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Abstract

The purpose of this paper is to compare the properties of the instrument selection methods

recently proposed by Donald & Newey (2001), Hall & Peixe (2003) and Hall, Inoue, Jana &

Shin (2007) in the context of a simple linear IV model. We assess the relative performance

of these three criteria via a Monte Carlo study that investigates the finite sample behaviour

of the post-selection estimator of this simple linear IV model. Our results suggest that no

one method dominates.
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1 Introduction

This paper compares the properties of three recently proposed methods of instrument se-

lection, namely the approximate Mean Square Error Criterion (AMSE) of Donald & Newey

(2001), the Canonical Correlations Information Criterion (CCIC) of Hall & Peixe (2003),

and the Relevant Moments Selection Criterion (RMSC) of Hall, Inoue, Jana & Shin (2007).

While the three methods under study are tied by the common goal of instrument selection,

they are different in terms of their underlying objectives. Donald and Newey’s (2001) objec-

tive is to achieve an improved finite sample risk property of the estimators. They attain this

goal by minimizing the approximate Mean Square Error Criterion based on higher-order

asymptotics. The objective of Hall & Peixe (2003) and Hall, Inoue, Jana & Shin (2007),

on the other hand, is to achieve an improved quality of asymptotic approximation to the

finite sample behavior of the estimators. They gain this objective by eliminating the redun-

dant moment conditions based on certain canonical correlations: CCIC exploits explicitly

the canonical correlations (CC’s) between the regressors and instruments; RMSC exploits

implicitly the long run canonical correlations (LRCC’s) between the unknown true score

vector and the product of the instrument vector and error. Although the properties of each

of the methods have been explored by their proponents, there have been no comparative

studies of these methods to date. Our paper intends to fill that gap.

2 Three methods of instrument selection

In this section, we describe the three methods of instrument selection mentioned in the

Introduction in the context of the model used in our simulation study. Accordingly, consider

the model
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We assume that the candidate set of moment conditions is given by

E[ztut(θ0)] = 0 (3)

where ut(θ) = yt − xtθ and zt is the q × 1 vector of instruments in (1). In this case, the

only difference between various choices of moments lies in the chosen instrument vector

and so we refer to zt as the candidate set of instruments. We use a q × 1 selection vector c

to denote which elements of the instrument vector zt are included in a particular moment

condition: if cj = 1 then the jth element of zt is included; if cj = 0 then jth element of zt is

excluded. The case in which all instruments are used is denoted by c = ιq where ιq is q× 1

vector of ones. The moments associated with c are written as

E[zt(c)ut(θ0)] = 0 (4)

where zt(c) = S(c)zt and S(c) is a selection matrix that picks out the elements of zt

indicated by c. Note that |c| = c′c equals the number of elements in zt(c). The set of all

possible selection vectors is denoted by C, that is

C =
{

c ∈ <q; cj = 0, 1, for j = 1, 2, . . . q, and c = (c1, . . . cq)′, |c| ≥ 1
}

.

For brevity, statistics of interest are now indexed by c and so, for example, θ̂T (c) denotes

the 2SLS estimator based on (4).

Specializing the definitions to the model of this section, the three instrument selection

methods are as follows.
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CCIC: The selected instrument vector is ĉCCIC where1

ĉCCIC = argminc∈C
{

T ln[1−R2
T (c)] + (|c| − 1) ln[T ]

}
(5)

where RT (c) is the sample multiple correlation coefficient between xt and zt(c), and T is

the sample size.

RMSC: The selected instrument vector is ĉRMSC where2

ĉRMSC = argminc∈C RMSC(c) (6)

and

RMSC(c) = ln

[
σ̂2

u(c)

{
T−1

T∑

t=1

xtzt(c)
′{T−1

T∑

t=1

zt(c)zt(c)
′}−1

× T−1
T∑

t=1

zt(c)xt

}−1

 +

(|c| − 1)√
T

ln
√

T (7)

with σ̂2
u(c) = T−1

∑T
t=1{ut(θ̂T (c)}2.

Approximate MSE criterion: The selected instrument vector is ĉAMSE where

ĉAMSE = argminc∈C AMSE(c) (8)

and

AMSE(c) = {σ̂au}2 |c|2
T

+ σ̃2
u

(
R̂(c)− σ̂2 |c|

T

)
(9)

1Note that we use the penalty term associated with BIC. Other choices are possible but Hall & Peixe

(2003) found this choice to work best of those they considered; see Hall & Peixe (2003) for further discussion.
2Note that we again use the penalty term associated with BIC (Schwarz, (1978)). As with CCIC, other

choices are possible but this choice appears to work best; see Hall, Inoue, Jana & Shin (2007) for further

discussion.
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where σ̂au = T−1ã
′
ũ, ã = ẽ[π̃′Z(ιq)

′
Z(ιq)π̃/T ]−1, ẽ = [I−P (ιq)]x, P (c) = Z(c)[Z(c)′Z(c)]−1Z(c)′,

Z(c) is a T ×|c| matrix with tth row zt(c)′, π̃ is a preliminary estimator of π0, ũ = y−xθ̃ is a

T×1 residual vector with tth element ut(θ̃), θ̃ is a preliminary estimator of θ0, σ̃2
u = T−1ũ

′
ũ,

σ̂2 = T−1ã
′
ã, and R̂(c) is a measure of the goodness of fit of the first stage reduced form

model, xt = zt(c)′π(c) + et(c). Donald & Newey (2001) consider two choices for R̂(c); for

brevity, we focus on just one of these, the cross-validation criterion,

R̂cv(c) =
1
T

T∑

i=1

[âi(c)]2

[1− Pii(c)]2

where âi(c) is the ith element of â(c) = ê(c)[π̃′Z(ιq)
′
Z(ιq)π̃/T ]−1 and ê(c) = [IT − P (c)]x.

3 Simulation design and results

We now describe the simulation design. Data are generated from (1)-(3) with p = 1,

θ0 = 0.1, different specifications of π0 described below, [ut, et, z
′
t]
′ ∼ N(0, Σ), Σ is a matrix

whose diagonal elements are all one and whose only non-zero off diagonal elements are

cov(ut, et) = σue ∈ {0.1, 0.5, 0.9}, and sample size T ∈ {100, 500}. We consider three

specifications for the equation for xt:

• Model 1: Declining coefficients

π
(1)
0,i = k(q)

(
1− i

q + 1

)4

for i = 1, . . . , q, (10)

where the constant k(q) is chosen so that the population multiple correlation between

xt and zt, R2
1 say, is 0.5.

• Model 2: Equal coefficients

π
(2)
0,i = π

(2)
0 =

√
0.52

q(1− 0.52)
for i = 1, . . . , q, (11)

which implies R2
1 = 0.5.
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• Model 3: Two non-zero coefficients and the rest zero

π0,i = k(q)
(

1− i

q + 1

)4

, i = 1, 2; (12)

= 0 for i = 3, . . . , q,

where the constant k(q) is chosen so that (12) holds for R2
1 = 0.5. Note that

(zt,3, zt,4, . . . , zt,q) are redundant given (zt,1, zt,2) and so (zt,1, zt,2) are referred to as

the “relevant” instruments in this model.

There are two natural approaches to instrument selection: a sequential strategy in which

only q possible choices are considered in a sequence such as (z1), (z1, z2), (z1, z2, z3) etc.,

and a strategy in which all possible combinations are considered.

In their investigation of AMSE(c), Donald & Newey (2001) use Models 1 and 2 with q ∈
{20, 30} and employ a sequential strategy in which the sequence of instruments considered

is given by c1, c2, . . . , cq where ci = [ı′i, 0
′
q−i]

′ and ιi is a i × 1 vector of ones and 0q−i is a

(q − i) × 1 vector of zeros, i = 1, 2, . . . , q. In our simulations, we generate data from both

Models 1 and 2, and select instruments using this sequential strategy based on all three

instrument selection criteria. However, for brevity we only report results for q = 20; the

results for q = 30 are qualitatively the same as those for q = 20 and are available from

the authors upon request. In their evaluation of CCIC(c), Hall & Peixe (2003) consider

Model 3 with q = 8 and selection is based on a comparison of all possible combinations

of all instruments, that is {c ∈ C}; note that there are 255 possible combinations within

Model 3.3 We compare the performance of all three criteria within this design.

To assess the relative performance of the AMSE, the CCIC and the RMSC, we focus on

the finite sample performance of the post-selection 2SLS estimator. Specifically, we report

the median bias of the post selection estimator and coverage probability of 90% confidence

intervals based on conventional asymptotic theory. To compute AMSE, in Models 1 and

2, we obtain the preliminary estimators π̃ and θ̃ using the number of instruments that
3Hall, Inoue, Jana & Shin (2007) also use this set up in their evaluation of RMSC(c).
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minimized the first stage cross-validation criteria. In Model 3 we obtain π̃ and θ̃ using all

eight instruments. The results are presented in Tables 1 through 3. All results correspond

to 10,000 replications.

We begin with Model 1. Following Donald & Newey (2001), we consider the sequential

strategy for instrument selection described above for this model. Notice that the selection

strategy involves including the instruments in the order of their explanatory power for xt,

and so the the order of selection is from “best to worst”. This scenario corresponds to the

case in which a practitioner has a priori information about the relative importance of the

instruments. The results for this case are shown in Table 1. It can be seen from this table

that for both sample sizes, T = 100 and T = 500, and for all three values of endogeneity

considered, the median bias and coverage probabilities under AMSE, CCIC and RMSC are

similar and thus no unique ranking among the three criteria emerges. It can also be seen

from this table that for both sample sizes, both the median bias increases and the coverage

probability distortions worsen with the increase in endogeneity under all three criteria.

Table 2 contains the results for Model 2. Here again, we use the sequential selection

strategy. However, this time, all the instruments have equal explanatory power for xt

and so there are no “best” or “worst” instruments per se. It can be seen that for all

configurations considered the median biases under AMSE and CCIC are similar and smaller

than the median bias under RMSC. Interestingly, the biases under each criterion tend to be

larger under Model 2 than under Model 1. The coverage probabilities also exhibit greater

distortions in this model than under Model 1. No one criterion yields coverage probabilities

that are closer to the nominal level than the others over all configurations. As in Model 1,

the performance of the post-selection estimator deteriorates as the degree of endogeneity

increases.

Table 3 gives the results for Model 3. Recall that in this case only two of the eight

instruments can explain xt and selection is over all possible combinations. Following Hall

and Peixe (2003) and Hall, Inoue, Jana & Shin (2007), we consider selection over all possible
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combinations of instrument for this case. The results reveal that under each parameter

configuration the median biases and coverage probabilities are similar for each criterion,

and thus no unique ranking emerges. In fact, in all configurations, all three methods perform

very well and the empirical coverage rate under all three methods is almost equal to the

nominal rate of 90%.

Taking all our simulation results together, it seems to us that no one instrument selection

criterion clearly dominates the others in terms of both median bias and the closeness of the

coverage probability to the nominal level. In some designs, we find that all three criteria lead

to post-selection estimators with small bias and coverage probabilities close to the nominal

level; but in other designs, we find all three criteria lead to post-selection estimators whose

finite sample behaviour is poorly approximated by conventional asymptotic theory.
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Table 1: Properties of AMSE(c), CCIC(c) & RMSC(c)

Model 1: sequential selection strategy

qmax = 20 T=100 T=500

R2
f = 0.5; σue = 0.1.

AMSE CCIC RMSC AMSE CCIC RMSC

Med Bias 0.010 0.008 0.007 0.003 0.002 0.002

Cov Rate 0.886 0.894 0.906 0.898 0.900 0.901

R2
f = 0.5; σue = 0.5.

AMSE CCIC RMSC AMSE CCIC RMSC

Med Bias 0.036 0.033 0.036 0.009 0.009 0.010

Cov Rate 0.850 0.863 0.881 0.892 0.894 0.896

R2
f = 0.5; σue = 0.9.

AMSE CCIC RMSC AMSE CCIC RMSC

Med Bias 0.053 0.059 0.058 0.014 0.015 0.017

Cov Rate 0.818 0.799 0.829 0.873 0.869 0.883

Notes: Nominal coverage rate = 90%.
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Table 2: Properties of AMSE(c), CCIC(c) & RMSC(c):

Model 2: sequential selection strategy

qmax = 20 T=100 T=500

R2
f = 0.5; σue = 0.1.

AMSE CCIC RMSC AMSE CCIC RMSC

Med Bias 0.017 0.017 0.024 0.004 0.004 0.009

Cov Rate 0.894 0.916 0.937 0.897 0.897 0.912

R2
f = 0.5; σue = 0.5.

AMSE CCIC RMSC AMSE CCIC RMSC

Med Bias 0.095 0.094 0.107 0.018 0.018 0.037

Cov Rate 0.731 0.772 0.844 0.859 0.858 0.856

R2
f = 0.5; σue = 0.9.

AMSE CCIC RMSC AMSE CCIC RMSC

Med Bias 0.165 0.170 0.181 0.046 0.033 0.063

Cov Rate 0.626 0.485 0.635 0.724 0.780 0.746

Notes: Nominal coverage rate = 90%.
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Table 3: Properties of AMSE(c), CCIC(c) & RMSC(c)

Model 3: selection over all possible combinations

qmax = 8 T=100 T=500

R2
f = 0.5; σue = 0.1.

AMSE CCIC RMSC AMSE CCIC RMSC

Med Bias 0.005 0.002 0.003 0.001 0.001 0.000

Cov Rate 0.898 0.896 0.903 0.905 0.901 0.904

R2
f = 0.5; σue = 0.5.

AMSE CCIC RMSC AMSE CCIC RMSC

Med Bias 0.022 0.013 0.015 0.003 0.001 0.001

Cov Rate 0.878 0.893 0.890 0.896 0.899 0.894

R2
f = 0.5; σue = 0.9.

AMSE CCIC RMSC AMSE CCIC RMSC

Med Bias 0.022 0.021 0.028 0.004 0.003 0.003

Cov Rate 0.873 0.876 0.875 0.890 0.896 0.894

Notes: Nominal coverage rate = 90%.
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