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Abstract. In multidisciplinary optimization a designer solves a problem where there are 
different criteria usually contradicting each other. In general, the solution of such a problem 
is not unique.  When seeking an optimal design, it is natural to exclude from the consideration 
any design solution which can be improved without deterioration of any discipline and 
violation of the constraints; in other words, a solution which can be improved without any 
trade-off. It leads to the Pareto optimal solutions. Mathematically, each Pareto point is a 
solution of the multidisciplinary optimization problem. Yet, it is important that the Pareto set 
is evenly distributed otherwise the representation of the Pareto surface may become 
inefficient. 

Although there are many numerical methods for vector optimization, only a few are 
able to generate the entire set of optimal solutions (Pareto frontier).  It is very important for 
the decision maker, especially at the early design stages when most of the resources are 
committed, to be able to obtain maximum information on the Pareto surface at a minimal 
cost. The Physical Programming (PP) Method, suggested by Messac, is able to generate 
Pareto points on both convex and non-convex Pareto frontiers. The PP is substantially 
modified to make it simpler and more efficient for generating an even Pareto set. The 
algorithm does not provide non-Pareto solutions while local Pareto solutions may be easy 
recognized and removed in the framework of this method.  
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1 INTRODUCTION 
Mathematically, the trade-off analysis can be formulated as a vector nonlinear 

optimization problem under constraints. Generally speaking, the solution of such a problem is 
not unique.  It is natural to exclude from the consideration any design solution which can be 
improved without deterioration of any discipline and violation of the constraints; in other 
words, a solution which can be improved without any trade-off. This leads to the Pareto 
optimal solutions. Yet, it is important that the Pareto set is evenly distributed, otherwise the 
representation of the Pareto surface becomes inefficient. 
 Usually, vector optimization methods lead to a scalar optimization of an aggregated 
objective function (AOF) which includes a combination of objective (cost) functions. The 
most conventional case of the AOF is represented by a linear (weight) combination of the 
objective functions. Although this method is relatively simple, it has many drawbacks related 
mainly with the uncertainty about weights.  It may require many iterations to find the 
combination of the weights leading to a solution which corresponds to the decision maker’s 
expectations. Furthermore, it is well known that this method can generate only the convex 
part of a Pareto surface while structural problems often result in non-convex Pareto surfaces.  
 The Normally Boundary Intersection (NBI) Method [1, 2] was developed for 
generating an even distribution of Pareto points by Das and Dennis. The method appeared to 
generate non-Pareto and locally Pareto points that require a filtering procedure [4]. The new 
Normal Constraint (NC) Method [4] developed recently looks very promising. Both methods 
have clear geometrical interpretation. Both methods may fail to generate Pareto solutions over 
the entire Pareto frontier [5] in multidimensional case. The recent modification of the NC [5] 
eliminates this drawback and guarantees the complete representation of a Pareto frontier. 
Meanwhile, both methods may generate non-Pareto and local Pareto solutions [4] though the 
NC does it less likely [5].  
 The Physical Programming (PP) Method was suggested by Messac in [3]. This method 
also generates Pareto points on both convex and non-convex Pareto frontiers as it was shown 
in [6]. The method does not use any weight coefficients and allows one to take into account 
the DM experience immediately. In this sense, it looks to be the most interesting method for 
practical applications under the above stated conditions. In the PP, the designer assigns each 
objective to one of the four categories (class-functions). The optimization is based on 
minimization of an aggregate preference function determined by the preference functions 
(class-functions) with preferences set a priori. A new (more compact) approximation of the 
class-functions is given in [6]. 
 The PP is modified below to make it simpler and more efficient for practical 
applications. The class-functions are generalized to shrink the search domain and make its 
location in space more optimal. This is critical when generating an even set of the Pareto 
frontier. The proposed modification allows us to combine the advantages of the PP, NBI and 
NC methods. The algorithm to obtain an even distribution of the Pareto set is described in this 
paper. One of its main advantages is that it does not provide non-Pareto solutions while local 
Pareto solutions may be easily recognized and removed. A comparison against the standard 
approach shows that the modified approach is able to generate a much more even Pareto set.  
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2 MULTIOBJECTIVE OPTIMIZATION PROBLEM. PARETO OPTIMIZATION 

It is assumed that an optimization problem is described in terms of a design variable 
vector 1 2( , ,..., )T

Nx x x=x in the design space NR∈X function . A MR∈f ates the quality 
of a solution by assigning it to an objective vector y = (y

 evalu

 in the
1, y2, …, yM)T  (yi = fi(x), fi: RM → R1, 

1, 2,i M=  objective space ..., ) MR∈Y . s, X is mapped by f onto Y: X |→ Y. A 
multiobjective optimization problem may be formulated in the following form: 

 Thu

Minimize [y(x)]                                                      (1) 
subject to K inequality constraints 

gi (x) ≤  0,       i = 1, 2, …, K                                               (2) 
and P equality  constraints 

hj(x) = 0,        j = 1, 2, …, P                                              (3) 
The feasible design space X* is defined as the set {x| gj (x) ≤ 0, j = 1, 2, …, K; and hi(x) = 0, i 
= 1, 2, …, P}. The feasible criterion (objective) space Y* is defined as the set {Y(x)| }. 
The feasibility means no constraint is violated.  

∈ *x X

 A design vector a ( ) is called a Pareto optimum iff it does not exist any 
such that: y (b)  ≤  y (a)  and exist l ≤  M:  y

*∈a X
*∈b X l(b)  <  yl(a). 

 A design vector is called a local Pareto optimum if it is a Pareto optimum within its 
some neighbourhood.   

3 GENERATION OF EVEN DISTRIBUTION OF A PARETO SET 
The PP allows one to generate an even distribution of the Pareto frontier. The 

appropriate algorithm is given in [6]. The original approach is briefly described below, 
followed by the description of our proposed modification which aims to make the algorithm 
more efficient, especially in the case of a concave Pareto frontier. Also, the algorithm is 
generalized on the 2S – 4S class-functions.  
 Let us define the trade-off matrix T as follows: 

1,min 12 1

21   2,min 2

1   2 ,min

    ... 

  ... 
,                                             (4)

 ...    ...     ...  ...
  ...  

sc

sc

sc sc sc

n

n

n n n

F F F

F F F
T

F F F

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

In the trade-off matrix T, an i-th row represents the coordinates of an anchor point *
iµ  

corresponding to the solution of single-optimization problem min Fi in the feasible criterion 
space Y*.  
 In the feasible space Y* a hypercube H limiting the search domain is defined in the 
following manner. We set the pseudo nadir point [5] ,max maxi j

F ijF= that corresponds to the 

maximum i-th component among all anchor points. Then, the hypercube H is represented as 
follows: .       1,min 1,max 2,min 2,max ,min ,max[ ] [ ] ... [ ]

sc scn nH F F F F F F= × × ×
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 For the sake of simplicity, consider the 2D case where there are only two design 
metrics. We assume that each of the design metrics belongs to class 1S. Following [6], for 
each of the design metrics let us introduce the vector of pseudo-preferences Pi: 

 1 2 3 4 5

(0)
, ,

1 1 3
1,1,1,1,1

4 2 4
( , , , , 0, ,1)) ( ) ( ,                              (5)i i i i i

T T T
i i iP F F F F F F a= +≡   

where , ,max ,min( ) / di i ia F F n= − (0)
iF  is a free parameter. The parameter nd defines the box 

size.  
 In such a case, either region  or region 1F F> 15 25

]
2F F>  becomes unacceptable. Thus, 

the box  defined by the pseudo-preferences limits the search domain 
from the right and upper sides leaving it in the other directions unlimited for a formal search. 
Changing the free vector , it is possible to shift the box D in the 
hypercube H to seek Pareto solutions. The current location of the box D determines a possible 
location of a Pareto point since the Pareto points outside D (more precisely – higher or on the 
right of D) are excluded from the current consideration. In some sense, it operates similarly to 
the ε-constraint method, but in contrast, space reduction is simultaneously performed for all 
objectives. For example, moving the box to the lower-right vertex of the hypercube H (in 2D 
case), we give preferences to low values of the second objective at the expense of high values 
of the first objective. In [6], the algorithm is given for shifting the box D over the space Y

11 15 21 25[ ] [D F F F F= ×

(0) (0) (0) (0)
1 2( , ,..., )

sc

T
nF F F=F

* to 
seek the Pareto frontier. To provide this, the free vector is specially chosen to move the 
box along lines parallel to a diagonal of the hypercube H passing trough the lower-right and 
the upper-left vertices. A few free parameters are introduced to control the displacement of 
the box. No algorithm is given to determine these parameters. The approach described is only 
applicable to the minimization problem when only the class function 1S is involved.  

(0)
iF

 We suggest another strategy to seek the Pareto frontier. For the sake of simplicity, we 
assume initially that only a minimization problem is considered (all class functions are 1S) 
and the problem is solved in the objective space Y. The generalization on the arbitrary case is 
given subsequently. 
 Similar to the NC method, let us consider the utopia plane created by anchor points 

. It is well known that any point p belonging to the interiority of a convex polygon spanned 
by n

*
iµ

sc vertexes  can be represented as follows: *
iµ

*

1
                                                        (6)

scn

i i
i
α

=
= ∑p µ  

where the parameters iα  must satisfy the following conditions: 

j=1
0 1,  1                                                  (7)

scn

i jα α≤ ≤ =∑  

   In this approach the notion of the anchor point is used. Although not crucial, an 
important general remark on the definition of the anchor point should be made. As it was 
mentioned above, the standard definition assumes an anchor point *

iµ  corresponds to the 
solution of the single-optimization problem min Fi in feasible criterion space Y* (see, e.g., 
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[5]). This definition allows the anchor point corresponding to some objectives to be non-
unique. Furthermore, it may not even belong to the boundary of Y*. Such an example is given 
below. We suggest the following specification which guarantees the uniqueness of the anchor 
point for each objective.  If the solution of the problem  is 

not unique, then the point corresponding to the minimal values of the other design metrics is 
to be chosen. It may lead to the problem of trade-off minimization for the remaining 
objectives. To avoid this, priority in the minimization is introduced. First, F

*

* * * *

                                  
( ) { : arg mini i i

i iF= =
Y

µ F X X X }

,

i is to be 
minimized, then Fi+1 and so on up to Fi-1. The prioritization is introduced in a circular order: 
i+1, i+2, …, nsc, 1, 2, …, i-1. A k-th prioritization assumes that the k-th minimization must not 
violate all the previous k-1 ones. At this definition, it is easy to prove that all anchor points 
belong to the Pareto frontier because they are on the boundary of the feasible space Y* and no 
objectives can be improved without deterioration of any other objective.  
  The free vector  is determined in the following way. Let us 
consider the box D. The box D is shifted in such a way that its vertex M corresponding to the 
maximal values of the design metrics      lies in the utopia 
plane (see Figure 1). This means 

(0) (0) (0) (0)
1 2( , ,..., )

sc

T
nF F F=F

1,max 2,max ,max( ( , ,  ...,  ) )
sc

T
nM F F F=

      (0) *

1
-  ,                                                    (8)

scn

i i
i
α

=
= ∑F µ a

where 
(0) (0) (0) (0)

1 2

1 2

( , ,..., )

( , ,..., ) .
sc

sc

T
n

T
n

F F F

a a a

=

=

F

a
 

 An even distribution of the coefficients αi gives us an even distribution of the Pareto 
set.  In comparison to the NC and NBI methods, the approach described below allows us to 
generate the complete Pareto frontier considering only non-negative coefficients αi from (7). 
  One of the possible algorithms for calculation of the coefficients αi is given in [5] 
where the following induction procedure is used. First, a uniform distribution of coefficient α1 

is considered. The sum of the rest coefficients 
j = 2

scn

jα∑ equals to 11 α− for each selected value 

of α1. Then, a uniform distribution of the coefficient α2 is considered for each of these variants 
and so on until either the last coefficient 

scnα  is reached or the sum of the coefficients already 
determined equals to 1. In the latter variant the remaining coefficients equal zero.   
 It will be shown that the distribution of the Pareto set may be sensitive to the 
displacement of the box D along the utopia plane especially if the Pareto frontier is concave. 
To avoid this, generalization of the class functions is performed. It allows us to shrink the 
search domain substantially.  
 In order to shrink the search domain defined by the hypercube H, it is suggested to 
introduce generalized class-functions as follows: 

( )iF F  (i = 1, …, nsc),                                                 (9) 
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where iF is defined by an affine transform 
,     ( , 1,  ...,  ).                                          (10)i j ji scF F B i j n= =  

In the objective space Y, it is equivalent to the introduction of a new coordinate system with 
the basic vectors 

 

 
-1

,     ( , 1,  ...,  ),                                     (11)i ij j scA i j n

A B

= =

=

a e
 

where ej (j =1, …, nsc) are the basic vectors of the original coordinate system. 
 Then, the search domain can be changed as shown in Figure 2. In particular, it is 
possible to choose basic vectors ai (i =1, …, nsc) which form an angle γc to a selected direction 
l. The 2D case is shown in Figure 2. Matrixes A and B can be easy determined as follows: 

cos sin   sin sin1,    ,                      (12) 
cos sin cos   cossin 2 c

A B
γ γ γ γ
γ γ γ γγ
− − + −

+ + + −

−⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

where  ,  ,  (cos ,sin ) .T
n c n c n nγ γ γ γ γ γ γ γ+ −= + = − =l

 In the general case of scnR , it is possible to suggest the following algorithm. There are 
the following conditions on ai: 

( , ) cos                   ( 1,..., )                            (13)i c sci nγ= =a l  
All the vectors ai are parallel to the lateral area of the hypercone having the angle γc and the 
axis along vector l. It is important to guarantee a spread distribution of these vectors. At least, 
the basis created by these vectors must not vanish. It appears possible to obtain even a fully 
uniform distribution of the basis vectors of such a polyhedral cone.  
 First, suppose that l is directed as follows: 

0

0 0 0 0 0

,                                                                   (14)

( , , ,..., )Tl l l l

=

=

l l

l
 

Assuming that l is a unit vector, we obtain its coordinates: 

0 0
1cos                                                    (15)

sc

l
n

γ≡ =   

The basis vector ai can be determined in the plane created by the vectors ei and l0. It is 
possible to show that  

0
0

0 0

sin sin( )                                      (16)
sin sin

c c
i i

γ γ γ
γ γ

−
= +a e l  

From (11), (15) and (16) we obtain 
0

0 0

sin sin( ) cos ,                                    (17)
sin sin

c c oA I Eγ γ γ γ
γ γ

−
= +    

where all elements of the matrix E are unities: || Eij || = 1. 
 In many cases the shrinking around the lines parallel to the vector l0 is already 
sufficient. Nevertheless, it is important to obtain matrix A in the general case of an arbitrary 
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unit vector l. For this purpose, it is enough to perform a linear transform mapping the previous 
pattern in such a way that the vector l0 is mapped onto the l. This purpose is reached by 
multiplying both parts of  equation (16) by an orthogonal matrix R: 

  0                                                                 (18)R =l l  
Then, we obtain the basis of vectors { }i′a  (i = 1, …, nsc) uniformly distributed in the lateral 
area of the hypercone having the axis parallel to the vector l:  

0

0 0

sin sin( ) ,                                              (19)
sin sin

c c
i i

γ γ γ
γ γ

−′ ′= +a e l  

where are the components of the Cartesian coordinate system in which the vector l 
has equalled components. It is easy to see that the columns of transition matrix R are the 
coordinates of the vectors  in the basis {e

i R′ =e ie

i′e j}. Since the transform is orthogonal, all angles are 
preserved. In particular, 0( , ) cosi γ′ =a l . Now we can write the matrix A in the general form: 

0

0 0

sin sin( ) ,                                        (20)
sin sin

Tc cA R Eγ γ γ
γ γ

−
= +  

where || Eij || = || lj ||.  
 If γc = γ0, obviously that means the transform becomes orthogonal and is only 
reduced to a turn of the original Cartesian coordinate system. As a consequence in this case, 
the matrix A is orthogonal and 

i i′ =a ei′

TB A= .  
 The general presentation requires the calculation of the orthogonal matrix R, the 
components of which must satisfy the following additional requirements: 

  0
1

cos                                                         (21)
scn

ij i
j

R lγ
=

=∑

Matrix R is not unique. The simplest way to obtain it is to consider the rotation from the 
vector l0 to the vector l in a Cartesian coordinate system related with these vectors so that 

1,                                                         (22)RR DT D−=  
where T is an elementary rotation matrix describing the rotation in the plane created by the 
first two basis vectors 

0 0

0 0

( , )        - 1-( , )     0  ...  0

1-( , )     ( , )         0  ...  0
 0                   0            1  ...  ...
...                   ...            ... ...  ...
0                    0         

RT =

l l l l

l l l l
,                                       (23)

   0   ...  1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and the matrix D is the transition matrix from the original basis  to some orthogonal basis 

: { }ib 0 0
1 0 2 2

0

( , ),  , ... .
1 ( , )

  −
= =

−

l l l lb l b
l l

The remaining basis vectors 3 4, ,...,
scnb b b can be easily 

obtained by the Gram-Schmidt orthogonolization procedure. 
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 Obviously the vectors ai (i =1, …, nsc) create a basis in Y which does not vanish. The 
basis vectors form a search cone similar to the 2D case shown in Figure 2. In the 2D case, nsc 
= 2, γ0 = π/4 and we obtain formulas (12).  
 The boundaries of the preference ranges are mapped in according to (10): 

,   ( , 1,  ...,  ;  1,  ...,5)                             (24)ik jk ji scF F B i j n k= = =  
  Transform (9), (10) allows us to shrink the search domain and focus on a much 
smaller area on the Pareto surface. It makes the algorithm more flexible and much less 
sensitive to the displacement of box D. The transform shrinks the search domain, much like a 
“light beam” which emits from point M and highlights a spot on the boundary of feasible 
space Y*. The direction of the search is easy to handle. It is natural to choose this direction 
(vector -l) in alignment with the normal to the utopia hyperplane towards the decrement of the 
objective functions. If no solution is found, the direction is switched on the opposite one. The 
box D , which is the image of the box D after transform (9), (10) is translated along the 
vector l until the whole box D  intersects the utopia plane. In this case, the new pseudo-
preference corresponds to the former pseudo-preference  and the search domain is 

limited by the box 
1iF 5iF

D  only.  
 It should be emphasised that the general representation of matrix A can play a 
substantial part in seeking the Pareto set nearby its boundary. As it was mentioned above, if 
we consider orthogonal projection of the Pareto set onto the utopia hyperplane, the images of 
some Pareto points may not belong to the interiority of a convex polygon spanned by the nsc 
vertexes  (6), (7). This fact was first noted in [5]. One of the possibilities to resolve this 
problem, suggested in [5] for the NC method, is based on the use of negative coefficients α

*
iµ

i. 
However, this will cause another problem, this time with the lower evaluation of the 
coefficients. Inevitably some points in the utopia plane corresponding to negative coefficients 
may not be orthogonal images of any Pareto point. Another opportunity, offered specifically 
by our modified PP is described below. 
 Let us consider the edge vectors of polygon (6), (7): νi = µi+1 - µi (i =1, …, nsc-1).  The 
point pi belongs to a k-th edge of the polygon iff αm= 0 (m ≠ k, k+1). Assuming that vector l is 
related with the normal of the utopia hyperplane. Then, when point M lies on an edge of the 
polygon, vector l is rotated in the direction outwards from the polygon. In other words, l is 
changed in such a way that the orthogonal projection of the end of the vector, drawn from an 
edge, onto the utopia hyperplane must not fall in the interiority of the polygon. For this 
purpose, in the utopia plane we introduce a unit vector which is the outer normal to the edge 
considered. The vector can be defined as: 

1 1

1

( , ),    .                                        (25)
| | ( , )

i i i i i
i i

i i i i i

β β
β

− −

−

+
= = −

+
ν ν ν νs
ν ν ν ν

     

Then, the current vector lr is determined via si and normal n to the utopia hyperplane towards 
the utopia point 1 1 2 2( ( ), ( ),..., ( ))

sc scn nF F Fµ µ µ  as follows: 
cos sin , (0 / 2)                                    (26)r r r i rθ θ θ π= − + < <l n s   
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The angle θr is a parameter. Changing θr from π/2 to 0, the vector lr is turned from the normal 
vector –n to the vector si (see Figures 3a and 3b). Thus, the algorithm is formulated in the 
following way. If point M in (8) belongs strictly to the interiority of the polygon, then the 
vector lr coincides with the normal -n. If point M lies on an edge of the polygon, then an 
additional rotation of the vector may be required. To obtain an even distribution of the Pareto 
set, the number of additional points Nr related with the rotation of a vector lr depends on the 
distance to the vertexes of the edge. For example, the rotation is not required at the anchor 
points. Generally speaking, it is reasonable to choose the maximal value of Nr at the centre of 
an edge. The following evaluation of Nr is suggested for a k-th edge: 

1int(4 )    ( 1)                                              (27)r k kN m mα α += ≥  
Finally, it is worth noting that this number can be substantially optimized if the information 
on the current local distribution of the Pareto set is taken into account. For example, if a 
Pareto solution appears to be at an edge of the polygon, no additional rotation is needed and 
Nr = 0.  
 The approach described above guarantees catching the entire Pareto surface. In some 
very special cases, like the one shown in Figure 4, local Pareto points (e.g., a point P) may be 
obtained which are not global Pareto solutions. The algorithm excludes such points easily. Let 
us locate the box D in such a way that the point M is at some point P investigated as a 
candidate Pareto solution and set A = I in (11), (17). If the point is a global Pareto solution 
(e.g., a point ), no any other solution can be obtained. It immediately follows from the 
contact theorem. Thus, we have a criterion for verification if the solution is a global Pareto 
solution.  

′P

 To avoid undesirable severe skewing of the search domain in the algorithm one may 
recommend preliminary scaling of the objective functions: 

,min

,max ,min

                                                          (28)i isc
i

i i

F F
F

F F
−

=
−

 

 
4 EXAMPLE 

The method described above is validated using a few test cases. The test cases include 
examples with both Pareto convex and concave frontiers. It is shown that the standard 
realization of the PP may lead to a high sensitivity of the location of the Pareto points to the 
displacement of box D (or D*) in the case of a concave Pareto frontier.  
 
Example 1:   
First, we consider the following simple algebraic test cases: 

min (x, y)T                                                       (29) 
case one, constraints: 

2 2 1,  -1,  -1                                           (30)x y x y+ ≤ > >  
case two, constraints: 

2 2 1, 0,  0                                           (31)x y x y+ ≥ ≥ ≥  
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In the first case, (29) and (30), the Pareto surface is convex while in the second case, (29) and 
(31), it is concave. The latter case also represents an example where the standard definition of 
an anchor point leads to non-uniqueness. In this case any point with coordinates 0,  1x y= ≥  
is a solution of the single-objective minimization problem: 

,
min

x y
x . In our formulation we have 

only two anchor points in total: (0,1) and (1,0).  
 The solution of problem (29), (30) is shown in Figure 5. An even displacement of 
point M (or box D) along the utopia line does not lead to a completely even distribution of the 
Pareto points since there are gaps nearby the anchor points. In the case of shrinking the search 
domain via transform (9) we obtain an even representation of the Pareto frontier (Figure 6). 
 In problem (29), (31) the Pareto frontier is concave. The displacement along the utopia 
line does not provide any solution, except the utopia points because box D is in the unfeasible 
space Y\Y*. If the displacement of point M is performed along the line parallel to the utopia 
line as shown in Figure 7, a complete Pareto frontier can be obtained. Yet, this Pareto set is 
not evenly distributed. The performance of the algorithm is demonstrated in Figure 8. In this 
figure, the contour plots of the AOF are located inside the search domain. The surface shows 
the values of the AOF inside box D . The complete solution is represented in Figure 8 along 
with the contour lines located in the corresponding boxes D  for each of the utopia plane 
points. If a solution is not found (as shown in Figure 7), the direction of the search is switched 
to the opposite one.     
 The developed method has been verified on a number of test cases in [7]. 
 
5 CONCLUSIONS 

The Physical Programming method has been modified to generate an even distribution 
of the entire Pareto set. The modification is based on the generalization of the class-functions 
which leads to shrinking of the search domain. The orientation of the search domain in space 
can be easily conducted. It allows the method to provide an even distribution of the entire 
Pareto surface. The generation is performed for both convex and non-convex Pareto frontiers. 
The method does not generate non-Pareto solutions. A simple algorithm has been proposed to 
remove local Pareto solutions which are not the global Pareto solutions.  
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Fig. 1: Original search domain in the objective space.  
Fig. 2: New search domain after transform 

 

 
Fig. 3: Rotation of the search domain. 

 

 
Fig. 4: Verification of global Pareto. 
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Fig. 5: Standard search domain.  

Convex Pareto frontier. 

Fig. 6: Transformed search domain. Convex Pareto 

frontier. 

 

 
Fig. 7: Standard search domain. 

Concave Pareto frontier. 

 
Fig. 8: Transformed search domain. Concave Pareto 

frontier. 
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