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Abstract: A numerical algorithm based on a shock-capturing scheme on adaptive moving
meshes is described. Three-dimensional dynamical adaptive meshes are generated as the
result of solving a variational problem. The governing equations are solved in a moving coordi-
nate system therefore the method does not require any interpolation of the solution from one
mesh onto another one. The developed algorithm can efficiently be used for the simulation of
non-stationary supersonic flows in the atmosphere. As an example, it is applied to the study of
the Tunguska meteorite hypersonic impact. For the first time this problem is modelled from the
entrance moment up to the interaction with the Earth atmosphere in a three-dimensional
formulation. A reasonable correspondence with the data of the observations is obtained. The
implementation of the developed numerical algorithm reduces the computational time by
the factor of four.

Keywords: adaptive mesh, interpolation-free method, shock-capturing scheme, grid gener-
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1 INTRODUCTION

Numerical simulation of flows with strong shock
waves and other possible high gradients of the
solution requires the use of fine meshes for an appro-
priate resolution. Simple algorithms based on uni-
form meshes might be time-consuming because of
a high number of unknown grid variables. The situ-
ation is aggravated for multi-dimensional problems.
A standard way to an efficient resolution is related
to the implementation of meshes adaptive to the
areas of the high gradients (see e.g. [1]). Meanwhile,
for non-stationary problems such algorithms become
much more complicated because, shock waves move
in space and interact with each other. One possible
way (see e.g. [2–6]) to overcome this problem is
based on a mesh reconstruction each time the

solution ‘substantially’ changes. The realization of
this approach requires interpolation of the solution
from one mesh onto another mesh. This procedure
might introduce an additional error and be time-
consuming. An alternative strategy is based on
interpolation-free methods (see e.g. [7–13]). Most of
these works are related to one- and two-dimensional
problems. In the current paper, a interpolation-free
algorithm [14, 15] based on the use of a moving coor-
dinate system is developed for modelling the hyperso-
nic non-stationary motion of bodies in the Earth
atmosphere.
The developed algorithm is applied to the study of

the Tunguska meteorite impact. This event happened
in 1908 in Siberia, 100 years ago. Up to now it arises
a high interest from many researches (see e.g.
[16–25]). In particular, the nature of the Tunguska
meteorite is the subject of intensive discussions
[16, 18, 20, 22, 24]. The Tunguska impact caused
vast destruction of the forest in the area of about
108 m2 and was accompanied by explosion-like
phenomena. The data of the observation were limited
by the fallen trees and description of some witnesses.
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Thus, mathematically the problem on the Tunguska
meteorite study can be considered as a typical inverse
problem. Many papers have been related to the
investigation of this problem including numerical
simulation of different scenarios of the impact. In
reference [17], the problem was approximately
solved in local one-dimensional directions. Mean-
while, there have not been yet any publications
based on a three-dimensional simulation of the
entire process from the entrance and up to the inter-
action with the Earth surface. In the current paper,
the entire process is studied in a non-stationary
three-dimensional formulation and simulated in a
unified computation. The computational results on
the interaction between the blow shock wave and
the Earth surface are compared against the obser-
vation data on the fallen forest.

2 GOVERNING EQUATIONS

First, let the Euler equations for a compressible gas in
the Cartesian coordinate system fyi, tg, i ¼ 1, 2, 3 be
written as follows

Ut þ
X3
1

Fi
yi ¼ Q ð1Þ

where U ¼ (r, ru1, ru2, ru3, E)T, Fi ¼ (rui, ru1ui þ

pd1i, ru2ui þ pd2i, ru3ui þ pd3i, (E þ p)ui)
T, Q ¼ (0,

rg1, rg2, rg3, rg . u, 0)T, E ¼ r(e þ 0.5u . u), p ¼ p(r,
e), dij is the Kronecker symbol.
In equation (1), r is the density; u ¼ (u1, u2, u3)

T is
the velocity; e is the specific internal energy, E is the
total internal energy, p is the pressure, g ¼ (g1, g2,
g3)

T is the gravity vector.
To introduce a local moving coordinate system, let

the set of equations (1) in an arbitrary non-singular
curvilinear coordinate system (t, j): j ¼ j(t, y), t ¼ t
preserving the rigorous conservative form be rewrit-
ten as follows

@

@t
ðÛÞ þ

X3
i¼1

@

@ji
ðF̂iÞ ¼ Q̂ ð2Þ

here

Û ¼
U

J
; F̂i ¼ ĵitU þ

X3
1

ĵiyjF
j; Q̂ ¼

Q

J

ĵit ¼
jit
J
; ĵiyj ¼

jiyj

J
; J ¼ detkjiyjk ði; j ¼ 1; 2; 3Þ

In numerical solution of equation (2) it is natural to
demand that a uniform flow U ¼ const must be a

partial solution of this set of equations for any non-
singular coordinate system ifQ ¼ 0. This requirement
results in the following set of equations called the
geometric conservation laws [7]

@

@t

1

J

� �
þ
X3
1

@

@jj
ðĵ

j
t Þ ¼ 0;

@

@j j
ðĵ

j

yi
Þ ¼ 0ði ¼ 1; 2; 3Þ ð3Þ

Conditions (3) imply that the constant solution of
equation (2) is invariant with respect to the coordi-
nate transformations. To satisfy these requirements
the Jacobian of the transformation to the new coordi-
nates is to be determined immediately from the con-
servation laws (3) rather than by the formula J ¼
detkjyj

i
k [14].

3 FINITE-DIFFERENCE APPROXIMATION

To approximate the governing equations, the UNO-
type (uniformly non-oscillatory) scheme [26, 27] is
used. This scheme is of the second-order in both
space and time variables. The approximation of set
(2) is realized via the ‘predictor-corrector’ algorithm.
A rectangular uniform grid jijk

l can be used in the
new variable j

jlijk ¼ ih1; j
2
ijk ¼ jh2; j

3
ijk ¼ jh3

i ¼ 0; . . . ;N1; j ¼ 0; . . . ;N2; k ¼ 0; . . . ;N3

where hl ¼ 1/Nl, l ¼ 1, 2, 3, and Nl is the number of
computational cells along an lth direction.
The rectangular uniform grid jijk

l maps onto a cur-
vilinear grid: yijk

l ¼ yijk
l (jijk

1 , jijk
2 , jijk

3 , t), (l ¼ 1, 2, 3) in
the physical domain.
The finite-difference approximation of the set (2)

on the uniform rectangular grid jijk
l reads as follows

Vijk

Ûnþ1
i;j;k � Ûn

i;j;k

t
þ ðF̂1Sj1Þiþ1=2;j;k

� ðF̂1Sj1 Þi�1=2;j;k

þ ðF̂2Sj2 Þi;jþ1=2;k
� ðF̂2Sj2Þi;j�1=2;k þ ðF̂3Sj3 Þi;j;kþ1=2

� ðF̂3Sj3 Þi;j;k�1=2
¼ Q̂i;j;k

where Vi,j,k is the volume of a computational cell
(i, j, k), (Sj1)i+1/2,j,k ¼ h2h3, (Sj2)i,j+1/2,k ¼ h1h3, and
(Sj3)i,j,k+1/2 ¼ h1h2 are the areas of the corresponding
faces of the cell, and Dt is the time step. The function
Ûijk

n sought and the source terms Q̂ijk are calculated
at the centres of computational cells, and fluxes
F̂i+1/2,j,k
1 , F̂i,j+1/2,k

2 , F̂ i,j,k+1/2
3 , at the centres of the

corresponding faces.
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The time approximation is organized in the ‘pre-
dictor–corrector’ form. To simplify formulas the
case where the solution varies only along one coordi-
nate is considered

~U
nþ1

ijk ¼ Un
ijk �

Dt

h1
ðF̂1ðU�

iþ1=2;j;kÞ � F̂1ðUþ
i�1=2;j;kÞÞ

where Uiþ1/2,j,k
2 ¼ Uijk

n
þ 0.5dUijk, Ui21/2,j,k

þ ¼ Uijk
n 2

0.5dUijk, and dUijk is the limited variation first intro-
duced by Kolgan [28]

dUijk ¼ minmod
ðUiþ1;j;k �Ui;j;k;Ui;j;k �Ui�1;j;kÞ

h1

minmodðx; yÞ ¼
def minðjxj; jyjÞ if x � y 5 0

0 if x � y , 0

�

Then, the ultimate solution is obtained as follows

Unþ1=2;�
iþ1=2;j;k ¼ 0:5ð ~U

nþ1

i;j;k þ 0:5dUijk þU�
iþ1=2Þ

Unþ1=2;þ
i�1=2;j;k ¼ 0:5ð ~U

nþ1

ijk � 0:5dUijk þUþ
i�1=2;j;kÞ

Unþ1
ijk ¼ Un

ijk �
Dt

h1
F̂1 Unþ1=2;�

iþ1=2;j;k

� �
� F̂1 Unþ1=2;þ

i�1=2;j;k

� �� �

Thus, one has an opportunity to solve the governing
equations on a rectangular uniform mesh and separ-
ate this procedure from the grid generation. As a
result, one has two domains: the computational and
the physical. In the computational domain the mesh
is uniform and fixed, while in the physical domain
one has a dynamical curvilinear grid. The extension
of the approach to the Navier–Stokes equations can
be done without any substantial modifications.

4 GRID GENERATION

The new variables ji ¼ ji(y, t), (i ¼ 1, 2, 3) should be
chosen in such a way that the solution U ¼ U(j1, j3,
j3, t) does not have severe gradients. In turn, the
inverse transform from the new variables to the orig-
inal Cartesian coordinates should also be smooth to
avoid any singularities. Hence, the adaptive grid
should be smooth and orthogonal enough. It is
clear that it is possible to fully satisfy all these require-
ments only in trivial cases. Thus, the challenge is to
find an appropriate transformation of the coordinates
to provide a trade-off between the desired properties.
To solve the described abovemulti-objective optim-

ization problem, the variational approach [29] devel-
oped for a stationary mesh generation has been
generalized to non-stationary problems. According to
this approach, an aggregate function is constructed
as a weighted-sum of the functionals corresponding

to the objective functions responsible for the adaptiv-
ity, smoothness and orthogonality.
The adaptivity functional controls the concen-

tration of grid nodes in the regions where the gradi-
ents of the solution are severe. It is represented by
the following integral

Iw ¼

ð ð ð
W 2g1=2dy1dy2dy3

¼

ð ð ð
W 2g dj1dj2dj3 ð4Þ

where gij is the metrical tensor: gij ¼ rji . rjj, g ¼ detkgijk
(i, j ¼ 1, 2, 3); W is a weight function. It is natural to
choose the weight function such that it is positive
and proportional to the gradient of the solution in
the new variables. The following weight function was
used in the calculations

W 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ajrjf j

2
q

ð5Þ

here f is an unknown function to be determined from
the solution; it may be the pressure, density, tempera-
ture, etc., or a weighted sum of these, depending on a
particular problem under consideration.
The minimization of the functional Iw causes the

redistribution of the grid nodes from the regions
with lesser values of the weight function to those
with its greater values. If the weight function is con-
stant in the computational domain, the mesh remains
uniform. In computations the grid remained uniform
if the variations of the weight function were less than
1 per cent of its average value in the region. Thus, by
using the parameter a the regions with considerable
adaptation can be confined to those where the gradi-
ents of the solution are greater than a certain value.
For this purpose, the parameter a should be the
following: a ¼ L(jrj fj)

2, where 0.1, L, 10.
In turn, the grid smoothness and orthogonality are

described by the diagonal and non-diagonal ele-
ments of the metric tensor, respectively. The corresp-
onding functionals have the following form

Is ¼

ð ðX3
i¼1

giidy1 dy2 dy3

¼

ð ð ð X3
i¼1

ðg jjgkk � g2
jkÞg

�0:5

 !
dj1 dj2 dj3 ð6Þ

Io ¼

ð ð ð
g3=2

X3
i¼1

ðgjkÞ
2dy1 dy2 dy3

¼

ð ð ðX3
i¼1

ðgijgik � giigjkÞdj
1 dj2 dj3 ð7Þ
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Here, the indexes (i, j, k) are varied in the cyclic order,
thereby the value of the index i fully determines the
values of the other indexes.
Thus, the construction of the mesh is reduced to

the minimization of the following aggregate cost
function

I ;
ð ð ð

Fdj1 dj2 dj3 ¼ Is þ loIo þ lwIw ð8Þ

The minimum of the cost function I can be found by
the Euler–Lagrange method. As a result, one can
arrive at the following set

X3
1

@

@j j

@F

@ð yiÞjj
�

F

@yi
¼ 0; ði ¼ 1; 2; 3Þ

After some transforms, one can obtain the set of
equations in the curvilinear coordinates with regard
to the metric coefficients

X3
1

Ajjrj jj j ¼ b ð9Þ

where

b ¼ FWrW �

�X3
j¼1

X3
k¼1
k=j

A jkrjjjk þ
X3
j¼1

X3
k¼1

A0
jkWjjrjk

þ
X3
j¼1

X3
k¼1

X3
m¼1

X3
n¼1

Ajkmnðrjjjm � rjn Þrjk

�

Ajk ¼
@F

@g jk
þ

@F

@gkj
; A0

jk ¼
@FW

@g jk
þ
@FW

@gkj

A jkmn ¼
@Ajk

@gmn
þ

@Ajk

@gnm
; FW ¼

@F

@W

It is possible then to obtain the equations for the grid
nodes velocities by the differentiation of the Euler–
Lagrange equations

X3
j¼1

X3
k¼1

@

@jj
ðAjk ṙjk Þ ¼ ry

_F �
X3
j¼1

X3
k¼1

@

@jj
ð _Ajkrjk Þ

F ¼ Fs þ loFo þ lwFw

The grid generation set (9) is solved in the cube
[0, 1] � [0, 1] � [0, 1] with the following boundary
conditions. A fixed node distribution is used on one
of the boundaries. It is taken from the previous time
layer and corrected according to the condition
of orthogonality between a boundary and the appro-
priate coordinate lines. On the other boundaries the

orthogonality condition results in the boundary con-
ditions: rji 2 ni(rji . ni) ¼ 0, where ni is the normal to
an ith boundary. The grid is up-graded each time
after the number of time steps depending on the pro-
blem to be solved.
The set of Lagrange–Euler equations (9) is elliptic.

Upon approximation one can obtain a set of algebraic
equations

LðhÞr ¼ bðhÞ
ð10Þ

where b (h) is the projection of the right-hand side
vector b in equation (9) onto the appropriate discrete
space.
To speed-up the solution of equation (10) comple-

mented by the appropriate boundary conditions, a
preconditioning Laplace-based operator B is intro-
duced

Brnþ1 ¼ Brn �
1

lmax
½LðhÞrn � bðhÞ

� ð11Þ

where

Brn ¼
X3
1

up

lp
Lppr

ðnÞ ð12Þ

In equation (12), up are the parameters from the
interval (0, 1] introduced to make the spectra of the
operators B and L/lmax match each other, Lpp is a
one-dimensional difference Laplace operator with
respect to a coordinate jp, lp is the maximal eigen-
value of Lpp, lmax is maximal eigenvalue of L evalu-
ated by

lmax ¼ max
i;j;k

X1
i0¼�1

X1
j0¼�1

X1
k0¼�1

jaiþi0;jþj0;kþk0 j

( )

and ai,j,k are the coefficients of the operator L
(h) at the

node i,j,k.
The preconditioning operator B can easily be

inverted via the fast Fourier transform along two
directions and the Gauss algorithm along the last
one. The convergence of the algorithm is sufficiently
high. Usually, it requires five to ten iterations to gen-
erate a grid. The time required to reconstruct the grid
is three to four times smaller than that required for
the solution of the main set.

5 TUNGUSKA METEORITE IMPACT PROBLEM

The developed approach is applied to the study of the
Tunguska meteorite hypersonic impact into the Earth
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atmosphere. This consideration can also be related to
the general problem of cometary-asteroid hazard
[24]. In this analysis the hypothesis of the meteorite
nature of the Tunguska object is followed [24].
Although a detailed discussion on this question is
beyond the scope of the current paper, it is to be
noted that the meteorite hypothesis is earnestly sup-
ported by the observation data [23]. Indeed, in spite
of vast efforts of many expeditions to the area of the
impact, there have not been found any solid debris
of the Tunguska object.
The penetration of meteorites into a dense atmos-

phere is accompanied by its progressive destruction
because of the hypersonic velocity of the meteorite
and, hence, the vast pressure behind the blow shock.
The aerodynamic loads leads to a sharply acceler-
ated disintegration of the meteorite into smaller
and smaller debris which retain approximately the
same total volume [30]. Because the radius of each
piece sharply reduces, the heat transfer suddenly inc-
reases. Thus, this process is accompanied by a rapid
ablation mechanism. As a result, the whole body is
converted into vapour and the kinetic energy of the
meteorite is released into the atmosphere. For this
process happens almost instantaneously (in com-
parison to the time of the entire process), it is some-
time called the ‘explosion-in-flight’ [17].
On the basis of the consideration given above, the

following model of the process [31] was used. The
meteorite suddenly becomes a gas object at some
point of its trajectory. Nevertheless, at the initial
time moment, it retains its volume and velocity.
The further evolution of this gas object in the
atmosphere is modelled numerically. The trajectory

point of the sudden conversation is evaluated from
Grigoryan’s solution [30]. It is to be noted that this
solution is quite close to the solution by Hills and
Goda [32] obtained by another way [24]. The model
described above was earlier used for the modelling
of the Shoemaker–Levy Comet impact with Jupiter
in reference [33].
Thus, one can arrive at the initial statement of the

gas dynamic problem. At the initial time moment a
gas in some volume V has the following parameters:
mg ¼ m0, rg ¼ r0, Vg ¼ V1, Pg ¼ r(h)V1

2 where mg, rg,
Vg, Pg are the mass, density, velocity, and static

Fig. 1 Coordinate system

Fig. 2 Adaptive meshes with 20 and 40 nodes in each direction, t ¼ 0.3 s
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pressure, respectively; m0, r0, V1 are the mass, den-
sity, and entrance velocity of the meteorite; r(h) is
the density of the atmosphere gas at the height of
the ‘explosion’.

At the current paper, the parameters of the Tun-
guska meteorite are set the following: m0 ¼ 216 t,
r0 ¼ 103 kg/m3 (ice body), the characteristic size of
a body is L ¼ 60 m, V1 ¼ 2 � 104 m/s. It is supposed

Fig. 3 Contour plots of pressure logarithm and density, computational grid. Section view in

plane Y ¼ 0 m; t ¼ 1.7 s. (a) lg(P); (b) r kg/m3; (c) computational grid

Fig. 4 Evolution of the bow shock wave
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that the meteorite enters the atmosphere at the angle
of Q ¼ 458. These data match ‘average’ parameters
accepted for the Tunguska meteorite [24]. Under
the chosen parameters, the ratio between the internal
energy and the kinetic energy of the meteorite is
equal to 4 � 1024. Grigorian’s semi-analytical sol-
ution [30] is obtained for an exponential atmosphere
r(z) ¼ r0exp

2z/H. If H ¼ 7 � 103 m, then it gives the
following evaluation of the ‘explosion’ height h: h ¼

2.1 � 104 m.
The gas in the volume and in the atmosphere is

considered as an inviscid gas with the state equation
of the real air. Themeteorite substance is marked by a
‘passive’ mixture. The weighted-sum-of-gray-gases
model (see e.g. [34]), is used to take into account
the radiation.
The hypersonic of a gas cloud in the atmosphere is

accompanied by the formation of the main blow
shock and a number of internal shocks and contact
discontinuities [33]. The entire process is considered
starting from the decay of the initial data and up to
the interaction of both the shock and gas cloud with
the Earth surface.

6 RESULTS OF NUMERICAL SIMULATION

In the numerical study of the problem, the compu-
tational domain was first oriented along the direction
of the body entrance. As soon as the shock wave
reached the Earth surface, the computational area
deformed in such a way that the lower boundary of
the physical computational domain was parallel to
the Earth surface.
At the beginning, the coordinate system was

oriented in space in such a way that the axis Z was
parallel to the entrance direction and the gravity
force vector was in the plane XZ, as shown in Fig. 1.
The initial computational domain was a cube with
the side of 300 m. The computational domain
moved along the axis Z expanding in the space in
such a way that the main perturbed flow (apart from
the far tail) was captured. Thus, the lower side initially
moved towards the Earth surface with the velocity 2 �

104 m/s, while the upper side had the velocity 1.8 �

104 m/s. The lateral sides expanded with the velocity
1.2 � 103 m/s.
In computations, the following function f in

equation (5) is used

f ¼ 0:5 log
p

p0

� �
þ log

r

r0

� �� �

where the values with ‘0’ are the appropriate typical
values in the computational domain. This choice of
the function f is justified by the adaptation

requirements in both the blow shock area with high
pressure and density gradients and the tail area
with the high gradients of the density.
The computations were done on different adaptive

and uniform meshes. The comparison between the
results showed that 40 nodes in each direction were
enough to be close to the solution obtained on a uni-
form mesh of about 106 nodes and greater. The main
effects can even be captured on a adaptive mesh
having only 20 nodes in each direction. The shown

Fig. 5 Contour plots of pressure logarithm and cosmic

body substance density. Section view in plane

Y ¼ 0 m; t ¼ 8.5 s. (a) lg(P); (b) ra kg/m
3
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further results were obtained on the adaptive grid
having 40 nodes in each direction. The compu-
tational time was about 3.4 times less against the
appropriate result on a uniform mesh. The grid
reconstruction was done an each odd time step. It
increased the computational time by 20 per cent
against the case without adaptation.
The general description of the entire process is the

following. By 0.12 s, the meteorite substance forms a

bowl-like layer with the typical size of 200 m. The
layer is convectively unstable, and, therefore, this
leads to the depression of the layer along the direc-
tion of the maximal pressure. The meteorite matter
forms a torus-like shape. It is worth noting that
this phenomenon was earlier observed for the
Shoemaker–Levy comet problem [33]. Further, the
penetration channel of 30 m is filled by a low-density
gas and the meteorite matter is fragmented. To

Fig. 6 Long-term evolution of the bow shock wave
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resolve this effect, the typical mesh size must be less
than the typical size of the channel. Therefore, it
requires either a very fine uniformmesh or an adaptive
mesh. It is to be noted that even the 20-nodemesh was
enough to capture this effect in the case of an adaptive
mesh. Meanwhile, the 40-node mesh without adap-
tation does not allow the resolution of the effect of the
meteorite disintegration and provides very different
qualitative results.
By 0.3 s, the bow shock wave reaches the height

of 1.6 � 104 m, the wave front velocity equals
1.9 � 104 m/s and the characteristic size of the
domain is 600 m. By that time the main meteorite
cloud is fragmented into several parts and the
flow loses the axial symmetry. Adaptive compu-
tational meshes with 20 and 40 nodes in each
direction are shown in Fig. 2. The degree of the
grid adaptivity can be represented by the para-
meter ka ¼ Vun/Vmin. Here, Vun is the cell volume
without adaptivity and Vmin is the minimal cell
volume. For the grid shown in Fig. 2 the values
of these parameters are 6.3 and 6.2, respectively.
At 1.8 s (Fig. 3) the shock wave, having the maximal

pressure Pmax ¼ 6.6 � 105 Pa and the velocity 3.5 �

103 m/s, reaches the level of about 7 � 103 m. Rare-
fied hot gas flow behind the front of the shock wave
has the following parameters: the gas velocity is 7 �

10329 � 103 m/s, density is 0.3–0.4 kg/m3, tempera-
ture is 7000–8000 K.
After 2 s the bottom of the physical computational

domain starts its turn to be parallel to the Earth sur-
face, and it is reached by 3 s. At this time, the shock
wave propagation velocity is equaled to 103 m/s,
while Pmax ¼ 8.7 � 105 Pa. The evolution of the bow
shock wave in both space and time is shown in Fig. 4.
It is also interesting to analyse the long-term

dynamics of the shock wave and the tail. By the
time moment of 8.5 s, the shock wave reaches the
level of 2.7 � 103 m, as shown in Fig. 5. It becomes
weak and propagates with the velocity 800 m/s. The
excessive pressure behind the shock is 0.3 atm. By
9 s, some hot gas in the tail stops and starts to rise
up in the atmosphere due to the buoyancy force.
The rising flow mainly propagates in the hot tail
area. It is important to note that this flow entraps
the meteorite substance and prevents it from reach-
ing the Earth. The long-term evolution of the bow
shock wave is shown in Fig. 6. By 38 s, the maximal
concentration of the meteorite matter is observed
on the level of 1.5 � 104 m, in the Earth stratosphere.
At the height of 5 � 103 m, the meteorite matter
density is less than 4 � 1023 kg/m3. Meanwhile,
meteorite substance below 3 � 103 m is not observed.
Thus, the meteorite matter does not reach the Earth
surface, though the shock wave generated by the
meteorite significantly affects the Earth surface.
This result may explain the failure of all expeditions

to find any Tunguska meteorite substance in the
area of the impact.
By 12 s, the bow shock reaches the Earth surface.

Then, the shock wave with Pmax ¼ 1.1 � 105 Pa
spreads over the Earth surface with the velocity of
about 6 � 102 m/s along the entrance direction and
the velocity of 103 m/s along the opposite direction.
Then, by 38 s, the maximal velocity drastically drops
to 28 m/s.
To consider the interaction of the shock wave

with the surface covered by a forest (as happened
with the Tunguska meteorite), one should take into

Fig. 7 Distribution of the dynamical pressure on the

Earth surface, t ¼ 38 s

Fig. 8 Distribution of the dynamical pressure greater

than 0.1 atm at different time moments
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account the dynamic pressure in the flow behind
the shock. It is the main characteristics determining
the forest flattening. According to reference [21] the
value of the dynamical pressure 8 � 102 Pa corre-
sponds to the fall of about 5 per cent of all the trees.
Then, one obtains that the forest can strongly be
damaged in the region with the characteristic size
of about 2 � 104 m, as shown in Fig. 7. The areas
of the exceed dynamic pressure greater than
0.1 atm are represented in Fig. 8. It is to be noted
that this result is in a good correspondence with
the observation data for the Tunguska meteorite
[16, 21, 24].
Thus, the developed numerical algorithm allows

the simulation of the entire process of the meteorite
impact in a unified manner.

7 CONCLUSION

A numerical method to construct three-dimensional
adaptive moving meshes has been developed. It has
been implemented for solving the non-stationary
three-dimensional Euler equations for compressible
flows with strong moving shock waves. The approach
does not require any interpolation of the solution
from one mesh onto another one. The method can
be extended to the Navier–Stokes equations without
any substantial modification.
The developed approach has been applied to the

study of the hypersonic Tunguska meteorite impact.
The penetration of the meteorite into the atmosphere
has been modelled from the entrance and up to the
interaction with the Earth surface using a unified
algorithm. The long-term evolution of the bow
shock wave and the gas in the wake has also been
studied. It has been shown that the meteorite sub-
stance cannot reach the Earth atmosphere. The
results of the fallen tree area are in a reasonably
good agreement with the observation data.
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