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Abstract

In this paper, we make five contributions to the literature on information and entropy in

generalized method of moments (GMM) estimation. First, we introduce the concept of the long run

canonical correlations (LRCCs) between the true score vector and the moment function f ðvt; y0Þ and
show that they provide a metric for the information contained in the population moment condition

E½f ðvt; y0Þ� ¼ 0. Second, we show that the entropy of the limiting distribution of the GMM estimator

can be written in terms of these LRCCs. Third, motivated by the above results, we introduce an

information criterion based on this entropy that can be used as a basis for moment selection. Fourth,

we introduce the concept of nearly redundant moment conditions and use it to explore the

connection between redundancy and weak identification. Fifth, we analyse the behaviour of the

aforementioned entropy-based moment selection method in two scenarios of interest; these scenarios

are: (i) nonlinear dynamic models where the parameter vector is identified by all the combinations of

moment conditions considered; (ii) linear static models where the parameter vector may be weakly

identified for some of the combinations considered. The first of these contributions rests on a

generalized information equality that is proved in the paper, and may be of interest in its own right.
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1. Introduction

Generalized method of moments (GMM) provides a computationally convenient
method for obtaining estimators of the parameters of economic models based on a set of
population moment conditions. The resulting estimators can be shown to be consistent and
asymptotically normal under fairly weak regularity conditions. In most cases of interest,
the researcher is actually faced with a candidate set from which to choose the moment
conditions to be used in the estimation. Intuition suggests that the choice should reflect the
information content of the moment conditions relative to the desired inferences. However,
to date, no metric for information has been proposed in the GMM framework.1 In this
paper, we show that the entropy of the limiting distribution of the GMM estimator
provides a metric for information in the moment condition regarding the unknown
parameter vector. In view of this property, we propose an information criterion for
moment selection based on this entropy and analyse its properties. Our analysis rests on a
number of other new results presented here regarding GMM estimators that are of interest
in their own right.

An outline of the paper is as follows. In Section 2, we introduce the concept of the long
run canonical correlations (LRCCs) between the true score vector and a moment function
f ðvt; y0Þ and show the various results pertaining to the GMM estimator based on these
LRCCs. As part of this analysis, we prove a generalized information equality that may be of
independent interest. In Section 3, we discuss the entropy of the limiting distribution of the
GMM estimator, and show that this entropy can be written in terms of these LRCCs. It is
shown that the entropy of the limiting distribution of the GMM estimator provides a metric
for the information contained in the moment condition, E½f ðvt; y0Þ� ¼ 0. Motivated by the
aforementioned results, we introduce in Section 3 an information criterion based on this
entropy that can be used as a basis for moment selection and establish conditions for its
consistency in nonlinear dynamic models. The aforementioned consistency result depends
crucially on the assumption that the parameter vector is identified by all the combinations
of moment conditions considered. This assumption is standard in the GMM literature on
moment selection. However, it is clearly possible that moment selection may involve a
choice set in which the parameter vector is weakly identified by some of the combinations of
moment conditions considered. In the remainder of the paper, we consider exactly this
situation in the context of the linear static model estimated via instrumental variables (IV).
To this end, in Section 4, we introduce the concept of nearly redundant moment conditions
and use it to explore the connection between redundancy and weak identification. Section 5
then establishes conditions for the consistency of our entropy-based method for moment
selection when the parameter vector may be weakly identified for some of the combinations
considered. Section 6 concludes. All proofs are relegated to a mathematical appendix.

2. GMM and a generalized information equality

In this section, we present a generalized information equality and exploit it to show that
certain statistical properties of the GMM estimator can be stated in terms of the LRCCs
between the moment function, f ðvt; y0Þ, and the score function, stðy0Þ.

ARTICLE IN PRESS

1We confine our discussion entirely to estimation within the classical paradigm. See Zellner (2003) for a survey

of available results on Bayesian method of moments estimation.
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Throughout our discussion of GMM in its most general form, we consider the case in
which the data satisfy the following condition.

Assumption 1. fvt 2V; t ¼ 1; 2; . . .g is a sequence of strictly stationary and ergodic
random vectors where V � Rs.

We consider the GMM estimator of the unknown p� 1 parameter vector y0 based on
the population moment condition E½f ðvt; y0Þ� ¼ 0 where f :V�Y! Rq where qXp. This
estimator is defined to be

ŷT ðf Þ ¼ argmin
y2Y

gT ðyÞ
0W T gT ðyÞ, (1)

where gT ðyÞ ¼ T�1
PT

t¼1 f ðvt; yÞ and W T is a positive semi-definite (psd) weighting matrix
which converges in probability to Sðf Þ�1 where

Sðf Þ ¼ lim
T!1

Var½T1=2gT ðy0Þ�. (2)

Under certain regularity conditions it can be shown that the estimator has the following
asymptotic distribution.2

Assumption 2. T1=2½ŷT ðf Þ � y0�!
d
Nð0;Vyðf ÞÞ where V yðf Þ ¼ ½Gðf Þ

0Sðf Þ�1Gðf Þ��1 and
Gðf Þ ¼ E½qf ðvt; y0Þ=qy

0
�.

Note that a necessary condition for the distributional result in Assumption 2 is that
rankfGðf Þg ¼ p; this is commonly termed the condition for local identification.
To present the generalized information equality, we need certain additional definitions

and certain regularity conditions. Let pðvtjV t�1; y0Þ denote the conditional probability
density function (pdf) of vt given the infinite history of the series V t�1 ¼ ðvt�1; vt�2; . . .Þ and
pðV tjy0Þ denote the joint distribution of V t. We impose the following set of primitive
conditions.

Assumption 3. (i) f :V�Y! Rq; (ii) y0 is an interior point of the parameter space Y;
(iii) there is a neighbourhood of y0, Ny0 , such that, for all y 2Ny0 and t,R
Vð�1;tÞ

f ðvt; yÞpðV tjyÞdV t ¼ 0, where Vð�1;tÞ is the sample space for Vt; (iv) f ðvt; yÞ and

pðV tjyÞ are continuously differentiable in y with probability one; (v) E½kf ðvt; y0Þkz�o1,
and E½kðq=qyÞpðVtjy0ÞkZ�o1 where z41, Z41 and 1=zþ 1=Zo1; (vi) there are functions
gð�Þ and fhtð�Þg such that, for all y 2Ny0 and t, kqf ðvt; yÞ=qykpgðvtÞ, kqpðV tjyÞ=
qykphtðVtÞ,

R
Vð�1;tÞ

gðvtÞhtðV tÞdVto1; (vii) fvtg is strong mixing with mixing coefficients

fajg satisfying
P1

j¼0ja1�1=z�1=Zj o1.

It is worth noting that only Assumption 3(ii) and the conditions involving f ð�Þ are
typically imposed to deduce the asymptotic distribution given in Assumption 2. However,
the remaining conditions in Assumption 3 are not particularly restrictive and are likely to
hold in most applications of interest.
Now define stðy0Þ to be the conditional score with respect to y evaluated at y ¼ y0, that

is, stðy0Þ ¼ fq ln½pðvtjVt�1; y0Þ�=qygjy¼y0 . The generalized information equality is given in
the following theorem.

ARTICLE IN PRESS

2See Hansen (1982) or Hall (2005, Chapter 3).
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Theorem 1. (a) If Assumptions 1 and 3(i)–(vi) hold, and fvtg is strong mixing with mixing

coefficients fajg satisfying
P1

j¼0a
1�1=z�1=Z
j o1, then

Gðf Þ ¼ �
X1
n¼0

E½f ðvt; y0Þst�nðy0Þ
0
�. (3)

(b) If Assumptions 1 and 3 hold then it follows that

Gðf Þ ¼ � lim
T!1

cov T�1=2
XT

t¼1

f ðvt; y0Þ;T�1=2
XT

t¼1

stðy0Þ

" #
. (4)

Theorem 1 shows that the expected Jacobian of the moment condition is equal to the
negative of the long run covariance between the moment function and the (unknown) true
score function. This theorem generalizes to stationary time series the information equality
presented by Godambe (1960) and Tauchen (1985, Theorem 5) for iid data.

We now exploit this generalized information equality to show that certain statistical
properties of the GMM estimator can be stated in terms of the LRCCs between the moment
function, f ðvt; y0Þ, and the score function, stðy0Þ. To our knowledge, the concept of LRCC is
new to the literature and so we first define what is meant by this term in our context here.

Definition 1. The LRCCs between f ðvt; y0Þ and stðy0Þ are the canonical correlations
between T�1=2

PT
t¼1f ðvt; y0Þ and T�1=2

PT
t¼1stðy0Þ and are denoted by friðf Þ; i ¼ 1; 2; . . . ; pg.

A more detailed definition of LRCCs is relegated to the Appendix for brevity; further
discussion can be found in Jana (2005).

The following theorem presents alternative representations for both the condition for
local identification and the limiting variance V yðf Þ in terms of the LRCCs between f ðvt; y0Þ
and the true score vector.

Theorem 2. If Assumptions 1 and 3 hold then

(i) rankfGðf Þg equals the number of non-zero LRCCs between f ðvt; y0Þ and stðy0Þ.
(ii) The variance of the limiting distribution of the GMM estimator can be decomposed as

follows:

V yðf Þ ¼ Aðf ÞR�2ðf ÞAðf Þ0

where Rðf Þ ¼ diagðr1ðf Þ;r2ðf Þ; . . . ;rpðf ÞÞ and Aðf Þ is the p� p matrix with ith column

aiðf Þ where aiðf Þ is the generalized eigenvector satisfying

½Cðf Þ0Sðf Þ�1Cðf Þ � r2i ðf ÞIy�aiðf Þ ¼ 0 where Iy ¼ E½stðy0Þstðy0Þ
0
� and

Cðf Þ ¼ lim
T!1

cov T�1=2
XT

t¼1

f ðvt; y0Þ;T�1=2
XT

t¼1

stðy0Þ

" #
.

Now suppose that Assumption 3 is satisfied for moment functions f jðvt; y0Þ, j ¼ 1; 2, and

let friðf jÞg be the population LRCCs between f jðvt; y0Þ and stðy0Þ. Define ŷT ðf jÞ to be the

GMM estimators based on E½f jðvt; y0Þ� ¼ 0. Assume that the limiting distribution of

ŷT ðf jÞ is given by Assumption 2 with f ¼ f j.
(iii) (a) Vyðf 1Þ ¼ V yðf 2Þ if and only if r2i ðf 1Þ ¼ r2i ðf 2Þ for i ¼ 1; 2; . . . ; p; (b) Vyðf 1Þ � Vyðf 2Þ

is psd if and only if r2i ðf 2ÞXr2i ðf 1Þ for i ¼ 1; 2; . . . ; p and the inequality is strict for at

least one value of i.

ARTICLE IN PRESS
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Comment 1: Theorem 2(i) provides an interesting perspective on the condition for local
identification. The estimator can only be identified if all the LRCCs between the score and
f ðvt; y0Þ are non-zero.

Comment 2: Theorem 2(ii) has some interesting implications for asymptotic
efficiency. First, notice that if fr2i ðf Þ ¼ 1; i ¼ 1; 2; . . . ; pg then Lemma A.1 (in the
Appendix) and Theorem 2(ii) imply that V yðf Þ ¼ I�1y which is the asymptotic
version of the Cramer–Rao lower bound for estimation of y0. Second, Theorem 2(ii)
shows that the MLE is asymptotically efficient relative to the GMM estimator
because

V�1y ðstðy0ÞÞ � V�1y ðf Þ ¼ E
X1

n¼�1

stðy0Þst�nðy0Þ
0

" #
� E

X1
n¼�1

st�nðy0Þf ðvt; y0Þ
0

" #

� E
X1

n¼�1

f ðvt; y0Þf ðvt�n y0Þ
0

" #( )�1
E

X1
n¼�1

f ðvt; y0Þst�nðy0Þ
0

" #

is the population residual covariance matrix of the spectral regression of stðy0Þ on f ðvt; y0Þ
at frequency zero and thus is always psd. This result generalizes to stationary time series
the analogous result derived by Godambe (1960) for iid data.

Comment 3: Theorem 2(iii) indicates that the LRCCs are sufficient statistics for
efficiency comparisons between estimators based on different moment conditions. An
illustration is considered in Comment 4.

Comment 4: Breusch et al. (1999) use the term redundancy to describe the situation in
which the augmentation of the population moment condition has no effect on the
asymptotic variance of the estimator. More specifically, suppose that f ðvt; yÞ ¼
½f 1ðvt; yÞ

0; f 2ðvt; yÞ
0
�0 then E½f 2ðvt; y0Þ� ¼ 0 is said to be redundant for y0 given E½f 1ðvt; y0Þ� ¼

0 if V yðf Þ ¼ V yðf 1Þ. Therefore, if E½f 2ðvt; y0Þ� ¼ 0 is redundant given E½f 1ðvt; y0Þ� ¼ 0 then
it provides no information about y0 beyond that already in E½f 1ðvt; y0Þ� ¼ 0. The converse
of redundancy is termed non-redundancy. If E½f 2ðvt; y0Þ� ¼ 0 is non-redundant given
E½f 1ðvt; y0Þ� ¼ 0 then Vyðf 1Þ � Vyðf Þ is psd and so E½f 2ðvt; y0Þ� ¼ 0 provides additional
information.3 Theorem 2(iii) implies that redundancy can be categorized using LRCCs
between the moment function and score. Specifically, it follows from Theorem 2(iii) that
E½f 2ðvt; y0Þ� ¼ 0 is redundant for the estimation of y0 given E½f 1ðvt; y0Þ� ¼ 0 if and only if
r2i ðf Þ ¼ r2i ðf 1Þ; i ¼ 1; 2; . . . ; p; E½f 2ðvt; y0Þ� ¼ 0 is not redundant for the estimation of y0
given E½f 1ðvt; y0Þ� ¼ 0 if and only if r2i ðf ÞXr2i ðf 1Þ; i ¼ 1; 2; . . . ; p, and r2i ðf Þ4r2i ðf 1Þ for at
least one i.

Comment 5: While our discussion has been in the context of GMM estimators, it should
be noted that the results in Theorem 2 extend to empirical likelihood estimators (see Owen,
1988, 2001; Qin and Lawless, 1994; Kitamura, 1997), minimum chi-square estimators
(Neyman, 1949) and quadratic inference function estimators (Qu et al., 2000). This follows
because these estimators have the same condition for local identification and limiting
distribution as the GMM estimator.

ARTICLE IN PRESS

3Note that the asymptotic variance can never increase as a result of augmenting the population moment

condition.
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3. Information and entropy in GMM estimation

To date, the GMM literature has not yielded a generally accepted metric for the
information content of population moment conditions. Instead, the literature has focused
on the statistical consequences of particular information scenarios that arise in
econometric models. Of these scenarios, three of the most important are: (i) the optimal
choice of moment condition, that is, the choice which yields maximum information
about y0; (ii) redundant moment conditions, that is, moment conditions which provide
no incremental information about y0; (iii) weak identification, that is, the case where
there is insufficient information to yield a consistent estimator of y0.

4 In this section,
we consider the entropy of the limiting distribution of ŷT ðf Þ. It is shown that this
entropy can be used to characterize the three information scenarios of interest in GMM
estimation and hence provides a continuous measure of the information about y0 in
E½f ðvt; y0Þ� ¼ 0. This result motivates us to propose an information criterion for moment
selection based on this entropy that is also introduced in this section. It should be noted
that it has long been recognized that entropy can be used as a basis for model selection5;
the unique aspect of our contribution here is the application of this principle to GMM
estimation.

Ahmed and Gokhale (1989) derive the entropy for the normal distribution.6 Applying
their result to the limiting distribution of the GMM estimator of y0 based on E½f ðvt; y0Þ� ¼
0 (given in Assumption 2), it follows that the entropy of this distribution is

entyðf Þ ¼ 0:5p½1þ lnð2pÞ� � 0:5 ln½jGðf Þ0Sðf Þ�1Gðf Þj�. (5)

It follows from Theorem 2(ii) and Lemma A.1 (in the Appendix) that

entyðf Þ ¼ 0:5p½1þ lnð2pÞ� � 0:5
Xp

i¼1

ln½r2i ðf Þ� þ 0:5 ln½jI�1y j�. (6)

Notice that the entropy only depends on the choice of moment condition via fr2i ðf Þg. Given
this structure, it is immediately apparent that Theorem 2 can be used to characterize the
three information scenarios described at the beginning of this section in terms of the
entropy.

Corollary 1. Let fvtg satisfy Assumption 1 and define F ¼ ff ð�Þ such that Assumption 2
holds}.

(i) Let ~F �F and f 0 be the optimal choice of moment condition from ~F in the sense that

Vyðf Þ � V yðf
0
Þ is psd for all f 2 ~F. Then entyðf

0
Þpentyðf Þ for all f 2 ~F.

(ii) Define f ðvt; yÞ ¼ ½f 1ðvt; yÞ
0; f 2ðvt; yÞ

0
�0. Assume f i 2F for i ¼ 1; 2. If E½f 2ðvt; y0Þ� ¼ 0 is

redundant for y0 given E½f 1ðvt; y0Þ� ¼ 0 then entyðf Þ ¼ entyðf 1Þ. If E½f 2ðvt; y0Þ� ¼ 0 is

non-redundant for y0 given E½f 1ðvt; y0Þ� ¼ 0 then entyðf Þoentyðf 1Þ.
(iii) If rankfGðf Þgop and so y0 is unidentified by E½f ðvt; y0Þ� ¼ 0 then entyðf Þ ¼ 1.

ARTICLE IN PRESS

4For references to these scenarios see: for (i) Hall (2005, Chapter 7); for (ii) Comment 4; for (iii) Hall (2005,

Chapter 8.2).
5For example, see the review article by Maasoumi (1993) and the references therein.
6The entropy is defined to be the negative of the expectation of the log of the probability density function of the

distribution.
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Corollary 1 suggests that the entropy of the limiting distribution provides a measure of
the information content of moment conditions in GMM estimation. As such, it would
appear to be a natural basis for selection of moments from a candidate set of moment
conditions that are known to be valid.7

To consider the problem of moment selection, it is necessary to introduce some
additional notation. It is assumed that the candidate set of scalar functions which can form
the basis for the population moment condition is finite. It is convenient to stack these
scalar functions into a single vector f maxð�Þ whose dimension is denoted by qmax. Following
Andrews (1999), we use a qmax � 1 selection vector c to denote which elements of the
candidate set are included in a particular moment condition. We therefore now index f ð�Þ

by c. If cj ¼ 1 then the jth element of f maxð�Þ is included in f ð�; cÞ, and cj ¼ 0 implies this
element is excluded. Note that jcj ¼ c0c equals the number of elements in f ð�; cÞ. The set of
all possible selection vectors is denoted by C, that is,

C ¼ fc 2 Rqmax ; cj ¼ 0; 1; for j ¼ 1; 2; . . . qmax; and c ¼ ðc1; . . . cqmax
Þ
0; jcjXpg.

For brevity, statistics of interest are now indexed by c and so ŷT ðcÞ denotes the GMM
estimator based on E½f ðvt; y0; cÞ� ¼ 0, and V yðcÞ denotes the variance of its limiting
distribution given in Assumption 2.8

It is assumed that the researcher wishes to base the estimation on the subset of the
available moment conditions which is asymptotically efficient but contains no redundant
moment conditions. Asymptotic efficiency is a standard requirement in statistics, and so,
for brevity, we do not justify its merits here. The exclusion of redundant moment
conditions is a relatively new criterion, and so deserves some justification. Hall and Peixe
(2003) report simulation evidence that the inclusion of redundant moment conditions can
lead to a serious deterioration in the quality of the limiting distribution (in Assumption 2)
as an approximation to finite sample behaviour.9 It is these findings that motivate the
inclusion of non-redundancy in the objective of moment selection. For ease of exposition,
we use the term ‘‘relevant’’ moment conditions to denote the subset of the available
moment conditions which are asymptotically efficient but contain no redundant moment
conditions. A formal definition of relevance follows.

Definition 2. cr is the selection vector associated with the relevant moment conditions if the
following three properties hold: (i) cr 2 C; (ii) V yðiqmax

Þ ¼ V yðcrÞ where iqmax
is a qmax � 1

vector of ones; (iii) V yðcr;1Þ � VyðcrÞ is psd for cr ¼ cr;1 þ cr;2 and cr;1 2 C.

A few observations about this definition are in order. Part (ii) states that estimation
based on the complete candidate set and the relevant subset yield the same asymptotic
variance for the estimator. Since there is no cost asymptotically to the inclusion of
redundant moment conditions, part (ii) implies the asymptotic efficiency of estimation
based on the relevant moment conditions. Note here that asymptotic efficiency is relative
to all possible choices of moment condition from the candidate set. An implication of this
property is that if craiqmax

then all remaining elements of the candidate set are redundant
given the relevant subset, that is,V yðcrÞ ¼ V yðcr þ ciÞ for c0rci ¼ 0 and ðcr þ ciÞ 2 C.

ARTICLE IN PRESS

7See below for discussion of the case in which some elements of candidate set may be invalid.
8Note that ŷT ðcÞ and VyðcÞ denote ŷT ðf Þ and Vyðf Þ evaluated at f ¼ f ð�; cÞ.
9Further evidence to this effect is presented below. Earlier studies reported similar findings but, since these

studies predated the Breusch et al. (1999) paper, their conclusions are not couched in terms of ‘‘redundancy’’; see

Hall (2005, Chapter 6) for further discussion and references.
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To motivate the form of the information criterion proposed below, we note two features
of the entropy in (5). First, p — the dimension of y — is constant across all moments
considered and so the only part of entyðf Þ that changes with the choice of moments is
� ln½jGðf Þ0Sðf Þ�1Gðf Þj� ¼ ln½jVyðf Þj�. Second, Corollary 1 implies that we wish to find the
choice of moment condition that minimizes entyðf Þ and hence ln½jVyðf Þj� across all choices
of f in the candidate set. These considerations lead us to consider the following
information criterion (where we return to indexing moments by c):

RMSCðcÞ ¼ ln½jV̂ y;T ðcÞj� þ kðjcj;TÞ, (7)

where V̂ y;T ðcÞ denotes a consistent estimator of VyðcÞ and kðjcj;TÞ is a deterministic
penalty that is, an increasing function of the number of moments, jcj. A natural choice for
the covariance matrix estimator is

V̂y;T ðcÞ ¼ ½GT ðŷT ðcÞ; cÞ
0Ŝ
�1

T ðcÞGT ðŷT ðcÞ; cÞ�
�1,

where GT ðy; cÞ ¼ T�1
PT

t¼1qf ðvt; y; cÞ=qy
0, ŜT ðcÞ!

p
SðcÞ and SðcÞ ¼ limT!1Var½T�1=2PT

t¼1f ðvt; y0; cÞ�. The acronym RMSC stands for relevant moment selection criterion.
Our proposal is to base estimation on the selection vector that minimizes the criterion

over C, that is, the selected vector is given by

ĉT ¼ argmin
c2C

RMSCðcÞ.

To analyse the limiting properties of ĉT , we require certain regularity conditions. We first
present these conditions and a consistency result for ĉT , and then present a number of
comments regarding the construction of RMSCðcÞ and its relationship to other
information criterion in the literature.

To present these regularity conditions, it is necessary to define the set of selection vectors
that are asymptotically efficient relative to the candidate set,

C ¼ fc;Vyðiqmax
Þ ¼ V yðcÞ; c 2 Cg,

and also the subset of C of minimum length,

Cmin ¼ fc; c 2 C; jcjpjc̄j for all c̄ 2 Cg.

Using this notation, we impose the following conditions.

Assumption 4. (i) cr satisfies Definition 2 and Cmin ¼ fcrg; (ii) E½f ðvt; y0; cÞ� ¼ 0 if and only
if y ¼ y0 for all c 2 C; (iii) V̂y;T ðcÞ ¼ VyðcÞ þOpðt�1T Þ where tT !1 as T !1; (iv) for
any ~c; c̄ 2 C such that jc̄j4j~cj, tT ½kðjc̄j;TÞ � kðj~cj;TÞ� ! þ1 as T !1, and kðjcj;TÞ ¼
oð1Þ for every c 2 C.

Assumptions 4(i) and (ii) are the identification conditions for the relevant moment
conditions and the parameters, respectively. When the weighting matrix is the inverse of
the sum of a fixed number of autocovariances, tT ¼ T1=2. When the weighting matrix is the
inverse of a heteroscedasticity autocorrelation covariance (HAC) matrix calculated with
bandwidth ‘T such that ‘T !1 as T !1 and ‘T ¼ oðT1=2Þ then tT ¼ ðT=‘T Þ

1=2.
Andrews (1991) provides more primitive conditions for Assumption 4(iii) for this case
(e.g., his Assumptions B and C).

The following theorem shows that ĉT is consistent for cr.

Theorem 3. Under Assumption 4, it follows that ĉT!
p

cr.

ARTICLE IN PRESS
A.R. Hall et al. / Journal of Econometrics 138 (2007) 488–512 495



Aut
ho

r's
   

pe
rs

on
al

   
co

py

We now present certain comments regarding the construction of RMSCðcÞ.
Comment 6: It is useful to highlight the differences between RMSC and the moment

selection criterion (MSC) proposed by Andrews (1999). MSC is designed to select which
moments out of the candidate set represent valid information. For a given c, MSCðcÞ is
defined to be the overidentifying restrictions test plus a bonus term that is equal to
�kðjcj;TÞ (using our notation). The selected moment condition is chosen by minimizing
the criterion over C. As pointed out by Hall and Peixe (2003), one weakness of MSCðcÞ is
that it selects moments only on the basis of their validity and takes no account of their
information content. In practice, it may be desirable to use MSCðcÞ and RMSCðcÞ

sequentially but an exploration of their combined use is beyond the scope of this paper.
Comment 7: A number of information criteria have been proposed for the problem of

order selection in time series; for example see Akaike (1974), Hannan and Quinn (1979)
and Schwarz (1978). However, there are important differences between this problem and
the one of moment selection considered here. For example, consider the use of Schwarz’s
(1978) BIC to select the order of an autoregressive process (AR). BIC involves estimating
an AR process for each possible order and calculating the associated error variance. The
chosen order is the one that minimizes the log of the error variance plus the deterministic
penalty p lnðTÞ=T where p is the associated AR order. Note two important differences to
our setting here: (i) the sample information in BIC is the error variance of the fitted AR
model whereas the sample information in RMSC is the variance of estimated parameters;
(ii) in BIC, the dimension of the parameter vector changes with the AR order, but in
RMSC the dimension of the parameter vector is constant over all choices of moment
condition.

Comment 8: Assumption 4(iv) places rather general conditions on the deterministic
penalty term and is modelled on Andrews (1999) assumption MSC that underpins his
analysis of MSC. Examples of penalty terms that satisfy this condition are: kðjcj;TÞ ¼
ðjcj � pÞ lnðtT Þ=tT (BIC-type penalty) and kðjcj;TÞ ¼ ðjcj � pÞb ln½lnðtT Þ�=tT where b42
(HQIC-type penalty).10 Andrews (2000) reports simulation evidence that the BIC-type
penalty works best in his context, and this has been our experience with RMSC. It is
desirable to establish an optimal choice for the penalty term, but this is a non-trivial issue
that is left for future research.
A simulation study was undertaken to investigate the finite sample properties of our

method in this type of setting. We used the following data generating process:

yt ¼ y0xt þ ut, (8)

xt ¼ p0zt þ vt, (9)

where y0 ¼ 0, p ¼ ½g; 01�11�0, 01�11 is a 1� 11 vector of zeroes, ½ut; vt; z0t�
0�NIDð0;SÞ and S

is a matrix whose diagonal elements are all equal to one and whose only non-zero off
diagonal elements are the ð1; 2Þ and ð2; 1Þ entries which are both equal to 0:5. We use g ¼ 1
and 1

3
so that the first stage R2 in population are 0.5 and 0.1, respectively. The candidate set

of moment conditions is given by E½ztðyt � xty0Þ� ¼ 0. Since the only difference between
elements of the candidate set derives from the instrument vector, we index zt by c so that
f ðvt; y; cÞ ¼ ztðcÞðyt � xtyÞ. Notice that within this design the relevant moment condition is
the one involving the first element of zt and so cr ¼ ð1; 0 . . . 0Þ

0. Within this framework, the

ARTICLE IN PRESS
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pytwo-stage least squares (2SLS) is asymptotically equivalent to the GMM estimator with
the optimal weighting matrix and so all results reported below are based on the 2SLS
estimator.11

To compute our MSC, we need a consistent estimator of the asymptotic variance–cov-
ariance matrix. For the 2SLS estimator, we use

V̂y;T ðcÞ ¼ ŝ2uðcÞ
1

T

XT

t¼1

xtztðcÞ
0 1

T

XT

t¼1

ztðcÞztðcÞ
0

 !�1
1

T

XT

t¼1

ztðcÞxt

2
4

3
5
�1

, (10)

where ŝ2uðcÞ ¼ ð1=TÞ
PT

t¼1û
2
t ðcÞ, ûtðcÞ ¼ yt � ŷT ðcÞxt and ŷT ðcÞ is the 2SLS estimator of y0

based on E½ztðcÞðyt � xty0Þ� ¼ 0. The moment selection procedure is implemented with the
penalty term associated with the BIC-type criterion, and so

RMSCðcÞ ¼ ln½jV̂ y;T ðcÞj� þ
ðc0c� 1Þ lnðT1=2Þ

T1=2
. (11)

Theorem 3 is premised on the assumption that y0 is identified by all the subsets of
candidate set considered. This would not be the case if RMSC is minimized over C here
because identification rests crucially on zt;1, the first element of zt. We therefore consider
the case where RMSC is minimized over the following 12 choices of c: c ¼ ½10q�1; 0

0
ð12�qÞ�1�

0,
q ¼ 1; 2; . . . ; 12, and 0b�1 is the b� 1 null vector.12 We define q̂ ¼ jĉT j. The number of
Monte Carlo replications is set to 10 000, and the sample sizes used are T ¼ 100 and 500.

Tables 1 and 2 report the median bias of the 2SLS estimator and the coverage
probabilities of the 90% confidence intervals of the 2SLS estimator, respectively, for all 12
choices of c considered and also ĉT . It can be seen that the median bias and the coverage
probability tend to deteriorate as the number of redundant instruments increases.
However, the use of RMSC leads to a considerable improvement in the quality of the
asymptotic approximation—particularly compared to the brute force case in which all 12
elements of the candidate set are used. Lastly, Table 3 shows the summary statistics of the
selected number of instruments. The results confirm our asymptotic consistency result in
that the number of instruments tends to converge to one as the sample size increases.

As noted above, Theorem 3 is premised on the assumption that y0 is identified by all
subsets of the candidate set considered. This clearly may not be the case. To understand
how the method behaves in such circumstances, it is first useful to explore the connections
between redundancy and weak identification. This is done in the next section, and then,
using the insights gained from this discussion, we examine in Section 5 the limiting

ARTICLE IN PRESS

Table 1

Median bias of 2SLS estimator

T R2
f

q ¼ 1 q ¼ 2 q ¼ 3 q ¼ 4 q ¼ 5 q ¼ 6 q ¼ 7 q ¼ 8 q ¼ 9 q ¼ 10 q ¼ 11 q ¼ 12 q ¼ q̂

100 0.5 0.001 0.007 0.011 0.016 0.021 0.026 0.030 0.035 0.039 0.042 0.047 0.051 0.001

100 0.1 0.004 0.047 0.084 0.115 0.143 0.163 0.184 0.203 0.218 0.232 0.245 0.256 0.097

500 0.5 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.000

500 0.1 0.001 0.010 0.018 0.026 0.034 0.043 0.050 0.057 0.064 0.070 0.077 0.084 0.004

11Recall 2SLS is the GMM estimator based on E½ztut� ¼ 0 with weighting matrix W T ¼ ðT
�1Z0ZÞ�1.

12However, see Sections 5 and 6.
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behaviour of RMSC, the parameter vector may be weakly identified for some or all of the
combinations considered.

4. Redundancy and weak identification

The concepts of redundancy and weak identification were introduced to describe
superficially very different information scenarios. However, both involve situations in
which a set of moments provide marginal information at best, and so in this section we
examine whether there is in fact a closer connection between the two concepts. Since weak
identification involves a Pitman drift and redundancy does not, the concepts are not easily
compared in their original form. Therefore, we introduce a generalization of redundancy
that involves a Pitman drift that we refer to as near-redundancy and explore its properties
as part of the discussion. As it will be seen, this extension enables us to delineate the
circumstances under which moments that are (nearly) redundant in one setting provide
weak identification in another. For expositional brevity, we frame all this discussion in the
context of a linear model estimated via IV.13

In spite of the comments above, it is useful for the purposes of comparison to begin by
briefly describing the condition for redundancy within the linear IV setting. To this end, we
consider the model

yt ¼ x0ty0 þ ut, (12)

xt ¼ P1z1;t þP2z2;t þ et, (13)

ARTICLE IN PRESS

Table 2

Coverage probabilities of 90% confidence intervals for 2SLS estimator

T R2
f

q ¼ 1 q ¼ 2 q ¼ 3 q ¼ 4 q ¼ 5 q ¼ 6 q ¼ 7 q ¼ 8 q ¼ 9 q ¼ 10 q ¼ 11 q ¼ 12 q ¼ q̂

100 0.5 0.901 0.897 0.896 0.891 0.888 0.881 0.873 0.866 0.858 0.850 0.841 0.832 0.901

100 0.1 0.920 0.899 0.870 0.845 0.814 0.785 0.752 0.721 0.691 0.659 0.626 0.594 0.881

500 0.5 0.900 0.900 0.898 0.896 0.896 0.895 0.894 0.891 0.890 0.889 0.888 0.885 0.900

500 0.1 0.907 0.901 0.895 0.890 0.880 0.872 0.861 0.852 0.838 0.824 0.812 0.796 0.908

Table 3

Summary statistics of q̂

T R2
f

2SLS

Mean Median Mode Variance

100 0.5 1.000 1.000 1.000 0.000

100 0.1 1.785 1.000 1.000 2.293

500 0.5 1.000 1.000 1.000 0.000

500 0.1 1.052 1.000 1.000 0.090

13The concept of near-redundancy is not specific to linear models. However, we restrict attention to this

framework here for conformity with the analysis in the following section that is confined to the linear static model.
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where yt is a scalar, xt is p� 1 vector, zi;t is qi � 1 for i ¼ 1; 2. In addition, we set zt ¼

ðz01;t; z
0
2;tÞ
0 and set q ¼ q1 þ q2. Let Zi be the T � qi matrix whose tth row is z0i;t,

Z ¼ ðZ1;Z2Þ, and X be the T � p matrix whose tth row is x0t, and u be the T � 1 vector
with tth element ut. We define vt ¼ ðx

0
t; z
0
t; ut; e0tÞ

0 and assume fvt; t ¼ 1; 2; . . . ;Tg is an i.i.d.
sequence of random vectors. Furthermore, it is assumed that E½utjzt� ¼ 0 and E½u2

t jzt� ¼ s20.
Breusch et al. (1999) show that the condition for redundancy of E½z2;tut� ¼ 0 for the

estimation of y0 given E½z1;tut� ¼ 0 is

E½z2;tx
0
t� � E½z2;tz

0
1;t�ðE½z1;tz

0
1;t�Þ
�1E½z1;tx

0
t� ¼ 0. (14)

It can be verified that this condition is equivalent to the restriction that P2 ¼ 0 in (13). For
our purposes here, one particular aspect of this definition is worth noting. The moment
condition in (14) holds for every t, and this, of course, implies that the sample analogue of
this condition holds in the limit, that is,

T�1Z02X � T�1Z02Z1ðT
�1Z01Z1Þ

�1T�1Z01X!
p
0. (15)

However, since redundancy is a statement about limiting behaviour, it is the condition in
(15) that is really important.

To introduce the concept of near-redundancy within the linear model, it is necessary to
modify the data generation process. It is assumed that (12) still holds but the reduced form
is now

xt ¼ P1z1;t þP2;T z2;t þ et. (16)

The key difference is that the coefficient on z2;t depends on T . This means that xt and,
consequently, vt depend on T . However, for simplicity, we suppress this dependence in the
notation except at places where it is needed for emphasis. The distributions of all other
variables are assumed to be independent of T . Define E½T�1Z0iZj� ¼ Oi;j , for i; j ¼ 1; 2,
E½T�1Z0iX � ¼ Oi;x;T , Oi;x ¼ limT!1Oi;x;T , and finally let

Oz;z ¼
O1;1 O1;2

O2;1 O2;2

" #
; Oz;x ¼

O1;x

O2;x

" #
.

We impose the following high level assumptions.

Assumption 5. (i) rankfOi;ig ¼ qi for i ¼ 1; 2; (ii) T�1Z0Z!
p
Oz;z; (iii) T�1=2Z0u!

d

Nð0;s20Oz;zÞ; (iv) T�1=2
PT

t¼1zt � et!
d
Nð0;S1Þ; (v) T�1u0u!

p
s20; (vi) T�1=2

PT
t¼1ðetut �

se;uÞ!
d
Nð0;S2Þ where se;u ¼ E½etut�.

Within this model, we define near-redundancy as follows.

Definition 3 (Near redundancy). Let the data be generated via (12) and (16) and
Assumption 5 hold. The moment condition E½z2;tut� ¼ 0 is said to be nearly redundant
for the estimation of y0 given E½z1;tut� ¼ 0 if

O2;x;T � O2;1O�11;1O1;x;T ¼ T�1=2Z, (17)

where Z is a matrix of finite constants.
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Notice that (17) implies O2;x � O2;1O�11;1O1;x ¼ 0; and so (15) holds. Therefore, it would
be anticipated that nearly redundant moment conditions make no contribution to the
limiting variance of the estimator. This intuition is confirmed in the following result.

Theorem 4. Let ŷT be the 2SLS estimator of y0 based on E½ztut� ¼ 0. Assume that E½z2;tut� ¼

0 is nearly redundant for y0 given E½z1;tut� ¼ 0. Let Assumption 5 hold, the data be generated

via (12) and (16), and rankðO1;xÞ ¼ p. The limiting distribution of this GMM estimator is

T1=2ðŷT � y0Þ!
d
Nð0;s20½O

0
1;xO

�1
1;1O1;x�

�1Þ.

For the comparison with weak identification, it is useful to establish the parametric
restriction within (12) and (16) that yields near-redundancy of E½z2;tut� ¼ 0. By definition,
we have

O2;x;T � O2;1O�11;1O1;x;T ¼ E½T�1Z02X � � E½T�1Z02Z1�fE½T
�1Z01Z1�g

�1E½T�1Z01X �.

(18)

Using (16) and Assumption 5, it follows from (18) that

O2;x;T � O2;1O�11;1O1;x;T ¼ ðO2;2 � O2;1O�11;1O1;2ÞP02;T . (19)

Assumption 5(i) implies ðO2;2 � O2;1O�11;1O1;2Þ is a non-singular matrix of constants and so,
taken together, (17) and (19) imply that E½z2;tut� ¼ 0 is nearly redundant given E½z1;tut� ¼ 0
if and only if P2;T ¼ C2T�1=2 for some matrix of constants C2.
We now consider weak identification. For our purposes, it suffices to consider the

‘‘classic’’ version of weak identification in the linear model that is analysed by Staiger and
Stock (1997).14 So we assume the data is generated by (12) and (16) with P1 ¼ 0, P2;T ¼

T�1=2C2 and estimation is based on E½z2;tut� ¼ 0. In this case, the key derivative matrix is

O2;x;T ¼ E½T�1Z02X � ¼ T�1=2O2;2C
0
2

and so O2;x ¼ 0q2�p causing identification to fail.
Since P2;T behaves the same way under near-redundancy and weak identification, it is

natural to wonder whether a set of moment conditions can be nearly redundant when other
moments are included but be associated with weak identification if these other moments
are excluded. To explore this question, we consider the case in which the data are generated
by (12) and (16) with rankfP1g ¼ p, P2;T ¼ T�1=2C2. If estimation is based on E½ztut� ¼ 0
then E½z2;tut� ¼ 0 is nearly redundant because of the inclusion of E½z1;tut� ¼ 0. However, if
estimation is based on E½z2;tut� ¼ 0 alone then this set of moments is inevitably the only
source of information about y0. Does this mean that y0 is weakly identified? The answer is
may be or may be not. To see this, note that within this specification

O2;x;T ¼ O2;1P01 þ T�1=2O2;2C
0
2.

Therefore, y0 is identified provided rankfO2;1P01g ¼ p, but weakly identified if this
condition fails. Or, put another way, y0 is identified provided z2;t inherits enough of the
explanatory power of z1;t for xt when the latter is omitted. However, notice that if y0 is
weakly identified based on E½z2;tut� ¼ 0 alone then these moments are nearly redundant
once the moment condition is augmented by E½z1;tut� ¼ 0.

ARTICLE IN PRESS

14See Zivot et al. (2003) for a discussion of different scenarios that can lead to weak identification in this model.
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5. Analysis of RMSC when weak identification is a possibility

In this section, we continue our analysis of RMSC. As noted above, the consistency
result in Theorem 3 is derived under certain regularity conditions. One of these conditions
is the requirement that y0 is identified by all the subsets of the candidate set over which the
minimization is performed. It is clear from the discussion in Section 4 that this is a viable
scenario. However, it is also clear that moment conditions that are redundant given the
relevant subset may fail to identify y0 when some or all of that relevant subset are excluded
from the estimation. Therefore, in this section, we consider the limiting behaviour of
RMSC in the presence of weak identification, and then use these results to derive the
limiting behaviour of ĉT when the parameter vector may be weakly identified for some of
the combinations considered.

The analysis is undertaken in the context of the linear model in (12) and (16).
However, this time, we partition xt into ðx01;t;x

0
2;tÞ
0 where xi;t is pi � 1 for i ¼ 1; 2, and

partition y0 conformably into ðy00;1; y
0
0;2Þ
0. For what follows, it is useful to take account of

this partition in the presentation of the data generation process for xt. Therefore, we
rewrite (16) as

xi;t ¼ Pi;1;T z1;t þPi;2;T z2;t þ ei;t for i ¼ 1; 2, (20)

where Pi;j;T is pi � qj . All other definitions are as above; we also impose Assumption 5 as
before. Once again, let ŷT be the 2SLS estimator of y0 based on E½ztut� ¼ 0. From
Assumption 5, it follows that the variance of the limiting distribution of 2SLS is
V y ¼ s20ðOx;zO�1z;zOz;xÞ

�1. Given this structure, the obvious candidate for the covariance
matrix estimator is V̂ y;T ¼ ŝ2T ½T

�1X 0ZðT�1Z0ZÞ�1T�1Z0X ��1, where ŝ2T ¼ T�1

ðy� X ŷT Þ
0
ðy� X ŷT Þ, and so

ln½jV̂y;T j� ¼ p lnðŝ2T Þ � ln½jT�1X 0ZðT�1Z0ZÞ�1T�1Z0X j�. (21)

As remarked above, the aim of this section is to analyse the behaviour of RMSC when y0
is only weakly identified by some subsets of the candidate set of moment conditions. To
achieve this end, it is useful to consider first the behaviour of ln½jV̂y;T j� for three distinct
scenarios. These are as follows:

	 Scenario I (y0 is weakly identified): Pi;j;T ¼ T�1=2Ci;j for some matrices of constants Ci;j ,
i; j ¼ 1; 2, and rankfCg ¼ p where

C ¼
C1;1 C1;2

C2;1 C2;2

" #
.

	 Scenario II (y0;1 is identified but y0;2 is weakly identified): P1;1;T ¼ P1;1 with
rankðP1;1Þ ¼ p1; P1;2;T ¼ T�1=2C1;2, for some matrix of constants C1;2; P2;j;T ¼

T�1=2C2;j for some matrices of constants C2;j, j ¼ 1; 2; rankf½C2;1;C2;2�g ¼ p2.
	 Scenario III (y0 is identified): Pi;1;T ¼ Pi;1 þ T�1=2Ci;1 with rankðPi;1Þ ¼ pi for i ¼ 1; 2;

Pi;2;T ¼ T�1=2Ci;2 for some matrices of constants Ci;j , i; j ¼ 1; 2.

Two aspects of Scenario III are worthy of comment. First, note the specification for Pi;1;T

implies that y0 is identified by E½z1;tut� ¼ 0 but allows identification to rest on different
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elements of the moment condition for y0;1 and y0;2. Second, some elements of E½ztut� ¼ 0
are nearly redundant given other elements.15

The following theorem presents the large sample behaviour of ln½jV̂ y;T j� under these
three scenarios.

Theorem 5. Let the data be generated via (12) and (20) and Assumption 5 hold.

(i) Under Scenario I: ln½jV̂y;T j� ¼ p lnðTÞ þOpð1Þ.
(ii) Under Scenario II: ln½jV̂ y;T j� ¼ p2 lnðTÞ þOpð1Þ.
(iii) Under Scenario III: ln½jV̂ y;T j� ¼ p ln½s20� � ln½jO01;xO

�1
1;1O1;xj� þ opð1Þ ¼ Opð1Þ.

We now consider the implications of Theorem 5 for moment selection based on RMSC
in which the equation of interest is (12), the candidate set of moments is given by E½ztðyt �

x0ty0Þ� ¼ 0 and the relationship between xt and zt is given by (20). Using the notation from
Section 3 and specializing the definition of RMSC to the model in this section, the chosen
selection vector is16

ĉT ¼ min
c2C
fln½ŝ2T ðcÞ� � ln½jT�1X 0ZðcÞfT�1ZðcÞ0ZðcÞg�1T�1ZðcÞ0X j� þ kðjcj;TÞg,

where ZðcÞ is the T � jcj matrix whose tth row is ztðcÞ
0, ŝ2T ðcÞ ¼ T�1½y� X ŷT ðcÞ�

0½y�

X ŷT ðcÞ� and ŷT ðcÞ is the 2SLS estimator of y0 based on E½ztðcÞut� ¼ 0.
We now require two additional assumptions that specify respectively a partition of C

and an identification condition.

Assumption 6. C ¼ CI [ CII [ CIII where CI yields models that fit within Scenario I, CII

yields models that fit within Scenario II and CIII yields models that fit within Scenario III.

To facilitate the presentation of the identification condition, we define V yðcÞ to be the variance
of the limiting distribution of the 2SLS estimator based on E½ztðcÞut� ¼ 0. Note that within the
framework here, the minimum value for VyðcÞ is V ðiqÞ where iq is q� 1 vector of ones.

Assumption 7. There is a cr 2 CIII that satisfies the properties in Definition 2 with qmax ¼ q

and Cmin ¼ fcrg.

The following theorem gives the limiting behaviour of RMSC when subsets of the
candidate set provide only weak identification.

Theorem 6. Let the data be generated by (12) and (20) and Assumptions 4–7 hold, then

ĉT!
p

cr.

Theorem 6 indicates that RMSC is consistent for cr in this model even when some
subsets of the candidate set provide only weak identification.
To conclude this section, we explore the finite sample behaviour of RMSC in a setting

where weak identification is a possibility. Simulated data are generated from the model in
(12)–(13) with p ¼ 1; q1 ¼ 2 and q2 ¼ 6. The primitive variables are v0t ¼ ½ut; et; z0t�, and
random samples are generated under the assumption that vt�Nð0;SvÞ where the main
diagonal elements of Sv are all set to unity, and the only non-zero off diagonal elements are
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15E½z2;tut� ¼ 0 is nearly redundant given E½z1;tut� ¼ 0. Elements of E½z1;tut� ¼ 0 may also be nearly redundant

given the remaining elements of this vector depending on the elements of Pi;1 and Ci;1.
16Since we consider behaviour over different choices of instrument, we now reinstate the indexing by c.
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covðut; etÞ ¼ sue, that is, Svð1; 2Þ and Svð2; 1Þ. In all experiments, y0 ¼ 0:1;P2 ¼ 0 and the
elements of P1 are given by p1;1 ¼ 0:6243k and p1;2 ¼ 0:3660k where k is chosen so that
P01P1 ¼ R2

f =ð1� R2
f Þ for some fixed value of R2

f , the multiple correlation coefficient of the
reduced form equation, (13).17 Each experiment consists of a specification of ðT ;R2

f ;sueÞ

from the following sets: T 2 f100; 500g;R2
f 2 f0:1; 0:5g; sue 2 f0:1; 0:5; 0:9g.

Three aspects of this design are worth noting. First, E½z2;tut� ¼ 0 is redundant for y0
given E½z1;tut� ¼ 0, and so cr ¼ ð1; 1; 01�6Þ

0. Second, y0 is unidentified by E½ztðcÞut� ¼ 0 for
any c ¼ ð0; 0; n0Þ0. Third, previous research suggests that R2

f ¼ 0:1 may be associated with
weak identification problems in small- to moderate-sized samples.18

For each replication, the 2SLS estimator is calculated based on E½ztðcÞut� ¼ 0 for all
c 2 C and ĉT is calculated using the BIC-type penalty; see Comment 8. Table 4 reports a
summary statistics associated with the distribution of ĉT and the post-selection estimator
ŷT ðĉT Þ. Since there are 255 possible combinations of instruments, we group these
possibilities into six cases: 1R; 2R; 1R=I ; 2R=I
; I and all, where 1R denotes the cases in
which c ¼ ða; 006Þ

0 for a 2 fð1; 0Þ; ð0; 1Þg; implying that the selection vector consists of only
one of the relevant instruments; 2R denotes the case in which c ¼ ð1; 1; 006Þ

0, indicating that
the selection vector consists of only both relevant instruments; 1R=I denotes the cases in
which c ¼ ða0; b0Þ0 for a given above and ba06;meaning that the selection vector consists of
one relevant instrument and at least one redundant instrument; 2R=I
 denotes the cases in
which c ¼ ð1; 1; d 0Þ0 and da06 or i6; that is, the selection vector consists of both relevant
and at least one but not all six redundant instruments; I denotes the cases in which
c ¼ ð0; 0; b0Þ0 for b given above, implying that the selection vector consists of only
redundant instruments; and finally, all denotes the case in which c ¼ i08, indicating that the
selection vector contains all eight instruments, that is, the two relevant instruments as well
as the six redundant instruments.

Table 4 reports the results for R2
f equal to 0:1 and 0:5. With R2

f ¼ 0:1, it can be seen that
for T ¼ 100 RMSC tends to pick combinations that include one or more of the relevant
instruments but also tends to include at least some of the irrelevant instruments as well.
However, by T ¼ 500, the method is clearly doing a better job of identifying the relevant
set. This improvement is also reflected in the coverage probabilities of the 90% confidence
intervals based on the limiting distribution: for T ¼ 100, the actual coverage rate is clearly
different from the nominal level, but by T ¼ 500, it is very close to the nominal value
except when the regressor is highly endogenous. We conjecture that these distortions are a
further manifestation of the problems caused by weak identification.19 With R2

f ¼ 0:5,
everything works much better. RMSC identifies the relevant instruments with high
probability, and the coverage probabilities are close to the nominal level at both sample
sizes regardless of the value of sue.

6. Concluding remarks

In this paper, we make five contributions to the literature on information and entropy in
generalized method of moments (GMM) estimation. First, we introduce the concept of the
long run canonical correlations (LRCCs) between the true score vector and the moment

ARTICLE IN PRESS

17This design exploits results presented in Hahn and Inoue (2002).
18For example, see Hahn and Inoue (2002).
19For example, see Nelson and Startz (1990) or Hall et al. (1996).
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function f ðvt; y0Þ and show that they provide a metric for the information contained in the
population moment condition E½f ðvt; y0Þ� ¼ 0. Second, we show that the entropy of the
limiting distribution of the GMM estimator can be written in terms of these LRCCs.
Third, motivated by the aforementioned results, we introduce an information criterion
based on this entropy that can be used as a basis for moment selection. Fourth, we
introduce the concept of nearly redundant moment conditions and use it to explore the
connection between redundancy and weak identification. Fifth, we analyse the behaviour
of the aforementioned entropy-based moment selection method in two scenarios of
interest; these scenarios are: (i) nonlinear dynamic models where the parameter vector is
identified by all the combinations of moment conditions considered; (ii) linear static
models where the parameter vector may be weakly identified for some of the combinations
considered.

ARTICLE IN PRESS

Table 4

Properties of RMSC(c)

R2
f ¼ 0:1 T ¼ 100 T ¼ 500

inst:nsue 0.1 0.5 0.9 0.1 0.5 0.9

Empirical selection probabilities:

1R 0.220 0.196 0.103 0.109 0.152 0.151

2R 0.291 0.220 0.072 0.836 0.690 0.420

1R/I 0.329 0.416 0.571 0.012 0.046 0.216

2R/I* 0.138 0.136 0.059 0.043 0.113 0.201

I 0.021 0.032 0.194 0.000 0.000 0.012

All 0.000 0.000 0.000 0.000 0.000 0.000

Sampling properties of post-selection estimator:

Med. bias 0.042 0.210 0.477 0.005 0.033 0.084

Cov. rate 0.947 0.804 0.253 0.919 0.897 0.766

R2
f ¼ 0:5 T ¼ 100 T ¼ 500

inst:nsue 0.1 0.5 0.9 0.1 0.5 0.9

Empirical selection probabilities:

1R 0.290 0.342 0.364 0.001 0.005 0.033

2R 0.709 0.654 0.593 0.999 0.995 0.967

1R/I 0.000 0.002 0.032 0.000 0.000 0.000

2R/I* 0.000 0.001 0.011 0.000 0.000 0.000

I 0.000 0.000 0.000 0.000 0.000 0.000

All 0.000 0.000 0.000 0.000 0.000 0.000

Sampling properties of post-selection estimator:

Med. bias 0.003 0.017 0.027 0.001 0.001 0.002

Cov. rate 0.906 0.903 0.876 0.903 0.908 0.898

Notes: inst. stands for instrument combination; 1R denotes the cases in which c ¼ ða; 006Þ
0 for a 2 fð1; 0Þ; ð0; 1Þg; 2R

denotes the case in which c ¼ ð1; 1; 006Þ
0; 1R=I denotes the cases in which c ¼ ða0; b0Þ0 for a given above and

ba06; 2R=I
 denotes the cases in which c ¼ ð1; 1; d 0Þ0 and da06 or i6; I denotes the cases in which c ¼ ð0; 0; b0Þ0

for b given above, and all denotes the case in which c ¼ i08.
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Appendix A

A.1. Long run canonical correlations (LRCCs)

Definition A.1. Let xt and zt be p� 1 and q� 1 and m ¼ minðp; qÞ. Suppose that

T�1=2
PT

t¼1vt!
d
Nð0;SvÞ where vt ¼ ðx

0
t; z
0
tÞ
0, Sv ¼ limT!1Var½T�1=2

PT
t¼1vt� is a finite

positive definite matrix and

Sv ¼
Sx;x Sx;z

Sz;x Sz;z

" #

using the obvious notation. The population LRCCs between xt and zt are denoted by
fri; i ¼ 1; 2; . . . ;mg, where by convention riX0 for i ¼ 1; 2; . . . ;m and riXriþ1 for

i ¼ 1; 2; . . . ;m� 1, and have the following properties: (i) fr2i g are the m largest solutions to

the determinantal equation jSx;zS�1z;zSz;x � r2Sx;xj ¼ 0; (ii) ri ¼ a0iSx;zbi where ai and bi

satisfy ðSx;zS�1z;zSz;x � r2i Sx;xÞai ¼ 0 and ðSz;xS�1x;xSx;z � r2i Sz;zÞbi ¼ 0 for i ¼ 1; 2; . . . ;m.20

Using similar arguments to Rao (1973, p. 583), Jana (2005) shows that the following
properties hold.

Lemma A.1. Let m ¼ p (in Definition A.1) and A be the p� p matrix with ith column ai.
Then, the following identities hold: Sx;x ¼ A

0�1A�1; Sx;zS�1z;zSz;x ¼ A
0�1R2A�1; where

R ¼ diagðr1;r2; . . . ;rpÞ.

Proof of Theorem 1(a). To simplify the presentation, we set f tðyÞ ¼ f ðvt; yÞ. Assumption
3(iii) implies thatZ

Vð�1;tÞ

f tðyÞpðVtjyÞdVt ¼ 0 (22)

for y 2Ny0 . Substituting pðVtjyÞ ¼ pðvtjVt�1; yÞpðVt�1; yÞ into (22) and differentiating
under the integral sign, it follows from the Lebesgue dominated convergence theorem that

0 ¼

Z
Vð�1;tÞ

qf tðyÞ
qy

�����
y¼y0

pðV tjy0ÞdV t þ

Z
Vð�1;tÞ

f tðy0Þ
qpðvtjVt�1; yÞ

qy

� �0����
y¼y0

pðV t�1jy0ÞdV t

þ

Z
Vð�1;tÞ

f tðy0ÞpðvtjV t�1; y0Þ
qpðVt�1jyÞ

qy

� �0����
y¼y0

dVt. ð23Þ

Since

stðyÞ ¼ ½qpðvtjVt�1; yÞ=qy�½1=pðvtjV t�1; yÞ�, (24)

ARTICLE IN PRESS

20Recall that the linear combinations are chosen so as to normalize the variances to one, that is

a0iSx;xai ¼ b0iSz;zbi ¼ 1.
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eq. (23) can be rewritten as

0 ¼ Gðf Þ þ E½f tðy0Þstðy0Þ
0
� þ

Z
Vð�1;tÞ

f tðy0ÞpðvtjV t�1; y0Þ
qpðVt�1jyÞ

qy

� �0����
y¼y0

dVt. (25)

Now pðVt�1jy0Þ ¼ f
QN

n¼1pðvt�njV t�n�1; y0ÞgpðVt�N�1jy0Þ, and so it follows that

qpðV t�1jyÞ
qy

����
y¼y0

¼
XN

n¼1

qpðvt�njV t�n�1; yÞ
qy

����
y¼y0

1

pðvt�njVt�n�1; y0Þ

� �
pðVt�1jy0Þ

þ
YN
n¼1

pðvt�njV t�n�1; y0Þ
qpðVt�N�1jyÞ

qy

����
y¼y0

. ð26Þ

Using (24) and (26) in (25), we obtain

0 ¼ Gðf Þ þ
XN

n¼0

E½f tðy0Þst�nðy0Þ
0
�

þ

Z
Vð�1;tÞ

f tðy0Þ
YN
n¼0

pðvt�njVt�n�1; y0Þ
qpðVt�N�1jyÞ

qy

� �0����
y¼y0

dV t

¼ Gðf Þ þ
XN

n¼0

E½f tðy0Þst�nðy0Þ
0
� þ E f ðvt; y0Þ

q ln pðV t�N�1jyÞ
qy

� �
y¼y0

( )
. ð27Þ

Since the second term in (27) is bounded by Oð
PN

n¼0a
1�1=z�1=Z
n Þ ¼ Oð1Þ and the third term is

of order Oða1�1=z�1=ZNþ1 Þ by the mixing inequality, taking the limit as N !1 in (27) gives the
desired result. &

Proof of Theorem 1(b). By definition,

Cðf Þ ¼ lim
T!1

T�1
XT

t¼1

XT

k¼1

E½f ðvt; y0Þskðy0Þ
0
�. (28)

The conditional score vector, stðy0Þ is a martingale difference sequence with respect to
Ot�1, the s-algebra generated by V t�1. Therefore, E½f ðvt; y0Þskðy0Þ

0
� ¼ 0 for all k4t. Using

this result and Assumption 1 in (28), Cðf Þ becomes,

Cðf Þ ¼ lim
T!1

T�1
XT

t¼1

XT

n¼t

E½f ðvn; y0Þstðy0Þ
0
� ¼ lim

N!1

XN�1
n¼0

1�
n

N

� �
E½f ðvt; y0Þst�nðy0Þ

0
�

¼ lim
N!1

XN�1
n¼0

E½f ðvt; y0Þst�nðy0Þ
0
�,

where the last equality follows from the mixing inequality and the assumption thatP1
j¼0ja1�1=z�1=Zj o1. The desired result then follows from Theorem 1(a). &

Proof of Theorem 2. Part (i): From the definition of friðf Þ; i ¼ 1; 2; . . . ; pg and Theorem 1(b)

it follows that friðf Þ; i ¼ 1; 2; . . . ; pg are the eigenvalues of I
�1=2
y Gðf Þ0Sðf Þ�1Gðf ÞI

�1=2
y .

By construction I
�1=2
y Gðf Þ0Sðf Þ�1Gðf ÞI

�1=2
y is symmetric and rankfI

�1=2
y Gðf Þ0Sðf Þ�1Gðf Þ

I
�1=2
y g ¼ rankðGðf ÞÞ because both Sðf Þ�1 and I

�1=2
y are non-singular. The result then

follows directly.
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Part (ii): Using the martingale difference property of the score vector, it can be shown
that

lim
T!1

Var T�1=2
XT

t¼1

stðy0Þ

" #
¼ Iy.

From Theorem 1(b), it follows that V yðf Þ
�1
¼ Cðf Þ0Sðf Þ�1Cðf Þ. Therefore, the population

LRCCs between f ðvt; y0Þ and stðy0Þ are the solutions to jV�1y � r2Iyj ¼ 0. The result then
follows from Lemma A.1.

Part (iii): Part (a) follows trivially from V yðf 1Þ ¼ V yðf 2Þ and the definition of the LRCC.
Now consider part (b). From Dhrymes (1984, Proposition 65), V yðf 1Þ � V yðf 2Þ is psd if
and only if ½V yðf 2Þ�

�1 � ½V yðf 1Þ�
�1 is psd. Set M ¼ ½V yðf 2Þ�

�1 � ½V yðf 1Þ�
�1. From

Assumption 2, it follows that

M ¼ Gðf 2Þ
0Sðf 2Þ

�1Gðf 2Þ � Gðf 1Þ
0Sðf 1Þ

�1Gðf 1Þ. (29)

Since Iy is a symmetric positive definite matrix, there exists non-singular matrix N such
that Iy ¼ NN 0. Given the properties of N it follows that M is psd if and only if
N�1MðN�1Þ0 is psd. By definition, fr2i ðf jÞ; i ¼ 1; 2; . . . ; pg are the eigenvalues of
N�1Gðf jÞ

0Sðf jÞ
�1Gðf jÞðN

�1Þ
0. Therefore, it follows from Magnus and Neudecker (1991,

Theorem 9, p. 208) that if M is psd then

r2i ðf 2ÞXr2i ðf 1Þ for i ¼ 1; 2; . . . ; p. (30)

To establish that the inequality is strict for at least one i, we consider traceðN�1MðN�1Þ0Þ.
From the definition of the LRCC, it follows that

tracefN�1MðN�1Þ0g ¼
Xp

i¼1

r2i ðf 2Þ �
Xp

i¼1

r2i ðf 1Þ.

If N�1MðN�1Þ0 is psd then tracefN�1MðN�1Þ0g40 and so, using (30) it must follow that
r2i ðf 2Þ4r2i ðf 1Þ for at least one i. This proves the ‘‘if’’part; the ‘‘only if’’ is easily deduced by
reversing the sequence of the logic and so is omitted for brevity. &

Proof of Theorem 3. We define DT ðc; crÞ ¼ RMSCðcÞ � RMSCðcrÞ. From Definition 2(ii),
we have that Vyðiqmax

Þ ¼ V yðcrÞ and so it suffices to consider DT ðc; crÞ for two choices of c:
(i) c such that V yðcÞ ¼ V yðcrÞ; (ii) c such that V yðcÞ � VyðcrÞ ¼MðcÞ where MðcÞ is a non-
null psd matrix.

Case (i): c such that VyðcÞ ¼ V yðcrÞ.
In this case, we have

DT ðc; crÞ ¼ ½ln jV y;T ðcÞj � ln jVyðcÞj� � ½ln jV y;T ðcrÞj � ln jV yðcrÞj�

þ kðjcj;TÞ � kðjcrj;TÞ. ð31Þ

By Assumption 4(iii), we have tTDT ðc; crÞ ¼ Opð1Þ þ tT ½kðjcj;TÞ � kðjcrj;TÞ�. Assumption
4(i) states that jcj4jcrj and so it follows from Assumption 4(iv) that limT!1tT

½kðjcj;TÞ � kðjcrj;TÞ� ¼ þ1. Thus, tTDT ðc; crÞ is positive with probability one in the limit
as T !1.

Case (ii): c such that V yðcÞ � V yðcrÞ ¼MðcÞ where MðcÞ is a non-null psd matrix.
From Lemma A.1, it follows that ln jV yðcÞj � ln jV yðcrÞj ¼ mðc; crÞ; where

mðc; crÞ : C � C! ½0;þ1Þ. From Assumptions 4(iii) and (iv), it follows that:

ARTICLE IN PRESS
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ln jV y;T ðcÞj � ln jV y;T ðcrÞj ¼ mðc; crÞ þ opð1Þ. Therefore, DT ðc; crÞ is positive with prob-
ability one in the limit as T !1. Taken together, the results in Cases (i) and (ii) yield the
desired result. &

Proof of Theorem 4. From Assumption 5, it follows that T1=2ðŷT � y0Þ!
d

Nð0; ½O0z;xO
�1
z;zOz;x�

�1Þ. Now consider V ¼ Ox;zO�1z;zOz;x. Define V1 ¼ O01;xO
�1
z;zO1;x. From

Hall and Peixe (2003, equation (9)), it follows that

V ¼ V 1 þ G0FG, (32)

where F ¼ ðO2;2 � O2;1O�11;1O1;2Þ
�1 and G ¼ O2;x � O2;1O�11;1O1;x. It follows from (17) that

G ¼ 0 and so V ¼ V1 which gives the desired result. &

Proof of Theorem 5. Part (i): From Staiger and Stock (1997, Theorem 1(b)), it follows that
ŝ2T ¼ Opð1Þ. Now consider ln½jAT j� where AT ¼ BT DT B0T , BT ¼ T�1X 0Z, and
DT ¼ ðT

�1Z0ZÞ�1. Partition BT and DT as follows:

BT ¼
B1;1 B1;2

B2;1 B2;2

" #
; DT ¼

D1;1 D1;2

D2;1 D2;2

" #
, (33)

where Bi;j is pi � qj, Di;j is qi � qj for i; j ¼ 1; 2 (and the T subscript on Bi;j and Di;j is
suppressed for notational simplicity). Using this partition, it follows that

AT ¼
A1;1 A1;2

A2;1 A2;2

" #
, (34)

where

Ai;j ¼ Bi;1D1;1B
0
j;1 þ Bi;1D1;2B0j;2 þ Bi;2D2;1B

0
j;1 þ Bi;2D2;2B

0
j;2 (35)

and we have suppressed the T subscript on the submatrices of AT . From Dhrymes (1984,
Proposition 30), it follows that

jAT j ¼ jA2;2jjA1;1 � A1;2A�12;2A2;1j. (36)

The order of jAT j can therefore be deduced from (36) once the orders of fAi;jg are known.
Assumption 5 implies that Di;j ¼ Opð1Þ, and Scenario I implies that Bi;j ¼ OpðT

�1=2Þ.
Therefore, Ai;j ¼ OpðT

�1Þ. Define ~AT ¼ TAT , and ~Ai;j ¼ TAi;j. Notice that ~AT ¼ Opð1Þ by
construction. We now show that ~AT is positive definite with probability one in the limit as
T !1. To this end, we write ~AT ¼ ~BT DT

~B
0

T where ~BT ¼ T1=2BT , and consider the
following quadratic form: v0 ~AT v ¼ fv0ðT1=2BT ÞgDT fðT

1=2B0T Þvg ¼ v0 ~BT DT
~B
0

T v, for some
non-zero vector v. Since DT is positive definite by construction, we need to consider
ðT1=2B0T Þv ¼

~B
0

T v.

In order to do this, we express x1;t and x2;t in the matrix form as follows:

X i ¼ Z1P0i;1;T þ Z2P0i;2;T þ Ei for i ¼ 1; 2,

where X i and Ei are T � pi, Zi is T � qi, for i ¼ 1; 2. Now let X ¼ ½X 1 X 2� and
Z ¼ ½Z1 Z2�, then BT can be written as

BT ¼ T�1X 0Z ¼
T�1X 01Z1 T�1X 01Z2

T�1X 02Z1 T�1X 02Z2

" #
¼

B1;1 B1;2

B2;1 B2;2

" #
.
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Each block of BT can be written as

Bi;j ¼ Pi;1;T ðT
�1Z01ZjÞ þPi;2;T ðT

�1Z02ZjÞ þ T�1E0iZj

for i; j ¼ 1; 2. Then each block of ~BT , ~Bi;j (suppressing the T again), is given by ~Bi;j ¼

T1=2Bi;j for i; j ¼ 1; 2.
Using the assumptions of Scenario I, Pi;j;T ¼ T1=2Ci;j, we can conclude that

~B
0

T v�!
d C1;1O1;1 þ C1;2O2;1 C1;1O1;2 þ C1;2O2;2

C2;1O1;1 þ C2;2O2;1 C2;1O1;2 þ C2;2O2;2

" #0
vþ ~B

0

normalv,

where ~Bnormal is a matrix whose elements are normally distributed. Now let

C ¼
C1;1 C1;2

C2;1 C2;2

" #
.

Then we can write ~B
0

T v�!
d
ðCOz;zÞ

0vþ ~B
0

normalv. By construction, O is positive definite.
Hence if the matrix C is of full rank (i.e. rankðCÞ ¼ p), ~AT is positive definite with
probability 1.

Returning to AT , if we substitute in (36) for Ai;j in terms of ~Ai;j then we obtain
jAT j ¼ T�pj ~AT j ¼ OpðT

�pÞ, where the last equality follows from the properties of ~AT

derived above. The desired result then follows from (21).
Part (ii): We first consider ln½jAT j�. The analysis evolves along similar lines to the proof

of part (i) and uses the partitions defined therein. Once again, Assumption 5 implies that
Di;j ¼ Opð1Þ. Scenario II implies that B1;j ¼ Opð1Þ and B2;j ¼ OpðT

�1=2Þ. Therefore, it
follows from (35) that A1;1 ¼ Opð1Þ, A1;2 ¼ OpðT

�1=2Þ, A2;1 ¼ OpðT
�1=2Þ and A2;2 ¼

OpðT
�1Þ. Define

ĀT ¼
Ā1;1 Ā1;2

Ā2;1 Ā2;2

" #
, (37)

where Ā1;1 ¼ A1;1, Ā1;2 ¼ T1=2A1;2, Ā2;1 ¼ T1=2A2;1 and Ā2;2 ¼ TA2;2.
Now we consider the properties of ĀT . Note ĀT ¼ Opð1Þ by construction. We now show

that ĀT is positive definite with probability one in the limit as T !1. To do this, we
define

B̄T ¼
B1;1 B1;2

T1=2B2;1 T1=2B2;2

" #
.

Then, ĀT can be written as

ĀT ¼ B̄T DT B̄
0

T .

By the same logic as in part (i), we need to consider B̄
0

T v. Each block of B̄T is

B̄1;j ¼ P1;1;T ðT
�1Z01ZjÞ þP1;2;T ðT

�1Z02ZjÞ þ T�1E01Zj,

B̄2;j ¼ T1=2P2;1;T ðT
�1Z01ZjÞ þ T1=2P2;2;T ðT

�1Z02ZjÞ þ T�1=2E02Zj ,

for j ¼ 1; 2. Using the assumptions in Scenario II, these can be rewritten as

B̄1;j ¼ P1;1;T ðT
�1Z01ZjÞ þ T�1=2C1;2ðT

�1Z02ZjÞ þ T�1E01Zj ,
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B̄2;j ¼ C2;1ðT
�1Z01ZjÞ þ C2;2ðT

�1Z02ZjÞ þ T�1=2E02Zj,

for j ¼ 1; 2. From the expressions above, it can be easily concluded that

B̄
0

T v�!
d
ðC̄Oz;zÞ

0vþ B̄
0

normalv,

where

C̄ ¼
P1;1 0

C2;1 C2;2

" #
.

By the same logic as in part (i), we can conclude that if the matrix C̄ is of full rank (i.e.
rankð½C2;1 C2;2�Þ ¼ p2), ĀT is positive definite with probability 1 and Opð1Þ.
Substituting for Ai;j in (36), we obtain jAT j ¼ T�p2 jĀT j ¼ OpðT

�p2 Þ, where the last
equality follows from the properties of ĀT derived above.
We now show that ŝ2T ¼ Opð1Þ. By definition, we have

T ŝ2T ¼ u0u� 2u0X ðŷT � y0Þ þ ðŷT � y0Þ
0X 0X ðŷT � y0Þ. (38)

From Assumption 5(v), it follows that u0u ¼ OpðTÞ, and from Assumptions 5(iii) and (v), it
follows that u0X ¼ OpðTÞ. Therefore, we focus on ŷT � y0. Let ŷT ;i be the 2SLS estimator
of ŷ0;i. Using the notation from the proof of part (i), ŷT � y0 ¼ ðBT DT B0T Þ

�1BT DT Z0u,
and so it follows that

ŷT ;1 � y0;1

ŷT ;2 � y0;2

" #
¼

H1;1 H1;2

H2;1 H2;2

" #
B1;1 B1;2

B2;1 B2;2

" #
D1;1 D1;2

D2;1 D2;2

" #
Z01u

Z02u

" #
, (39)

where, from Dhrymes (1984, Proposition 31), H1;1 ¼ ðA1;1 � A1;2A
�1
2;2A2;1Þ

�1, H1;2 ¼

�A�11;1A1;2ðA2;2 � A2;1A
�1
1;1A1;2Þ

�1, H2;1 ¼ �A�12;2A2;1ðA1;1 � A1;2A�12;2A2;1Þ
�1, H2;2 ¼ ðA2;2�

A2;1A
�1
1;1A1;2Þ

�1. Using the order statements given above, it can be shown that
H1;1 ¼ Opð1Þ, H1;2 ¼ OpðT

1=2Þ, H2;1 ¼ OpðT
1=2Þ and H2;2 ¼ OpðTÞ. Multiplying (39), we

obtain

ŷT ;1 � y0;1 ¼
X2
i¼1

X2
j¼1

X2
k¼1

H1;iBi;jDj;kZ0ku, (40)

ŷT ;2 � y0;2 ¼
X2
i¼1

X2
j¼1

X2
k¼1

H2;iBi;jDj;kZ0ku. (41)

Using the order statements given above, it follows from (40)–(41) that ŷT ;1 � y0;1 ¼
OpðT

�1=2Þ and ŷT ;2 � y0;2 ¼ Opð1Þ. Using these order statements along with the others
above, it follows from (38) that ŝ2T ¼ Opð1Þ. The desired result then follows from (21).

Part (iii): It follows from Theorem 4 that ŷT � y0 ¼ OpðT
�1=2Þ. Furthermore, from

Assumption 5, we have that X 0u ¼ OpðTÞ, X 0X ¼ OpðTÞ and T�1u0u ¼ s20 þ opð1Þ.
Therefore, it follows from (38) that ŝ2T!

p
s20. Now consider ln½jT�1X 0Z

ðT�1Z0ZÞ�1T�1Z0X j�. Since the lnð:Þ is a continuous function and jT�1X 0Z

ðT�1Z0ZÞ�1T�1Z0X j is a continuous function of the elements of T�1X 0Z

ðT�1Z0ZÞ�1T�1Z0X , it follows from Assumption 5, Slutsky’s Theorem and (32) that
ln½jT�1X 0ZðT�1Z0ZÞ�1T�1Z0X j�!

p
ln½jO01;xO

�1
1;1O1;xj�, which completes the proof. &
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Proof of Theorem 6. From Theorem 5(i)–(ii), it follows that RMSCðcÞ ! 1 as T !1

with probability 1 for all c 2 CI [ CII. From Theorem 5(iii), RMSCðcÞ ¼ Opð1Þ for

c 2 CIII. Therefore, limT!1PðĉT 2 CIIIÞ ¼ 1. The rest of the proof follows by the same
argument as in the proof of Theorem 3. &
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