Kidney Tracking Project



Dynamic MR renography has broad clinical applications and is becoming a viable method for characterization of the renal tissue, but suffers from respiratory motion that limits analysis and interpretation. Since each examination yields at least 10-20 serial 3D images of the abdomen, manual registration is prohibitively labor-intensive. An effective framework for registration and segmentation is necessary to analyze these data sets. Our purpose is to develop and validate a computer-aided iterative framework for registration and segmentation of kidney structures on dynamic contrast-enhanced 3D (4D) MR renography. Without satisfactory image registration, segmentation algorithms fail. A good registration facilitates tissue segmentation because it allows the algorithm to exploit multidimensional voxel data. On the other hand, a robust segmentation of intrarenal regions (e.g. renal cortex, medulla, and collecting system) for each time series can facilitate accurate image registration.


The same slice of kidney at different times with and without contrast:




Project Aims


        To advance and further develop computer-aided iterative method for image registration which will enable segmentation of dynamic 3D MR renography.

        The approach will deal with contrast changes and movements between different temporal sequences.

        Investigate use of rigid vs. non-rigid registration on these data sets