Automatic segmentation of lumbar vertebrae on digitised
radiographs using linked active appearance models
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Abstract. Manual point placement for vertebral morphometry is time-consuming and imprecise, and morphometric
methods for vertebral fracture diagnosis are unreliable. Automatic computer determination of the detailed verte-
bral shape could enable more powerful quantitative classifiers of osteoporotic vertebral fracture. The shape and
appearance of vertebrae on 250 digitised lumbar radiographs were statistically modelled, using a sequence of active
appearance models (AAMs) of overlapping triplets of vertebrae. To automatically locate the vertebrae, the sequence
of models was matched to previously unseen scans. Accuracy results (0.64mm mean point-to-line error) were found
to be similar to previously published results for dual-energy X-ray absorptiometry (DXA), but a low fracture preva-
lence meant that the shape models were undertrained for the few moderate and severe fractures. However mild
fractures were fitted with good accuracy (mean 0.84mm). The results confirm the feasibility of substantially au-
tomating vertebral morphometry measurements on radiographs, despite the projective effects of the divergent X-ray
beam. Use of the shape and appearance parameters of the models could in future provide a quantified form of some
of the more subtle aspects of visual or semi-quantitative expert reading of vertebral fractures.

1 Introduction

Osteoporosis is a progressive skeletal disease characterised by a reduction in bone mass, resulting in an increased
risk of fractures. Vertebral fractures are the most common, and occur in younger patients. The presence of vertebral
fractures significantly increases the risk of further vertebral and non-vertebral fractures [1,2]. The accurate identifi-
cation of prevalent vertebral fractures is therefore clinically important, and the detection of incident vertebral fractures
is important in evaluating new osteoporosis therapies. However there is no precise definition of exactly what consti-
tutes a vertebral fracture, though a variety of methods of describing them have been developed [3]. These include
semi-quantitative methods [4] involving some subjective judgement by an expert radiologist, and fully quantitative
morphometric methods [5, 6]. The latter require the manual annotation of six (or more) points on each vertebra. This
annotation is time consuming, and subtle shape information is lost in the reduction of shape to 6 points. Our ultimate
aim is to define more reliable quantitative fracture classification methods based on a complete definition of the verte-
bra’s shape and the surrounding texture. The first step must therefore be to achieve a reliable automatic segmentation.
Some success in automatically locating vertebrae has been reported by several authors [7—10]. Most previous work
on model-based vision applied to vertebrae has used DXA images, though [9, 10] used lumbar radiographs. DXA has
many advantages, such as low radiation dose, and a lack of projective effects, but despite the growing use of DXA for
vertebral fracture assessment, radiographs (or computed radiography) remain the definitive means of diagnosis.

We have already developed Active Appearance Model (AAM) [11, 12] based algorithms for segmenting vertebrae, and
successfully applied these to DXA images [8,13]. The purpose of this study was to assess the accuracy of this approach
to segmenting vertebrae on radiographs. Although radiographs typically have better resolution and signal to noise ratio,
the shape and appearance of the vertebrae is more complex due to projectional parallax effects. The divergent beam
used in conventional radiography causes a variable scaling across the image, and can cause severe apparent tilting of the
vertebral bodies. Also as the more extreme vertebral bodies tend to be obliquely irradiated, their superior and inferior
endplates typically appear as elliptical rims, rather than the more linear edge typical of DXA. Figure 1 shows a typical
lumbar radiograph, with some contrast enhancement to ensure all vertebrae are simultaneously visible.

2 Materials and Methods

2.1 Data

The images used were obtained from radiographs collected in a previous epidemiological study. We have thoracic
and lumbar radiographs, but have initially just used lumbar radiographs as these are the more straightforward case
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Figure 1. Lumbar radiograph. a) shows the raw image (contrast enhanced); b) shows the automatically located
vertebral contours superimposed.

due to less clutter (e.g. from lungs and ribs), and a lower fracture prevalence. The dataset consisted of 250 lumbar
radiographs, digitised using a Vidar ! Diagnostic Pro Advantage digitiser at 300dpi and 12 bit intensity resolution.
This Vidar digitiser allows a variety of analogue to digital conversion mappings. As there is typically a large range of
brightness/contrast at different vertebral levels in the radiographs it was important to select a transform that preserved
information across a large dynamic range. The default logarithmic transform did not work well on these images,
as it typically “washed out” the often brighter vertebrae in the lower lumbar, whereas using a more nearly linear
transform had the opposite effect of losing information in the typically darker upper portion (T12/L1). After some
initial experimentation it appeared that the “power 3” 2 option gave the best compromise performance.

The digitised images were manually annotated using an in-house tool, by an experienced radiograper, supervised by
the first author. Each vertebral contour uses 60 points around the vertebral body with 8 further points around the
pedicles. The endplate rims were modelled using a quasi-elliptical shape, rather than the single edge previously used
for DXA images. No images were included where the projectively induced tilting was so severe that lumbar vertebrae
appeared to interpenetrate each other (with the occasional exception of the extreme T12/L1 or L4/L5 pairs). Such
images essentially represent a setup error, and are extremely difficult to read, even by an expert radiologist, and lead to
unreliable diagnosis. Figure 2 shows a zoomed in view of L3 with its shape model points displayed.

2.2 AAM approach

The method of [13] was used to fit a sequence of three AAMs composed of overlapping vertebral triplets covering the
spine from L4 up to T12. Note that LS5 is not normally used in vertebral fracture assessment as it is very rare for L5 to
suffer osteoporotic fracture, and it may be obscured by the iliac crest. The three triplet models used were T12/L1/L2,
L1/L2/L3 and L2/L.3/L4. Results on DXA [8, 13] indicate that triplets of vertebrae are the optimal structure to model.
If the modelled structure is too large then it is more prone to undertraining problems and latent non-linearities, and
does not cope with local displacement pathologies such as scoliosis; whereas a smaller structure is too unconstrained.
The algorithm of [§8] combines the results of multiple sub-models with overlapping regions by fitting the models in a
sequence, and using the constrained AAM [14] with constraints associated with the overlapping points. The extension
to this algorithm in [13] used a “best-fit first” heuristic to obtain a close-to-optimal ordering of the model fitting
sequence. In effect each (non-extreme) vertebrae is fitted using the triplet sub-model in which it is central, and the
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Figure 2. Zoomed in view of L3 showing its shape model points
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Figure 3. L2 triplet 3SD variation in first (left) and second (right)shape modes

neighbours provide helpful constraints and linkage to the other sub-models. See [8] for details. Each triplet sub-model
has its own affine pose parameters. Figure 3 shows the variation in the first two shape modes of the L2-centred triplet.

T12 was included to form the uppermost L1-centred triplet, although there were some lumbar radiographs in which
T12 was not fully visible. Nevertheless in general T12 should be visible on a lumbar radiograph, and results from DXA
lead us to believe that it is helpful in fitting L1 to also include the neighbouring T12 in the model. In fact sometimes
T12 is better visualised on the lumbar radiograph than on the thoracic. There was often a high variation in brightness
and contrast across the different vertebral levels. For example T12 or even L1 were often very dark, and could often not
be seen without some local contrast optimisation, whereas L4 typically had an over-bright “washed-out” appearance.
Figure 1 is typical in this respect. Another advantage of decomposing the overall shape into sub-structures is that the
texture normalisation can be better tuned to the local brightness and contrast, where there is substantial variation in
these across the image.

As there is little useful information inside the vertebral body we used profile samplers for the AAM texture model,
rather than the triangulated region samplers classically used with an AAM. The profile samplers extracted the gradient
perpendicular to the local shape, and this was non-linearly renormalised using a sigmoidal function tuned to the mean
absolute gradient [15] over the entire profile set. We used a 4-level multi-resolution pyramid search, to extend the
convergence zone, with 8 samples either side of the shape. The finest level step size was 0.375mm, and the images were
pre-smoothed up to a resolution of 0.1694 mm per pixel (i.e. one level of Gaussian pyramid up-smoothing). Thus the
profile step size represents about 2 pixels (at each level of the pyramid). The extracted gradient is Gaussian smoothed
across the local tangent, with a smoothing window equal to the step length. We also experimented with a profile
sampler which concatenated this profile with a similar profile sampler extracting a measure of image corner strength



Normal Fractured
Profile Mean Median 75%ile %ge errors | Mean Median 75%ile = %ge errors
Sampler Acc Acc Acc over 2mm | Acc Acc Acc over 2mm
Gradient Only 0.71 0.46 0.89 6.2% 1.11 0.62 1.34 14.1%
Gradient & Corner | 0.64  0.43 0.82 4.6% 1.06  0.61 1.32 13.3%

Table 1. Search Accuracy Percentiles by Fracture Status for the two profile samplers used

(“cornerness”), as in [15]. As the corners of the vertebrae are of physical interest in standard morphometry, it was
thought that including a cornerness measure in the AAM might improve the accuracy at points of important diagnostic
interest. Furthermore the projective parallax and oblique beam orientation tend to introduce curved features in the
region of the profile. The cornerness measure has the further advantage that it implicity includes feature information
from a somewhat larger region, as the measure is based on the structure tensor (VIVIT) 3, which is Gaussian smoothed
over a square region with semi-width twice the profile step length. See [15] for details.

2.3 Experiments

Leave-25-out tests were performed over the 250 images. As AAMs perform local search an approximate initialisation
somewhere in the vicinity of the vertebrae is needed. When the algorithm is run interactively in an associated prototype
clinical tool, the clinician initialises the solution by clicking on the appoximate centres of each vertebra. A global shape
model is then used to give an approximate starting solution with best least squares fit of its vertebral centres to the input
points. The same method was used in this study, and on each experiment the user imprecision was simulated by
using the known equivalent marked points and adding random offsets to them. These were zero-mean Gaussian errors
with SD of 2mm in the y-direction (along the spine) and 3mm in the x-direction. Twenty replications (i.e. random
initialisations) of each image were performed.

3 Results

The accuracy of the search was characterised by calculating the absolute point-to-line distance error for each point on
the vertebral body. Table 1 compares results for the two profile samplers used with the data separated into points within
normal or fractured vertebrae. Each row gives the mean, median and 75th percentiles, and the percentage of point
errors in excess of 2mm. The threshold of 2mm would be around 2.5 SDs of manual precision, and can be viewed as a
point failure indicator.

Table 1 shows that the results are worse for fractured than normal vertebrae. A more detailed examination by fracture
grade gives mean accuracies of 0.84mm, 1.79mm and 3.35mm for fracture grades 1, 2 and 3 * respectively (for the
gradient and corner sampler). However there was a low fracture prevalence in the lumbar region in the sample, and
these figures are based on 17 grade 1 fractured vertebrae, 2 grade 2 and only a single grade 3 fracture.

The more sophisticated profile sampler including a corner measure appears to produce a small improvement in accuracy
of around 0.07mm. This represents a 10% reduction in mean error. We confirmed that this difference is statistically
significant at the 1% level by bootstrap resampling of the differences in errors between the two profiles. This en-
ables the derivation of a symmetric (in probability) 99% bootstrapped confidence interval on the mean difference of
[0.048,0.082]. As this interval does not span zero, the difference is significant at the 1% level.

4 Discussion

4.1 Overall Accuracy Performance

The mean segmentation accuracy of 0.64mm on normal vertebrae is comparable to manual precision in point placement,
and to previous results on DXA images [13]. Over 95% of points in normal vertebrae are located to within 2mm of
the manually annotated outline. However the dataset contained a very low prevalence of fractured vertebrae, and
so the shape models are evidently undertrained, for fractures above grade 1. Therefore within the limitations of the
small fractured sample it appears that the results deteriorate with increasing fracture grade. However given previous
reasonable accuracy achieved on fractured vertebrae with DXA images [13], we believe that this problem could be
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solved by adding more fractured training examples. The mean accuracy is better than other comparable cited figures
in the literature [9, 10]. For example de Bruijne et al [10] obtained a mean point-to-contour accuracy of 1.4mm on
lumbar radiographs using shape particle filtering, which is more than double the size of error achieved by our AAM
approach. On the other hand this was for a fully automatic search with no approximate manual initialisation such as
we use. Howe et al [9] state that 68% of points on lumbar radiographs were located to within 25 pixels. We understand
the dataset used had a resolution of 0.174mm per pixel, so this is equivalent to a 68th percentile of 4.35mm, clearly
substantially worse than our 75th percentile of 0.85mm. However again Howe ef al were using a completely automatic
method, with the AAM being initialised to the best template match found by an initial Generalised Hough Transform.

4.2 Conclusion

In conclusion the results confirm the feasibility of substantially automating vertebral morphometry measurements on
radiographs, although the shape models need better training on fractured vertebrae. Within the limitations of the
dataset, the projective effects of spinal radiography do not appear to present any substantial problem to an AAM-based
approach.

4.3 Future Work

We intend to extend the work to the thoracic spine, which tends to contain more osteoporotic fractures. Use of the shape
and appearance parameters of the fitted models could in future provide a means of classifying vertebrae as normal,
fractured , or otherwise deformed. Current simplistic quantitative morphometric methods are unreliable, especially
for mild fractures, but the appearance parameters may provide a quantified form of some of the more subtle aspects
of visual or semi-quantitative expert reading of vertebral fractures. We therefore view obtaining a reliable automatic
segmentation as the first step in achieving a Computer Aided Diagnosis (CAD) system for vertebral fracture.
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