furthermore, as was demonstrated in Chapter 5an incorrect prior specification on a

complex model can lead to very inefficient designs.

Thirty points are selected from a candidate set of 1024 points. We use 2025 test points and

perform 500 realisations of the experiment. An exponentialkernel with a single nugget variance

model is used. The prior used is:λ2 = (0.1,5,10), σp = (1,3,5) andτ = (0.1,0.5,4) which allows

a wide range of noise levels and correlation length-scales.

As before the Greedy and Simulated Annealing designs obtained through the minimisation of

the Fisher score are compared to Grid and Maximin Latin Hypercube designs with and without

replicate observations. The Fisher designs are shown in Figure 6.11.

As in the Protein Dimerisation model study (Section 6.3.3),parameter accuracy is estimated

by treating as true the hyperparameters values inferred when leveraging the entire candidate set
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Figure 6.11: Fisher Designs obtained for the Prokaryotic Auto-regulatory Network.

with four replicates at each site as the training set.

In terms of predictive validation (Table 6.4) the Mahalanobis score is closer to optimal for the

replicate designs and the RMSE is similar for all designs.

Table 6.4: Mean and standard deviation of Mahalanobis score(2025) and RMSE for the Prokary-
otic Auto-regulatory Network. 500 realisations of the experiment were performed.

Design Mahalanobis RMSE
Greedy 2490.84± 808.29 2.35± 0.11
RGrid 2521.42± 1043.49 2.21± 0.09
Grid 5520.03± 6763.81 2.30± 0.14
RLatin 2098.68± 546.42 2.39± 0.14
Latin 4361.50± 4603.53 2.34± 0.12
SA 2284.77± 730.00 2.28± 0.10

The Fisher score approximates the log determinant (Figure 6.12) with significant error but the

overall ordering of the non-replicate to replicate designsis maintained. In terms of the empirical

log determinant the Greedy and Replicated Grid designs havethe smallest dispersion. Both of

these designs place replicated design points on the boundary of the variance response and therefore

perform better than predicted by the Fisher score in terms ofparameter estimation. The larger

approximation error of the Fisher score to the empirical logdeterminant suggests the prior used is

not completely appropriate for the simulator data. A more informative prior closer to the simulator

function would improve the Fisher approximation.

In terms of relative RMSE (Figure 6.13) very high errors are observed for the nugget parameter

in the case of the non-replicate designs. Differences in estimation of the process variance term are

also evident with the replicate Latin Hypercube design having the highest error. However due

to the log transformation of the length-scale and process variance terms mentioned previously
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Figure 6.12: Log Determinant and Fisher Information for theProkaryotic Auto-regulatory Net-
work. For the log determinant, .5 and .95 quantiles calculated using bootstrap. For Fisher calcula-
tion 2 standard deviations error bars are estimated from theMonte Carlo sample.

(Section 6.3.3.1) in the optimisation, the observed errorsonly have a small contribution to the

empirical log determinant where the error on the nugget termdominates.

6.3.4.2 Individual Example

In this section a specific realisation for the Greedy and Griddesigns is more closely examined

to better understand the differences in behaviour of the replicate and non-replicate designs. The

realisation selected has relative RMSE close to the averageerrors presented in the Section 6.3.4.1

and can therefore be considered representative.

The predictive validation and parameter relative RMSE for this realisation are shown in Table

6.5. The Greedy design has significantly lower Mahalanobis error and lower RMSE. In terms of

relative RMSE there exists a striking difference in the error for the nugget parameter consistent

with the summary results across multiple realisations of the experiment shown in Figure 6.13 and

discussed in Section 6.3.4.1.

Visually the differences in mean (Figure 6.14) and standarddeviation (Figure 6.15) prediction

are apparent between the two designs. For the mean response the fit achieved using the Greedy

design is functionally closer to the simulator output than the inference based on the Grid design.

The standard deviation appears too large for the Greedy design but that is deceptive. As was noted

in Section 5.6.6 for highly clustered designs the code uncertainty arising from the distance of test to

training points dominates the predictive variance. The Greedy design is highly clustered (Figure

6.11) and as revealed by the Mahalanobis score and parameterestimation errors, the variance

response is captured well. For the Grid design the standard deviation is unrealistically small close

to training points reflecting the problem in estimating the nugget and this is mirrored by the high

Mahalanobis error. The Greedy design places replicated points on the corners of the space and is
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Figure 6.13: Parameter accuracy (RMSE) for the ProkaryoticAuto-regulatory Network.
F=Greedy design, Rg=Replicate Grid, G=Grid, R=Replicate Maximin Latin Hypercube,
L=Maximin Latin Hypercube.

able to approximately capture the functional form of the variance response.

Table 6.5: Prokaryotic Auto-regulatory Network: Validation Measures and relative RMSE for
length-scale (λ), process variance (σp) and nugget parameters (τ) for two realisations from simu-
lator. 30-point design.

Design Mahalanobis (2025) RMSE Relative RMSE(λ,σp,τ)
Greedy 1904.26 2.23 ( 0.96 , 0.44 , 0.05 )
Grid 5178.24 2.49 (0.98 , 0.37 , 0.99)

6.3.4.3 Fitting Complex Variance Model

The constant variance model used to generate the model is clearly incorrect as the simulator vari-

ance exhibits structure, especially at the boundary of the design domain.

In this section, a more complex model is assumed for the variance and the resulting fit is

examined for both a replicate and a non-replicate Grid design. From Section 6.3.4.1, we expect

the former design to identify the model parameters more robustly and lead to lower prediction

errors when compared to the Grid design. This conclusion is confirmed under a more complex

variance model where the simulator variance can be captured.
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(a) Simulator (b) Greedy (c) Grid

Figure 6.14: Prokaryotic Auto-regulatory Network: Comparison of Mean Prediction for two real-
isations from simulator.

(a) Simulator (b) Greedy (c) Grid

Figure 6.15: Prokaryotic Auto-regulatory Network: Comparison of Standard Deviation Prediction
for two realisations from simulator.

A latent kernel GP model is used for the variance with six latent points arranged in a Maximin

Latin Hypercube design. Due to the higher complexity of the inferred model the training design

size is increased from 30 to 50 points.

As in the previous section, the test set is a 2025 grid point design. The predictive validation

results are shown in Table 6.6. The replicated Grid design achieves lower Mahalanobis error and

RMSE than the non-replicate Grid design.

The emulator fit in terms of mean and standard deviation is shown in Figures 6.16 and 6.17

respectively. Note all the plots are on the same scale to facilitate comparison. In terms of the mean

prediction the replicate design is smoother and approximates the simulator mean more accurately

than the non-replicate design mean prediction. The standard deviation plots reveal that the simula-

tor variance response is best captured under the replicatedGrid design while for the non-replicate

Grid design the functional form of the variance is not captured. The replicate Grid design captures

the variance structure in this case because it places replicated points on the corners of the space

where the simulator variance varies significantly from the previously assumed constant nugget.
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Table 6.6: Validation Measures for 50 training point designon the Latent Kernel Variance model.
Design Mahalanobis (2025) RMSE

Replicated Grid 1727.48 2.10
Grid 16220.3 2.18

(a) Simulator (b) Replicated Grid. (c) Grid.

Figure 6.16: Prokaryotic Auto-regulatory Network: Prediction of mean simulator value using a
latent GP variance model.

(a) Simulator (b) Replicated Grid. (c) Grid.

Figure 6.17: Prokaryotic Auto-regulatory Network: Prediction of standard deviation simulator
value using a latent GP variance model.

167



Chapter 6 APPLICATIONS

6.3.5 Conclusions

The applicability of Fisher and uniform replicate designs to two complex systems biology models

was examined in Section 6.3. Section 6.3.1 motivated the usage of stochastic simulation methods

for systems biology models and provided a brief overview of how exact simulation from such

models may be achieved using the Gillespie algorithm. The existing literature on emulation of

stochastic models for systems biology was reviewed in Section 6.3.2 where the main differences

to our work were highlighted.

The experimental results for the Dimerisation Kinetics model were presented in Section 6.3.3.

A linear variance model with a vague prior was used for design. All replicate designs considered

achieved similar Fisher score and the approximation error to the empirical log determinant of the

maximum likelihood estimates was small. In addition the predictive performance of all replicate

designs was superior to the non-replicate designs considered, the Grid and Maximin Latin Hyper-

cube designs. The similar Fisher and log determinant scoresimply that for this simulator there

exist multiple near-equivalent designs that perform well both in terms of minimising parameter er-

ror and predictive performance. The presence of replicate observations however seems necessary

at least when considering smaller design sizes in order to capture the variance response reasonably

well.

Another issue that was raised was the impact on the Fisher score considering the logarithm of

the length-scale and process variance parameters versus the natural space of the variance coeffi-

cients. This has the effect of emphasising the minimisationof the variance coefficient parameter

errors in the Fisher score as was clearly seen in Figure 6.7 where the larger error for the length-

scale parameter in the Greedy design was not reflected in either the Fisher information or the

empirical log determinant of the ML parameter covariance.

The other model examined was the Prokaryotic Auto-regulatory Network in Section 6.3.4

where a simple nugget variance model was used rather than a complex variance response which

would fit the simulator variance more closely on the edges of the design space due to the cor-

responding difficulty in specifying a prior for such a complex model. We therefore selected to

use the simpler nugget model rather than imposing an uninformative prior on a complex variance

model. As was noted in Section 5.6.8 optimal design under complex models is less robust to model

misspecification. We envisage the usage of complex variancemodels for optimal designs only in

cases where informative priors can be elicited for the modelparameters.

The approximation error of the Fisher information to the empirical log determinant was sig-

nificantly larger than for the previous model (Figure 6.12).In particular, the dispersion as revealed

by the empirical log determinant was much smaller than predicted by the Fisher information for
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the Greedy and Replicated Grid designs. Both of these designs place replicated design points on

the boundary of the variance response and therefore performbetter than anticipated in terms of

parameter estimation.

In Section 6.3.4.2 a representative instance of inference using the nugget model with the

Greedy and Grid designs was examined in detail. The crucial difference between the designs

was in the identification of the nugget parameter which caused the predictive variance of the Grid

model to be too small close to the training points. The Greedydesign which placed replicated

points on the edge of the design space provided a closer fit to the simulator variance.

In Section 6.3.4.3 we abandon the nugget model and compare the inference of a latent kernel

variance model on Replicated Grid and non-replicate Grid designs. The replicated design achieved

better predictive performance than the non-replicate Griddesign and was able to capture the func-

tional form of the simulator variance response. This experiment provides some indication that, as

the principle of parsimony suggests and as discussed in Chapter 5, optimal designs under simpler

models are likely to provide support for inference of more complex models provided the original

simpler model is a reasonable approximation to the true function.

The application of optimal design on the systems biology simulators has highlighted the im-

portance of prior elicitation for model-based design. Using fairly uninformative priors limits the

complexity of models that can be used as the approximation error of an incorrect complex model

can be very high (see Section 5.6.8). We have chosen to use simpler models for design which are

more robust to prior misspecification. However one can reasonably expect with expert elicitation

reducing prior uncertainty, model-based design for stochastic simulators to be more efficient in

terms of number of points required and further reduce parameter uncertainty and hence errors in

predictive uncertainty.

A complementary approach to prior elicitation would be adaptive sequential design where the

simulator observations are acquired sequentially and the design can be adapted as more obser-

vations are collected. Some initial thoughts on how this could be achieved in the case of Fisher

design were outlined in Section 5.8. We envisage this approach to be most useful in instances

where little prior information can be obtained and the simulator response is complex.
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7.1 Thesis Summary

In this section the thesis is summarised and in Section 7.2 wepropose directions for future re-

search. The focus of this thesis has been on extending the emulation methodology of deterministic

simulators to high-dimensional input spaces and stochastic simulators. Emulation for determinis-

tic simulators is a well developed field where Gaussian Processes have been successfully applied as

probabilistic surrogate models of the simulator. The emulation methodology was briefly described

in Chapter 2.

One of the first stages in the emulation methodology is the employment of screening tech-

niques to reduce the input dimensionality of the simulator by identifying inactive variables. In

Chapter 3 screening methods for scalar output simulators were reviewed and a new sequential

method based on the method of Morris (1991) proposed. The method of Morris also known as the

Elementary Effects method, has found wide-spread use in thearea of computer experiments due

to its simplicity and effectiveness. A reliable ranking order of factor effects can be produced with

a fraction of simulator runs typically required by traditional sensitivity analysis techniques such as

the method of Sobol’. In some cases the number of simulator runs required by the Morris method

can still be prohibitively large. The proposed sequential Morris method can be utilised when the

goal of the screening process is to separate factors with non-linear effects from factors with linear,

near-linear or no effects. Near-linear effects are defined as linear within some elicited variance

γ (see Section 3.2.1.2 for an example). Linear and near-linear effects can be removed from the

simulator output at a preprocessing stage prior to emulation and only factors with non-linear and

interaction effects need to be considered in the subsequentstages of the emulation methodology.

This results in performing optimal design and emulation in lower-dimensional spaces which can

simplify inference and validation.

The sequential Morris method relies on the specification of athreshold value for the elemen-

tary effect variance of each factor. This quantity can be difficult to elicit directly and a new method

is proposed to elicit the varianceγ instead. We prove that the elementary effect variance is dis-

tributed as a scaled chi-square distribution withR−1 degrees of freedom, whereR the number of

trajectories. The threshold is then defined as the 99th percentile of this distribution. A simulation

experiment has demonstrated the utility of the threshold even when the factor effect is near-linear

but the additional noise is not i.i.d Gaussian as assumed by the derivation.

The Morris method is applicable to deterministic as well as stochastic simulators with a high

signal-to-noise ratio as the method does not account for internal simulator variability. In Chapter

6 the Morris and sequential Morris methods were applied to a stochastic simulator that models the

propagation of the rabies disease in a two-species population. The screening methods were applied
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on the “probability of disease extinction within five years”output. This output is of great interest

to the users of this simulator and is appropriate for the Morris class of screening methods as it is

approximately deterministic with a small amount of noise due to the finite number of simulator

repetitions used to calculate the probability output. The results of the Morris and sequential Morris

screening procedures identified the same two inputs as having near-linear effects. The sequential

Morris method however required considerably fewer simulator evaluations than the batch Morris

method.

The next stage in the emulation framework is to construct thestatistical surrogate model using

the GP formalism. In Chapter 4 two new types of heteroscedastic GP were introduced. The

Coupled Model allows for the flexible, non-parametric modelling of both the mean and variance

response of a simulator through a coupled system of two GPs. The method is based on the model

of Kersting et al. (2007), extended to efficiently handle replicate observations and to correct the

bias introduced by the log transformation of the sample variance. A new interpretation of the

method of Kersting et al. (2007) was also discussed and a correction given for a systematic bias

due to the non-linear transformation of the most likely variance prediction.

The Coupled Model however is too complex for the purposes of optimal design. The Joint

Likelihood model was proposed as a simpler alternative where a deterministic function is used to

model the variance response. Elicitation of prior beliefs for the model parameters is simplified

under this model as their effect on the variance output is easier to understand.

The issue of optimal experimental design was discussed in Chapter 5. Geometric model-free

designs such as the Maximin Latin Hypercube are used for their simplicity and good coverage

of the input space (see Chapter 2). Such model-free designs which can be used for a variety of

simulators, are quick to generate and permit the checking ofmodelling assumptions across the

entire input domain. Model-based experimental designs arecomputationally more demanding to

generate but allow for the incorporation of prior beliefs and optimisation of desired criteria such

as the minimisation of parameter uncertainty.

A model-based Bayesian approach is suggested in Chapter 5. The methodology is based on the

approach taken by Zhu and Stein (2005) and extended to the heteroscedastic GP framework with

explicit consideration of replicated design points. The Fisher Information for the Joint Likelihood

model with replicate observations is analytically derived. The Fisher Information for non-linear

models depends on the unknown parameters and therefore a Bayesian approach is needed in prac-

tice where the Fisher Information is integrated over a parameter prior. In this work as in Zhu and

Stein (2005) a coarse discrete prior is used and the Bayesianintegral is approximated using Monte

Carlo integration.

A series of simulation experiments was performed to investigate the performance of Fisher-
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optimal designs under both Maximum Likelihood (ML) and fully Bayesian inference. The mono-

tonicity of the Fisher score to the logarithm of the determinant of the parameter covariance of ML

estimates for a range of noise levels was first established. In Zhu and Stein (2005) a similar result

was established via simulation but this was extended and confirmed for the case of heteroscedastic

variance models.

Three sets of locally optimal design simulation experiments for the Nugget, Log Linear and

Latent Kernel variance models were presented in Chapter 5. In locally optimal designs, the Fisher

score is calculated at the true parameter values and errors due to prior misspecification or Monte

Carlo approximation in the Bayesian integral are absent. Therefore this set of simulation exper-

iments focuses solely on the effectiveness of the Fisher score to minimise parameter uncertainty

and the ability of the Greedy and SA optimisation methods to find a solution close to optimal.

In all experiments, the designs with lowest Fisher score resulted in GPs with the smallest pa-

rameter estimation and prediction errors. In terms of the latter, lower Mahalanobis errors and

Dawid scores were observed which reflect a more accurate prediction of the variance response.

Both the Fisher-optimal and uniform replicate space-filling designs achieved similar Fisher scores

and prediction errors for the Nugget and Log Linear models. For the more complex Latent Kernel

model however, the Fisher scores of the optimal designs wereconsiderably lower than all other

designs considered, including the uniform replicate designs. The lower Fisher score was reflected

by lower parameter estimation and prediction errors for theoptimal designs, although the approx-

imation of the Fisher score to the empirical log determinantof the ML parameter covariance was

worse than for the simpler models. Thus it can be said that theFisher score is overall a good pre-

dictor of ML parameter estimation error and predictive accuracy although the approximation gets

worse for the more complex models. These conclusions extendto the Bayesian optimal design

context where a parameter prior is specified rather than using a plug-in estimate.

In addition, the case of structural error was examined wherethe model used during design is

incorrect. A simulator experiment was conducted where the simpler Log Linear model is used

to generate an optimal design on which the parameters of the Latent Kernel model are inferred.

Although the design generated is clearly sub-optimal, the parameter accuracy and prediction errors

under the Log Linear optimal design compared to utilising the optimal Latent Kernel design, were

only marginally increased. The converse simulation experiment was also performed where the

Latent Kernel design was utilised for inference of the Log Linear model. In this case larger errors

were observed. We conclude that optimal designs generated using simpler models are more robust

to model misspecification compared to more complex models.

The simulation experiments were concluded by examining theeffect of Fisher-optimal designs

under fully Bayesian inference where all GP hyperparameters are integrated out of the predictive
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distribution. The hybrid Monte Carlo algorithm was used forthe integration with a set of vague

independent priors for all GP parameters. It was found that Fisher-optimal designs minimise the

parameter posterior variance and result in more robust prediction. The Fisher-optimal designs

are more informative about the parameter posterior and under fully Bayesian inference this has

a stronger effect on the predictive variance. Therefore thebenefits of utilising Fisher-optimal

designs under Bayesian inference are magnified.

The optimal design approach was applied in Chapter 6 to two system biology models. A

Joint likelihood model with a single nugget was used to emulated the Prokaryotic Auto-regulatory

Network simulator. The Protein Dimerisation simulator wasemulated using a Joint likelihood

model with a Log Linear variance model. Previous work on emulating this type of simulator

utilised independent emulators to model the mean and variance responses. For both simulators,

the uniformly replicate space-filling designs achieved similar Fisher scores to the optimal designs

and performed quite similarly in terms of predictive errors. Utilising non-replicate space-filling

designs resulted in significantly higher errors.

In summary, Fisher-optimal designs can be used to more robustly identify the model param-

eters and this results in more accurate prediction of the variance response especially when con-

sidering fully Bayesian inference. Minimising estimationerror of parameters can also be of use

when an interpretation is attached to the GP hyperparameters such as in the case of ARD (Section

3.1.1) where the kernel length scales are used for screening. Even for simpler variance models,

considering replicate observations in the designs has beenshown to be of benefit in terms of both

parameter estimation and prediction.

7.2 Future Work

In the future, the Morris method may be extended by investigating more economical designs where

more elementary effects are calculated using the same number of simulator runs. A more complex

one-at-a-time design is required and correlation is introduced in the calculation of the moments

of the elementary effect distribution. However how to construct maximum economy designs re-

mains an open question. Extending the Morris method to stochastic simulators would widen the

applicability of the approach. Another direction of futureresearch would be to develop screening

methods for multiple simulator outputs where the between-output correlation is utilised to discover

a common set of relevant factors.

The heteroscedastic models developed in Chapter 4 could also be extended in a variety of ways.

The assumption of Gaussian errors could be relaxed by including other noise models and perform-

ing approximate inference using algorithms such as Expectation Propagation (Minka, 2001). This
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could be extended further by modelling the output distribution non-parametrically using methods

such as indicator Kriging (Oh and Lindquist, 1999) where a multiple output emulator is utilised to

predict the quantiles of the output distribution.

The optimal design framework presented could also be extended in a variety of ways. Future

research directions include a modification of the Fisher criterion for adaptive design where model

observations made at previous emulation stages are included in the design criterion (see Section

5.8.1). This would allow for larger designs sizes to be considered and reduce the impact of the prior

on the design process as more observations are included. However the validity of the proposed

criterion needs to be investigated. Further we envisage theinclusion of Fisher-optimal designs,

also known as D-optimal, in hybrid criteria that include multiple design goals such as minimising

predictive variance and maximising information around mean function parameters. Such criteria

often lead to very different designs so a hybrid approach where a multiple objective optimisation is

performed could potentially yield designs useful for a multitude of purposes and of great practical

use. Also optimal designs that focus on specific input regions or output threshold such as in

Picheny et al. (2010) can be investigated in the context of stochastic emulation.

The impact of optimal designs on parameter posteriors when using fully Bayesian inference

was examined in Section 5.7. However we stress that the simulation results presented are based on

only a few realisations of the experiment. A more extensive study considering more realisations

and possibly a wider range of priors and models can be pursuedas a possible future research to

test these conclusions more generally.

In the framework developed, the Greedy and Simulated Annealing optimisation methods are

used to obtain the optimal designs. The search space for bothmethods is a discretised version of

the design space. This approach allows for arbitrary constraints to be easily imposed on the design

region but suffers from the curse of dimensionality problemsince the number of candidate points

grows exponentially as the number of input dimensions increases. A continuous optimisation

strategy may alleviate this problem and would allow the optimal design approach proposed to

scale to higher-dimensional input spaces.
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A Heteroscedastic Gaussian
Process Derivations

In the chapter, the derivations related to the Heteroscedastic GP framework are given.

A.1 Obtaining the Kersting approach through explicit maxim isation

In this appendix we discuss how the Kersting method presented in Section 4.3 may be obtained
through an explicit maximisation of the posterior density of the noise levels. Specifically we
examine how Equation (4.9), used to estimate the empirical noise levels, is arrived at through a
maximisation of Equation (4.5).

To obtain maximum likelihood (ML) estimates of the most likely noise levels, the explicit
maximisation problem we wish to solve during the training stage is:

argmax
zi ,z−i

p(zi ,z−i |t).

In step 1 of the Kersting algorithm, we obtain estimates for the noise-free process hyperpa-
rameters,θy, and an input-dependent nugget,σ2

H , which is useful to obtain initial estimates on the
noise process.

We reformulate the problem:

argmax
zi ,z−i

p(zi |z−i, t)p(z−i |t).

We now make a crucial simplification to maximise the noise levels one point at a time. This is
clearly suboptimal but allows for a simpler derivation and emphasizes the iterative nature of the
algorithm since the values for the non-optimised noise levels z−i may be used from the previous
iterative step. We note here that although it is possible to immediately use the new estimate forzi

at the optimisation for the next point similar to a Gibbs sampler, for simplicity and to minimise
computational complexity we have elected to utilise the newoptimised estimates for the noise
levels only at the subsequent iteration of the Kersting algorithm. The optimisation problem is thus
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simplified to:
argmax

zi

p(zi |z−i, t)p(z−i |t).

Only the first term is relevant as the latter does not includezi . Using Bayes’ theorem we can
reformulate the distribution of interest to:

p(zi |z−i , t) ∝ p(t|zi ,z−i)p(zi |z−i) =N (t|0,Ky+R)lnN (zi |µz,λz),

where lnN denotes the Log Normal distribution with meanµz and varianceλz. Note these are
related to the mean and variance of the variance GP but are notidentical - see Section 4.3.3. As
before theRmatrix is diag(z1, . . . ,zN).

The likelihood term can be further decomposed:

p(t|zi ,z−i) = p(ti |t−i ,zi ,z−i)p(t−i |zi ,z−i) = p(ti |t−i,zi ,z−i)p(t−i |z−i).

The last step follows from the model dependency structure (see Goldberg et al. (1998)), i.e. given
z−i, the distribution of the noisy observationst−i can be uniquely determined without reference to
zi . The latter term is thus irrelevant to the optimisation tasksince it does not depend onzi .

To summarise the optimisation task is:

argmax
zi

p(zi ,z−i |t)≡ argmax
zi

p(ti |t−i ,zi ,z−i)p(zi |z−i). (A.1)

As mentioned previously the termp(zi |z−i) is a Log Normal whose moments are determined by
the variance GP inferred at the previous iteration step. Thehomoscedastic nugget termσ2

H can be
used to initialise this distribution for the first step.

The univariate likelihood term is a Gaussian distribution with meanµt and variancezi +λy as
described by the heteroscedastic GP predictive equations (4.13)-(4.14).

The log posterior in Equation (A.1) is:

L =− ln(λy+zi)

2
− ln(λz)

2
− ln(zi)−

(µz− ln(zi))
2

2λz
− (µt − ti)

2

2λy+2zi
,

wherep(zi |z−i) = lnN (zi |µz= exp(E[zi]+Var[zi ]/2),λz = (exp(Var[zi ])−1)exp(2E[zi ]+Var[zi ])
the Log Normal posterior whose moments are determined by thevariance GP utilising hyper-
parameters and training set obtained at the previous iteration. The posteriorp(ti |t−i,z−i ,zi) =
N (ti |µt ,zi +λy) whereλy the variance of the noise-free values.

Setting the derivative to zero:

2(µt − ti)
2

(2λy+2zi)
2 −

1
2λy+2zi

− 1
zi
+

µz− ln(zi)

λzzi
= 0. (A.2)

This cannot be solved analytically with respect tozi . Rather than employing numerical optimisa-
tion methods to solve Equation (A.2) we can approximatep(zi |z−i) by a Gaussian in which case
Equation A.2 is a cubic equation with exactly one real root:.

(ti −µt)
2−zi −λy

(zi +λy)2 =
2zi −2µz

λz
(A.3)

However the expression forzi then no longer guarantees positive values. By the intermediate value
theorem we know there will be at least one real root for a cubicequation with real coefficients. In
experiments we have confirmed there is exactly one real root for this cubic.

Further, by setting the variance on the noise values toλz = 2(zi +λy)
2 and the meanµz = zτ

i ,
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i.e. the value obtained at the previous step, Equation (A.3)simplifies to:

zτ+1
i =

1
2

(

(ti −µt)
2−λy+zτ

i

)

(A.4)

which is very similar to Equation (4.10) used in the Kerstingapproach except for the sign of
the variance on noise-free valuesλy. If we assume this value is negligible, we have obtained
the Kersting approach as described in Section 4.3. In fact the derivation is exact if we assume
the noise-free targets are known, i.e.λy = 0, which is an assumption mentioned in Section 4 of
Kersting et al. (2007) to justify the sampling step of the algorithm (see Section 4.3.4 - Equation
(4.9)).

A.2 Correcting bias in sample log variance

The log transformation of the sample variance introduces a bias in the estimation. In Cox and
Solomon (2003) the mean and variance of the log variance distribution are given but as there are
typos, we rederive here the proof.

Assuming the observations are normally distributed, the distribution of the sample variance is
a Chi square distribution, which is a special case of a Gamma distribution:

s2 ∼ Γ
(

ni −1
2

,
2σ2

n−1

)

,

wheren the number of observations andσ2 the true variance.
The derivation requires the following theorem:

Theorem A.2.1. If X is Gamma distributed with X∼ Gamma(k,θ), the mean and variance of the
natural log transformation areE(logX) = ψ(k)+ log(θ) andVar(logX) = ψ2(k) whereψ andψ2

the digamma and trigamma functions respectively.

Proof. The parametrisation of the Gamma distribution used is:

Gamma(k,θ) =
1

θkΓ(k)
xk−1e−x/θ.

Let Φ(s) the moment generating function (Papoulis and Pillai, 2002)of log transformed X :

Φ(s) =
∫ +∞

−∞
Gamma(k,θ)eslog(x)dx

=
1

θkΓ(k)

∫
xk+s−1e−x/θdx Gamma Integral

=
1

θkΓ(k)
Γ(k+s)θk+s

=
Γ(k+s)

Γ(k)
θs.

To get the first two moments of the distribution, the first two derivatives are calculated:

∂Φ(s)
∂s

=
1

Γ(k)

[

∂Γ(k+s)
∂s

θs+Γ(b+s)θs logθ
]

∂2Φ(s)
∂s2 =

1
Γ(k)

[

∂2Γ(k+s)
∂s2 θs+2

∂Γ(k+s)
∂s

θs logθ+Γ(k+s)θs(logθ)2
]
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Settings= 0, the central moments are obtained:

∂Φ(s)
∂s

∣

∣

∣

∣

s=0
= ψ(k)+ logθ

∂2Φ(s)
∂s2

∣

∣

∣

∣

s=0
=

1
Γ(k)

[

∂2Γ(k+s)
∂s2 +2

∂Γ(k+s)
∂s

logθ+Γ(k+s)θs(logθ)2
]

Finally the first two moments are

E(logX) =
∂Φ(s)

∂s

∣

∣

∣

∣

s=0
= ψ(k)+ logθ

Var(logX) =
∂2Φ(s)

∂s2

∣

∣

∣

∣

s=0
−
(

∂Φ(s)
∂s

∣

∣

∣

∣

s=0

)2

= ψ2(k).

In the above the definitions of the digamma and trigamma functions are utilised:

ψ(x) =
∂ logΓ(x)

∂x

ψ2(x) =
∂2 logΓ(x)

∂x2

Given theorem A.2.1, the mean and variance of the log sample variance is :

E(logs2) = ψ
(

n−1
2

)

+ log2+ logσ2− log(n−1)

Var(logs2) = ψ2

(

n−1
2

)

Therefore the bias corrected sample variance estimate is:

logσ2 = E(logs2)−ψ
(

n−1
2

)

− log2+ log(n−1)

Approximations of the digamma and trigamma functions are possible through truncated series
expansions though we do not utilise them (Cox and Solomon, 2003).

A.3 Heteroscedastic Prior GP Derivation

We assume the noise process has zero mean and is independent given the design point. Given
these conditions, the distribution of the sample mean ˆµi is (Hayter, 2002):

p(µ̂i |µi) = N(µ̂i |µi ,
σ2(xi)

ni
),

whereni the number of replicate observations,σ2(xi) the true variance at locationxi andµi the true
mean.

Due to the independence of the noise we can write the likelihood in matrix form for all obser-
vations 1. . .N:

p(µ̂|µ) = N(µ̂|µ,RP−1),

whereR= diag(σ2(xi))
N
i=1 andP= diag(ni)

N
i=1.

Our zero mean GP prior is:
p(µ) = N(µ|0,K).
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The marginal observation density can then be calculated:

p(µ̂) =
∫

p(µ̂|µ)p(µ)dµ=
∫

N(µ̂|µ,RP−1)N(µ|0,K)dµ= N(µ̂|0,Cµ = K+RP−1). (A.5)

The last step stems from applying the identity (2.115) (Bishop, 2007), that is given by

p(y) =
∫

p(y|x)p(x)dx=
∫

N(y|Ax+b,L−1)N(x|µ,Λ−1)dx= N(y|Aµ+b,L−1+AΛ−1AT).

We get the result of Equation (A.5) by settingA= I , b= 0, L−1 = RP−1 andµ= 0, Λ−1 = K. This
result can also be obtained directly by noticing that the distribution of µ̂ is the sum of two normal
distributions,p(µ̂) = p(µ)+N(0,RP−1), which are independent and therefore their variances add.

We can use Equation (A.5) to now derive the predictive distribution by conditioning on the
known observations. We can partition the joint distribution by the unobserved sites ˆµ∗ and the
observed sites ˆµ. Use Equation (A.5) we can write this partitioned joint distribution as:

p(µ̂∗, µ̂) = N

([

µ̂∗
µ̂

]

|0,
[

K(x∗,x∗)+R(x∗)P(x∗)−1 K(x∗,x)
K(x∗,x)T K(x,x)+R(x)P(x)−1

])

,

wherex∗ andx the unobserved and observed design sites respectively.R(x∗) andP(x∗) the variance
and number of replicates at the unknown sites. For the off-diagonal terms,R(x,x∗) = 0 due to the
independence of noise (R diagonal).

To make predictions of the sample mean ˆµ∗, we condition on the known sites ˆµ (this can be
done by completing the square - see page 86 of (Bishop, 2007) and equations (2.81) (2.82)).

p(µ̂∗|µ̂) = N( K(x∗,x)
T(K(x,x)+R(x)P(x)−1)−1µ̂,

K(x∗,x∗)+R(x∗)P(x∗)
−1+K(x∗,x)

T(K(x,x)+R(x)P(x)−1)−1K(x∗,x)).

We note that the sample mean ˆµ coincides with a single observation when the number of
replicates is 1. Thus we can setP(x∗) = I to obtain the predictive equations for single replicate
test sites.

A.4 Derivation of likelihood for the Joint Model

In this section, the likelihood of the joint model describedin Section 4.5 is derived. The joint
likelihood of the sample mean ˆµ and sample variances2 is:

p(µ̂,s2|X,θ,β) =
∫

p(µ̂,s2,µ|X,θ,β)dµ

=
∫

p(µ̂,s2|µ,X,θ,β)p(µ|θ)dµ

= p(s2|X,β)
∫

p(µ̂|µ,θ,β,X)p(µ|θ)dµ

=

(

N

∏
i=1

p(s2
i |xi ,β)

)∫
p(µ̂|µ,θ,β,X)p(µ)dµ

=

(

N

∏
i=1

p(s2
i |xi ,β)

)

N(µ̂|0,Kθ +RβP−1)

(A.6)

The last equality follows from Section A.3 Equation (A.5).
The log likelihood can then be written:

logp(µ̂,s2|X,θ,β) =

(

N

∑
i=1

logp(s2
i |β,xi)

)

+ logN(µ̂|0,K +RP−1) =

(

N

∑
i=1

Lsi

)

+LN (A.7)
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where the latter term is a GP standard likelihood with the given covariance and the former can be
expanded:

log p(s2
i |β,xi) =

ni −1
2

(log(ni −1)− log(2)− log fσ2(xi ,β))− logΓ(
ni −1

2
)

+
ni −3

2
log(s2

i )−
(ni −1)s2

i

2 fσ2(xi ,β)
.

(A.8)

A.5 Proof of Fisher Information for Heteroscedastic Noise M odels

The Fisher Information is defined as

F =−
∫ ( ∂2

∂θ2 log(L(X|θ)
)

L(X|θ)dX,

whereL(X|θ) is the likelihood function.
For the heteroscedastic GP modelθ = {β,θK}, i.e. the variance coefficients and the kernel

hyperparameters. For parametersθ j ,θp the corresponding element in the FIM is:

F jp =−
∫ ∫ ( ∂2

∂θ jθp
logp(µ̂,s2|θ)

)

p(µ̂,s2|θ)dµ̂ds2,

where we have omitted the dependency on the inputsX.
The log likelihood term can be decomposed into two terms as shown in Equation (4.19), a sample
variance termLsi and a Gaussian Process termLN.

F jp = −
∫ ∫ [ ∂2

∂θ jθp
∑Lsi

]

p(µ̂,s2|θ)dµ̂ds2−
∫ ∫ [ ∂2

∂θ jθp
LN

]

p(µ̂,s2|θ)dµ̂ds2

= −
∫ [ ∂2

∂θ jθp
∑Lsi

]

p(s|β)ds2
∫

pµdµ̂−
∫ [ ∂2

∂θ jθp
LN

]

pµdµ̂
∫

psds2

wherepµ = N(µ̂|0,Kθ +RβP−1). Note
∫

pµdµ̂= 1 and
∫

p(s2|X,β)ds2 = 1 since they are density
functions. Lastly we are able to separate the sample variance integrals to the individualsi terms
due to the noise independence assumption, i.e.p(s2|X,β) = ∏N

i=1 p(s2
i |xi ,β).

F jp =−
∫ [ ∂2

∂θ jθp

N

∑
i=1

Lsi

]

∏ p(s2
i |σ2

µ(xi))ds2+FN

=−
N

∑
i=1

(∫ [ ∂2

∂θ jθp
Lsi

]

p(s2
i |xi ,β)ds2

i

∫ N

∏
j 6=i

p(s2
i |xi ,β)dsj

)

+FN

=
N

∑
i=1

Fsi+FN,

(A.9)

where

Fsi = −
∫ [ ∂2

∂θ jθp
logp(s2

i |xi ,β)
]

p(s2
i |xi ,β)ds2

i ,

FN = −
∫ [ ∂2

∂θ jθp
LN

]

pµdµ̂.

The solution to theFN integral is known and for a zero mean GP is1
2tr(Σ−1 ∂Σ

∂θ j
Σ−1 ∂Σ

∂θp
) (Pázman,

2004). TheFsi integral can be solved by rewriting the integral given the second order derivative
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and the sample variance distribution:

Fsi =−
∫ ∂2 logp(s2

i |β,xi)

∂β jβp
p(s2

i |β,xi)ds2
i

=
ni −1

2
∂2 f

∂β jβp

∫
p(s2

i |β,xi)ds2
i

− (ni −1)
2

[

−exp(− f )
∂ f
∂β j

∂ f
∂βp

+exp(− f )
∂2 f

∂β jβp

]∫
s2
i p(s2

i |β,xi)ds2
i

The integral can be analytically solved. For notational brevity let fσ2 = fσ2(xi ,β) = exp( f ).

∫
s2
i p(s2

i |β,xi)ds2
i =

ni−1
2 fσ2

ni−1
2

Γ(ni−1
2 )

∫
s2
i (s

2
i )

ni−3
2 e

− ni−1
2 fσ2

s2
i ds2

i . (A.10)

The last integral is the mean of Gamma distribution. Therefore the Gamma integral is:

2 fσ2

ni −1
ni −1

2
= fσ2.

To conclude the Fisher information contribution of the sample variance term of the log likelihood
Fsi is:

Fsi =
ni −1

2
∂2 f

∂β jβp
− (ni −1)

2

[

−exp(− f )
∂ f
∂β j

∂ f
∂βp

+exp(− f )
∂2 f

∂β jβp

]

fσ2

=
ni −1

2

(

∂2 f
∂β jβp

− ∂2 f
∂β jβp

+
∂ f
∂β j

∂ f
∂βp

)

.

The final result is:

Fsi =
ni −1

2
∂ f
∂β j

∂ f
∂βp

.

In the case of the fixed basis variance model∂ f
∂β j

= HT(xi)Jj and theFsi for parameters{β j ,βp}:

Fsi =
ni −1

2
HT(xi)JjH

T(xi)Jp,

whereJj the zero vector withjth element 1.
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B Details of Methods Used

B.1 The bootstrap method

We use a method suggested in Efron and Tibshirani (1993) to determine the number of bootstrap
samples required to estimate the standard error in Section 5.6.2. As usual, bootstrap is done by
random sampling with replacement.

In particular we first estimate the biasEbootstrap−Edata, whereEbootstrapthe mean value across
all bootstrap samples andEdata the estimated value from data. If the bias / standard error ratio is
less then 0.25, we judge we have enough samples in our bootstrap.

B.2 Data Preprocessing and Standardisation

In this section we describe the process of preprocessing data, which might often be undertaken
prior to for example screening or more general emulation. This can take several forms. A very
common preprocessing step is centring, which produces datawith zero mean. If the range of vari-
ation is knowna priori a simple linear transformation to the range [0,1] is often used. It might also
be useful to standardise (sometimes called normalise) datato produce zero mean and unit variance.
For multivariate data it can be useful to whiten (or sphere) the data to have zero mean and identity
covariance, which for one variable is the same as standardisation. The linear transformation and
normalisation processes are not equivalent since the latter is a probabilistic transformation using
the first two moments of the observed data. This section is based on the MUCM Toolkit (World
Wide Web electronic publication, Release 6, 2010)ProcDataPreProcessing page.

B.2.1 Centring

It is often useful to remove the mean from a data set. In general the mean, E[x], will not be known
and thus must be estimated and the centred data is given by:x′ = x−E[x]. Centring will often be
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used if a zero mean GP is being used to build the emulator, although in general it would be better
to include an explicit mean function in the emulator.

B.2.2 Linear transformations

To linearly transform the data regionx∈ [c,d] to another domainx′ ∈ [a,b]:

x′ =
x−c
d−c

(b−a)+a.

In experimental design the convention is for[a,b] = [0,1].

B.2.3 Standardising

If the domain of the design region is not known, samples from the design space can be used to
rescale the data to have 0 mean, unit variance by using the process of standardisation. If on the
other hand the design domain is known we can employ a linear rescaling.

The process involves estimating the meanµ= E[x] and standard deviation of the dataσ and
applying the transformationx′ = x−µ

σ . It is possible to standardise each input / output separately
which rescales the data, but does not render the outputs uncorrelated. This might be useful in
situations where correlations or covariances are difficultto estimate, or where these relationships
need to be preserved, so that individual inputs can still be distinguished.

B.2.4 Sphering / Whitening

For multivariate inputs and outputs it is possible to whitenthe data, that is convert the data to zero
mean, identity variance. The data sphering process involves estimating the mean E[x] and variance
matrix of the data Var[x], computing the eigen decompositionP∆PT of Var[x] and applying the
transformationx′ = P∆−1/2PT(x−E[x]).

B.3 Proof of Lemma 3.2.1.

In this appendix the proof for Lemma 3.2.1 is presented. As Lemma 3.2.1 is defined for a single
factor, at this stage design points are considered univariate and the elementary effect of Equation
(3.2) is computed for a single factor.

Proof. We first note that at the pointxi , the elementary effectEE(xi) = (Y(xi +∆)−Y(xi))/∆
follows a normal distribution, i.e.EE(xi) ∼ N(a, 2γ

∆2 ). The independence of elementary effects
EE(x1), . . . ,EE(xR) follows directly from independence of observations of the Model (3.5) at
different points.

The rest of the proof uses a classic decomposition of sums of squares of iid normal ran-
dom variables. The mean of elementary effectsµ= 1

R ∑R
i=1 EE(xi) follows a normal distribution

N(a, 2γ
R∆2). To compute the distribution of the variance of elementary effectsσ2= 1

R−1 ∑R
i=1(EE(xi)−

µ)2, the following sum of squares is used

R

∑
i=1





EE(xi)−a
√

2γ
∆2





2

= (R−1)
σ2

2γ
∆2

+R
(µ−a)2

2γ
∆2

.

The left hand side of the above expression is a sum of squared independent standard normal
random variables and thus it has a chi-squared distributionwith R degrees of freedomχ2

R. The
quantity that interests us is the first summand on the right hand side above. By the independence
of µ andσ2, this quantity has a chi-squared distribution withR−1 degrees of freedomχ2

R−1, that

is, σ2 follows a scaled chi-squared distributionσ2 ∼ 2γ
(R−1)∆2 χ2

R−1.
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B.4 Screening Test function

We describe the function used in Section 3.1.3.2 to generatethe simulated data. The function
has 99 input variables, with one dummy variable (x99). The effects are classified into linear,
polynomial of order 2 or greater and step-linear:

f (x) = f Linear(x1,10)+ f Poly(x11,38)+ f Periodic(x39,76)+ f Step(x79,98)

where

f Linear(x1,10) = 2+
8

∑
i=1

xi +−x9− x10,

f Poly(x11,38) = 2(
12

∏
i=11

xi)−1.5(
15

∏
i=13

xi)+3(
19

∏
i=16

xi)+ (
22

∑
i=20

x2
i )+ x23x

2
24− x25x

2
26

−x27x28− x29x
2
30+6x3

31x
2
32x

0.7
33 −4x2

34
√

x35+
√

x36x
2
37− x7

38,

f Periodic(x39,76) = 5sin(x39x40/5)+ (5/2)sin(2x41x42/5)+ (5/3)sin(3x43x44/5)

+(5/4)sin(4x45x46/5)+ sin(x47x48/5)+ (5/6)sin(6x49x50/5)

+(5/7)sin(7x51x52/5)+ (5/8)sin(8x53x54/5)+ (5/9)sin(9x55x56/5)

+(5/10)sin(10x57x58/5)+ sin(13x59)+ sin(10x60)+ sin(7x61)

+sin(4x62)+ sin(x63)− cos(13x64)− cos(10x65)− cos(7x66)

−cos(4x67)− cos(x68)+2sin(2x69x70)cos(2x71x72)+ cos(0.1×3.1472×5x73)

+sin(0.3×6×3.1472x74)− cos(4x75)+8x78x77sin(3x76)

f Step(x79,98) = H(x79< 0.05,3x79+0.1,3x79)+H(x80< 0.1,3x80−0.5,3x80)

−H(x81< 0.15,0.1,0.5)+H(x82< 0.2,0.5x82−4,5x82)

−H(x83< 0.25,x83+1,x83)+H(x84< 0.3,3x84+0.1,3x84)

−H(x85< 0.35,2x85−1.5,2x85)H(x86 < 0.4,0.1,0.5)

+H(x87< 0.45,0.5x87−4,0.5x87)−H(x88< 0.5,x88+1,x88)

+H(x89< 0.05,x89+0.2,x89)+H(x90< 0.1,2x90−0.2,2x90)

−H(x91< 0.15,0.1,0.5)+H(x92< 0.2,0.66x92−4,0.66x92)

−H(x93< 0.25,x93−0.2,x93)H(x94 < 0.05,3x94+0.1,3x94)

+H(x95< 0.1,3x95−0.5,3x95)−H(x96< 0.15,0.1,0.5)

+H(x97< 0.2,0.5x97−4,0.5x97)−H(x98< 0.25,x98+1,x98)

whereH(a,b(x),c(x)) =

{

b(x) if a is true
c(x) otherwise

.
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