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Abstract-—An algorithm for construction of dynamically adaptive 3D grids is described. Conditions for
determining the time step and restrictions on grid transformations are given for the case where Rodi-
onov's UNO scheme 1s used for solving a system of the Euler equations on a moving curvilinear grid.
The effictency of using the dynamically adaptive grids is demonstrated by solving the problem on gas-
dynamics consequences ol a cosmic body explosion in the Earth atmosphere.

1. INTRODUCTION

The use of computational grids adapted to solutions is efficient when modeling gas flows with high gra-
dients (boundary layers, shock waves, contact discontinuities, and the like). Even in the case of a one-
dimensional problem, adaptive grids make it possible to considerably reduce computational expenditures.

The use of adaptive grids is a considerably more complicated task when the zone of high gradients moves
in space. In this case, two fundamentally different approaches can be used. The first approach suggests that
the computational grid is fixed for one or several time steps (see, e.g., [1, 2]1). When the grid is changed, the
solution 1s interpolated anew tor the new grid. In the second approach, new spatial variables are introduced
in such a way that there are no high gradients in the computational region [3-6]. The transformation of old
variables x in the physical space to new variables & depends on time and satisfies certain restrictions. The
problem is solved on a uniform grid in terms of the variables &(x, 1). In this case, the solution is not reinter-
polated from one grid to another; however, certain restrictions on the transformation &(x, 7) are to be
timposed. This approach was usually used in the one-dimensional case and/or for computation of steady, or
almost steady, flows.

In the work [7], a two-dimensional algorithm for construction of dynamically adaptive grids in the
framework of the second approach is discussed. In this paper, the algorithm described in [7] is generalized
for the three-dimensional case. Restrictions imposed on the time and grid steps when using adaptive grids
for solving nonstationary problems are examined. The applicability of the algorithm suggested and its effi-
ciency for solving complex three-dimensional problems are illustrated by solving the problem of modeling
the gas-dynamics consequences of the explosion of a cosmic body in the Earth atmosphere.

2. GRID CONSTRUCTION

As was noted in the Introduction, when solving a problem on a nonstationary grid, the system of gov-
erning equations is rewritten in terms of new variables §(x, ¢), which are selected from the conditions that
the desired function has no regions of high gradients and the adaptive grid is orthogonal and sufficiently
smooth. Thus, the problem is to find a transformation of independent vartables for which the computational
grid satisfies the above requirements.

In this paper, we use the variational approach [8] for construction of the computational grid. The desired
transformation possessing the required properties s determined by minimizing certain functionals corre-
sponding to these properties.

In order to construct a grid adapted to the solution, a distribution of the computational nodes that mini-
mizes the functional

[ = _[ ”Wzgmdxdydz = J j j WedEdndl (2.1)
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is found. Here, W2 = /1 + a|VF(E, 1, O)|° is a weight function, g = detllg;ll, g; = (r T, ), and g¥ = (VEVE).

In the expression for the weight function W2, fis an unknown function to be determined from the solution
of the gas-dynamics problem; it may be pressure, density, temperature, etc., or a weighted sum of these,
depending on a particular problem under consideration.

As can be seen from (2.1), the transformation that minimizes /,, redistributes the nodes of the grid from

the regions with lesser values of the weight function to those with greater values of W2. If the weight func-
tion is constant in the entire computational region, the distribution of the grid nodes remains uniform. In the
numerical implementation of the algorithm suggested in this paper, the computational grid remains close to
uniform if variations of the weight function are less than 1% of its average value in the region. Thus, by
means of a parameter o, the regions where considerable grid adaptation takes place can be confined to those
where the solution gradients are greater than a certain value. Based on these considerations, this parameter

was chosen as o = A(max|VAE, 1, €))%, where 0.1 < A < 10.

The grid smoothness and orthogonality are characterized by g" and gV (i # j), respectively. The corre-
sponding functionals have the following form ({1, j, k) are cyclic):

3
I = j j j Y ¢ dxdydz = j j J(Z(gﬂg“—g?k)g_o'ﬁ}!é_,d‘ndg, 2.2)

i=1

3 3 |
2 2
lo = j”‘gazzz (Sﬂ:) dxdydz = J_”E (8i;8ix g:’igjk)zdédndc' (2.3)
=1 j= ]
The minimization of the linear combination
[ = !S+2'010+A'WIW - (2.4)

of functionals (2.1)~2.3) gives rise to a computational grid satisfying all three required conditions.

The grid is found from the solution of the system of Lagrange-Euler equations written for functional
(2.4):

I = j”FdE_,dndC.

In terms of the variables §(X, 1), the system has the form
3

Zj) JF  JdF _
jﬂag-@(x;) '

Applying simple transformations, we get the following system of equations in the grid node coordinates:

3
D Aty = b, (2.5)
j=1 '

where

(3 3 33 1 3 3 3 '
b = FWVW* Z z A.fkrgf{;‘ T E ZA;J- ngrg* + Z 2 Z z Ajkmn(r;,iamrgn)rgi '

= mp—— -} N ’ RN - + ’ = Sy’
agﬁ agkj agfk agkf i agnm agnm W aw

The system is solved in the cubic region [0, 1] x [0, 1] x [0, 1]. For boundary conditions on one of the

\J =1k =1 j=lk=1 j=lk=lm=1n=1
k#j
oF _ OF OFy OFy , _0Ap 9Ay p _ OF

¢
Ajk AJ,A=

boundaries, we use a fixed node distribution, which is taken from the previous time layer and corrected in
accordance with the condition of orthogonality of the coordinate lines to the region boundary. On the other
boundaries, the condition of orthogonality of the coordinate lines to the boundary of the computation region

1S imposed: Fpi = n;( ry n) = 0, where n; is the normal to the ith boundary.

Since we solve a nonstationary problem, the grid is recalculated in a specified number of steps, which is
determined by a particular problem.
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3. GRID GENERATOR

Since the Lagrange-Euler equations are elliptic, solution of the system of equations for the grid genera-
tion is a rather difficult task. The finite-difference analog of the Lagrange—Euler equations is constructed as
follows. First, the left-hand side of (2.5) is linearized. The derivatives are approximated by the second-order
differences. As a result, we get

L{r) = b. (3.1)

In this equation,

3
L™y = Y A,,L,r"
= 1

1s the difference operator of the linearized system (2.5), b is the right-hand side of (2.5), and L,, 1S a one-
dimensional difference Laplace operator with respect to the coordinate &,

To speed-up the convergence of the solution to (3.1), we use the method of a spectrum-equivalent oper-
ator [9]. Since the system 1s elliptic, the differential Laplace operator is used for a preconditioner. Thus, the
{inear iterations have the form

]

nax

B(r(n+l)) ~ B(r(n})_

y [Lr'™) - b], (3.2)

where

3
. n 9 H
B(r™) = Z i_pLPpr( |

p=1 7

1s the preconditioning operator, A, is the maximum eigenvalue of L, Amax 18 the maximum eigenvalue of L
given by the approximate formula

! 1 ]
;"max = max{ Z Z z |ai+fu,j+jﬂ,k+knl

bk |, .
/ fﬂ="1]0=-lku=—i #

and a; ; , are coefficients of the difference operator L at the node i, j, k. The value of the parameter 0, 1s cho-
sen from the interval (0, 1] to make spectra of the operator B and L/A,, match each other. Note that, by
accurately choosing this coefficient, we can considerably speed-up the convergence; however, even without
this, the algorithm works efficiently.

On each step of the linear transformations, the solution to equation (3.2) is found by inverting the oper-
ator B by means of the fast Fourier transform along two directions and the sweep algorithm (known as the
Thomas algorithm or “progonka”) along the third one.

The use of such a combined algorithm for solving equation (3.2) makes it possible to construct an adap-
tive computational grid considerably faster compared to solving immediately (3.1) by means of an ordinary
(e.g., Gauss—Seidel) iteration procedure. Usually, it takes 5—10 iterations to construct the grid. The necessity
to carry out iterations on nonlinearity appears usually only when constructing a very fine initial grid. In this
case, the right-hand side of equation (3.2) is recalculated with regard to the solution obtained by means of
the linear iterations, and, then, the linear iteration process described above is repeated. The time required to
renew the adaptive grid is 3—4 times less than that required for computations on one time step.

4. SYSTEM OF GAS-DYNAMICS EQUATIONS

We used the above-described algorithm of grid construction for solving a system of the Euler equations.
Let us write the Euler equations in the strictly conservative form in terms of the Cartesian coordinates {1,

x}, 1 =1, 3 (here, and in what follows, repeated indexes mean summation):
U +Fx =, (4.1)
where

U = (p, puy, puy, pus, E), F' = (puj puyu; + POy, pusu; + PO, pusu; + POy, (E + P)H.,-)T,

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 42 No. 3 2002



380 RUDENKO, UTYUZHNIKOV

. 1, 1= j,
Q = (0! pgl! P& P& pgu) ’ L = p(€+0'5u2)! P = P(E, p)’ BU = {0 I#__Jj

0 is the gas density, u = (u,, uy, 1;)" is the gas velocity in the Cartesian coordinates, e is the gas specific
internal energy per unit volume, P is the pressure, and g = (g,, g5, g3)" 15 the acceleration of gravity.

Under the transformation to an arbitrary coordinate system, {t, ¥’} — {1,.&/},t=1,& =&, x),j=1, 3,
systemn (4.1) takes the form '

20/t + M 19E = D,  42)
where U = U/J, Q = Q//, i = E: U+ Ei ke 'éi = @f/./, § = Q

The geometric variables (J, Ef . Eir) must satisfy their own equations—the so-called geometric conser-

vation laws [10, | 1]—which can be easily obtained from (4.2) by assuming U, F' = const, and Q = 0. The
latter are conditions of conservation of a particular constant solution on the curvilinear grid:

Q] d ,giy _ |
310)+ 50 = © 43)
; .

Conditions (4.3) and (4.4) imply that the constant solution to equation (4.2) is not changed under the grid
transformations. One of the ways to meet condition (4.3) is to find the Jacobian of the transformation to new
coordinates immediately from (4.3) (by the same method that 1s used to solve system (4.3)) rather than by

the formula J = det “&i.“ .

5. DIFFERENCE SCHEME

For the difference scheme when solving (4.2), we usc Rodionov’s UNO scheme [12], which is a second-
order approximation scheme by spatial variables. The second-order approximations by time are obtained by
using the predictor—corrector technique.

In terms of variables (&', €2, &), the rectangular uniform grid éﬁjk is defined as:

b = ihy, &= jhy E=khy, i=0,N,, j=0N, k=0,N,,

where i, =1/N,, /=1, 3, and N, is the number of computational cells along the coordinate &, (i, , k)th compu-

tational cell is formed by intersection of the coordinate planes Ef = Ej,“_ ik o ?,, j+1,40and &= E_,., ikt

The rectangular unitform gnd F,f:,-k corresponds to the curvilinear grid x,-jk = .x,-jk(&fjk, &,-jk , «";;-j,, T, =

1, 3, in the Cartesian coordinates, which is determined by solving equation (2.5).

The difference approximation of system (4.2) on the grid ﬁjjk has the following form:

An+l

v Ui = Ui

ljk AT _(FIS t)

+(FS ) +(FS§) "“(FSEI)

P+ 172, 1.k

.-.,fuw_(F SE,OU.Q 12 = ijk,

where Vi, = hhyh; is the volume of the computational cell; (S i1,k = M, (S 1 )i itk = by, and

i- 112, j, k [, j+ 112, k

i, j— 112, k (51)
+(:c S 1)

(S i i k+ 12 = = h hy are squares of the corresponding faces of the cell; and At is the time step. The desired

function U; ik and the sourcewise term Q;; are computed at the centers of the computational cells, and the

Auxes Fi+, 112, . k » ﬁ’,zﬁ- 12, k » and F. j.k+1n , at the centers of the corre*;pondmg cell faces.
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To simplify the discussion, we consider the case where the solution varies only along one coordinate.
After the “predictor,” we have

~n+ i

AN AT A ] A
Ui = Uijx—

..}T_[F (U,—+ lfz.j,k) ~— FI(EI:-]J'Z.LX)]';
1

~ o ~ N A+ A 11 A . . ,
where Ui.in,jx = Ui +0.58Ujj and Ui_1p, jx = Uijx — 0.58 U;j . Finally, on the “corrector” stage, we
get
n+ n ﬂ't al an+li2 - al ~n+l1/2 4
Uiv = Uijk""';"[F (Vivinj0)=F (Uicin',6)1,
1
An+ 172, — “n+} n+ /2 + ~ n+ |

where Ui+ 12, j,k = O.S(U,'j;.; + 0.56 O,jk + 0;—+ ln,j,k) and f],*_ 112, 5.k = 0.5( Uf_f}; - 0.560{;& + D:. 112, j, & ),
and find 8 U/ jk DYy using the limiters for the UNO scheme in the case of the conservation laws [ 3].

6. RESTRICTIONS ON THE TIME STEP. RESTRICTIONS ON THE SHIFT
OF GRID NODES IN THE PROCESS OF ADAPTATION.

For scheme (3.1), the condition on the maximum time step in the nth layer can be written as

3
I
ATZ Z—-maxl&i +E 4"+ aﬁ’! <1, (6.1)
{
[=)
where A4, 1s the grid step along the coordinate &', ™ are Cartesian components of the velocity vector, a 1s the

velocity of sound, and &' = ( &i,,t";im )”2 (without summation on /).

Since
A !
g= S5 A =g, -

where éf, and §f, +1 are coordinates of the grid node before and after, respectively, the operation of the grid

generator, the computed velocity of the node can take an arbitrary large value as AT — 0. In view of this,
1t seems reasonable to restrict the maximum velocity of the grid nodes by a certain value that agrees with

velocity values in the computational region. This can be done if we define &, , | as

Erer = &+ AE, (6.2)
where
! |
~ A
AE' = AE!HemT A (6.3)
max\/_\é |
top =Min|E 4" +ad|, and 0 < A < 1. Then,

£ = AE'/AT. (6.4)
Thus, the node velocity is given by & = o/u’, _, where
a = A%’(maxlAﬁfl)_lAS L.

B
By virtue of (6.3) and (6.4), we get from (6.1) the following restriction on the time step:

3 —1
1 [ 1 vl —m i
AT < (!“zl EmaXla Hchm. 4 Sxmu i aa [J 5 (6.5)
In the one-dimensional case, (6.5) takes the form
AT<— (6.6)

max |G, (—x + (u t a))
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where ¥ = -E,/E is the velocity of the grid node. Let us compare (6.6) with the similar restriction for the
case of computation on a stationary grid,

I |
—_— . 6.7
At< max|E (v £ a); | (0.7)

With regard to (6.3), we have the following estimate for X :

o ol [sd
i = e = mrminlE (vt a)| <|utal.
g e = g I
Then, instead of (6.6), we can write a stronger condition,
AT < / " (6.8)

max (|§ v £ a}) ~ min(|§ || x[) - a)max(|§flutal)

where

. i in{|C.|]lu +
5 Otm n|€,| min(|€,||u % a|)

E.D.tl max ( &1' it af)

Thus, in the case of computations on adaptive grids, restriction (6.8) on the time step, which is stronger
than (6.6), turns out to be considerably weaker than restriction (6.7) for computations on stationary grids.

Similar to condition (6.1) for Eq. (4.2), we can write the following condition for Eq. (4.3):

ATZ maxl& | < 1. (6.9)

Taking into account (6.3) and (6.4), we can obtain from (6.9) the restriction on the maximum shift of
nodes of the grid after the nth time step in the process of its adaptation to the solution as

max‘AEfl < hy/3.
To satisfy this condition, we define A in (6.3) as

| . h
A = §mm{], ”chmAT}< l. - {6.10)

Indeed, in this case, we have

) U AT |A§'| . { I }
A — char I -2 ] L <y
I - l 3 ma'<|A§ Imm Uehar OT §

Thus, by means of (6.5), we find At for the computation on the (n + 1)th time layer, and (6.2); (6.3), and
(6.10) give us & ..

7. EXAMPLES OF COMPUTATIONS. CONSEQUENCES OF THE EXPLOSION
OF A COSMIC BODY IN THE EARTH ATMOSPHERE

To illustrate the applicability of the algorithm suggested to the computation of essentially unsteady three-
dimensional gas flows with high gradients and to demonstrate its efficiency, we consider the problem on gas-
dynamics consequences of the explosion of a cosmic body in the Earth atmosphere.

Under the explosion of a cosmic body, we mean the following process. Since the effect of the incoming
flow is assumed insufficient for the separation of the body into large pieces, it is subjected to the avalanche
fragmentation into small pieces under the action of the dynamic loads due to the deceleration. The collection

of these small pieces behaves like incompressible liquid. The development of the convective instability on
the windward side of the region results in its break near the cntical point and the loss of sn‘nple connected-
ness. The hot gas from the shock layer penetrates into the region, which results in almost instantaneous
evaporation of the pieces. It is this process that 1s referred to as the explosion [14].

To specify the initial data, we used the problem statement suggested in {15], which is as follows. A region
containing a homogeneous gas mixture is placed in the stratified atmosphere at the height £, of the explosion
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Fig. 1.

(the explosion is meant in the sense of [16]). The gas is described by the following parameters. The mass of
the gas 1s equal to the mass of the cosmic body; the velocity is equal to the velocity of the body V., at the

moment when it inters the atmosphere; the gas density is equal to the density of the body material; the static

pressure 1s equal to the deceleration pressure at the given height, Py, = p(h,) V2, where p(h,.) 1s the atmo-

spheric density at the height of the explosion. The only uncertain parameter—the height of the explosion—
can be estimated from an approximate solution [16].

We solved the problem on the explosion consequences for an ice cosmic body of density p, = 10° kg/m?,

mass m = 216 x 10° t, and characteristic size L = 60 m. The body entered the atmosphere at the angle © =
45° with respect to the normal and had the velocity V., = 20 km / s. (The parameters chosen correspond to

the generally received parameters of the Tunguska cosmic body [17].) The gas was assumed nonviscous and
non-heat-conducting with the equation of state of a real gas.

The height of the explosion was estimated by means of an approximate solution [16] as A, = 3.04H =

21.3 km, and p(h,) = 10" kg/m’. Here, H = 7 km is the height scale in terms of the Earth atmosphere density
(the scale of the atmospheric irregularity).

The coordinate system OXYZ was oriented in space such that the axis Z and the velocity of the body when
it enters the atmosphere are directed opposite to each other and the vector g belongs to the plane XZ. For the
computational region, we used the rectangular parallelepiped of the initial size L, = L, = L. = 300 m with

the edges oriented along the coordinate axes. The computational region moved along the Z-axis keeping its
ortentation in space and increased in size such that the flow segment of interest was always inside it.

To understand the effect of the grid adaptation on the results of computations, several series of compu-
lations were carried out for an initial stage of the evolution of the gas cloud, which was formed after the
explosion. The computations were carried out up to the moment 0.3 s after the explosion. The side bound-
aries of the computational region oriented perpendicular to the axes OX and OY moved outside along their
normals with the velocity 1.2 km/s. The boundaries oriented perpendicular to the axis OZ moved along OZ
in the negative direction: the lower boundary with the velocity 20.5 km/ s, and the upper boundary with the
velocity 18 km / s. Thus, the computational region moved along the axis OZ and increased in size such that,
at the moment t=0.3s,wehad L, =L, = 1020 m and L, = 1050 m.

The numerical experiments were carried out on the following grids: 20 X 20 x 20 cells (computations 1
and 4); 40 x 40 x 40 cells (computations 2 and 5), and 80 x 80 x 80 cells (computation 3).
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In computations 1, 2, and 3, a uniform rectangular grid of the appropriate dimension was used, which
was recalculated on each time step.

In computations 4 and 5, we used a dynamically adaptive grid. For the initial approximation, a uniform
rectangular grid of the appropriate dimension was used. The procedure of the grid adaptation was invoked
on every second time step (which turned out sufficient). The grid was adapted to the solution

P p
f = G,,]og(ﬂ)+cl,log(5-;), Cp = G, = 0.5,

where P and p are pressure and density, respectively; Py and pg are characteristic values of pressure and den-
sity in thc computational region; and o and o, are constants.

Such a choice of the function f for the given gas-dynamics problem is explained by the necessity to
ensure grid adaptation both to the region of the head shock wave, which i1s characterized by high gradients
of P, and to the wake boundary, for which considerable variations ot p are typical. Moreover, p and P are com-
puted in the course of solving the gas-dynamics part of the problem, which considerably simplifies finding f.
It should be noted that, generally, no unique recipe of construction of the function f for an arbitrary problem
exists; this function is determined by the particular physical problem and the requirements on its solution.

Results of computation 3 seem to be most reltable in what concerns the reconstruction of the real picture
of the flow, since, in this case, the finest uniform grid was used. Hence, the results are certainly free of dis-
tortions that could be introduced by the grid adaptation. Therefore, we, first, describe the results of compu-
tation 3, and, then, compare them with those of the other computations. Basic results of computation 3 are
as follows.

Table 1
o Computation -
Parameters
| } 2 3 4 5
. 7t
P... Pa 3.31 x 10’ 5.0 x 107 6.4 x 107 6.5x 107 | 58x10
Dy kg/m® | 92.4 164.2 230. 1 | 314.5 333.4
Tmax K 19200 | 23900 24000 | 35000 28800
e e e e e ) i
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From the moment of the explosion until 0.1 s, the observed picture of the flow is characterized by the
separation of the fragment and the expansion of the material in the side direction and backward, to the wake
region. The maximum pressure is observed behind the front of the shock wave, on the leading edge of the
dense gas cloud. The maximum temperature is observed in the shock wave front.

By ~0.12 s, the material of the cosmic body is collected in a bowl-like layer of characteristic size ~200 m.
At approximately 0.13 s, there begins the process of forcing this layer through along the axis under the
action of the convective instability, and, by the time ~0.2 s, the dense central cloud looses the property of
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being simply connected. On the axis of the cloud, a channel of characteristic cross size ~30 m filled with
rarefied gas is formed. By the moment 0.3 s, the dense gas cloud is separated into several fragments, which

can easily be seen in Fig. 1 ((a) for log(P) and (b) for p [kg / m'], the cross section in the plane X = 0 km).

The flow parameters are as follows. The shock wave is at the height ~16 km (Z = 22.7 km, and the angle
between the axis OZ and the normal to the Earth surface is © = 45°); the characteristic size 1s ~600 m; the

wave-front velocity is ~—19 km/s; P, 1s approximately 7.4 x 107 Pa; the maximum gas density in the cloud

fragments is ~230.1 kg/m?; and the maximum temperature ~24000 K is observed in the front edges of the
dense fragments. The flow behind the shock wave has complex spatial structure.

The computations on the grids with lesser number of cells (computations 1, 2, 4, and 5), in the whole,
recover the same flow picture as that in computation 3. For example, they all give about the same depth of
the penetration of the shock wave and the same wave-front velocity: at ¢ = 0.3 s, the shock wave is at the
height ~16 km, and the wave-front velocity is ~19 kmV/s. The values of the basic flow parameters at 0.3 s are
presented in Table 1. The pictures of the flow obtained in computations 1, 2, 4, and 5 for the same moment
are depicted in Figs. 2-5, respectively. Here, and in what follows, the motion of the gas cloud 1s described
by the isolines of the logarithm of pressure log(P) and density p. The panels (a) and (b) in Figs. 2-5 show
the isolines of log(P) and p, respectively, in the plane X =0 km.

As can be seen from Table 1, in computations on uniform grids, the maximum values of pressure, density,
and temperature grow as the cell size decreases through the reduction of the scheme viscosity. The compu-
tations on adaptive grids yield results close to those of computation 3 with the use of a considerably lesser
number of cells through the node concentration (crowding) in the regions where the solution has high gra-
dients. In view of complexity of the problem under consideration and lack of information about the accurate
solution, the conclusion about the quality of the results obtained on the adaptive grids rely, in the first turn,
on the comparison of the qualitative pictures of the flow obtained in computations 4 and 5 with those in com-
putation 3.

Table 2

-._\ The number of cells) 4 20%20 | 40x40x40 | 80x80x80
Timing T ——

Timing for one step (without ac-l—aptalinnh{with adaptation) 1/1.4 - 8/11.2 37/
Timing for one vartant, h (without adaptation) ~3 ~24 | ~ 120

s _-—i
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As can be seen from the figures, the use of the adaptive grid makes it possible to observe the phenomenon
of fragmentation of the dense cloud even on the grid with 20 x 20 x 20 computational cells, although the
picture obtained looks rather schematic compared to those in computations 3 and 5, and the values of pres-
sure and temperature are overestimated (see Table 1). Tt should be noted that this phenomenon is not
obtained on the uniform grid with the same number of cells 20 x 20 x 20 (computation 1), and even on the
uniform grid with 40 x 40 x 40 cells
(computation 2), which brings us to M, km
the conclusion that the adaptation of
the grid to the solution was quite suf- 5.5
ficient. In addition, the use of the
adaptive grid made it possible to
more clearly separate the front of the
shock wave (the difference is espe-

cially noticeable when comparing
Figs. 2 and 3).

The computational grids for vari-
ants 4 and 5 at t = 0.3 s are depicted
in Figs. 6a (20 x 20 x 20 grid) and 6b
(40 X 40 X 40 grid), respectively, 4_0|_
with the cross section being in the
plane X = O km. The degree of the
computational cell contraction can
be represented by the number ¥y = 3.5
Voo Vinin» Where V.. 1s the minimum
volume of the grid cell and V, is the

cell yolume for the uniform grid with 3.0
the same number of nodes con- ' I_
structed in the same computational

region. For uniform grids, Y= 1. For
the grids, shown in Fig. 6, v = 6.3 2.5
(the grid in computation 4) and ¥ =

6.2 (the grid in computation 3). Fig. 7.
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Fig. 8.

Table 2 shows computation time per onc time step for different grid dimensions (here, it is measured In
terms of the time required for the computation on the grid 20 x 20 x 20 without adaptation) and time (in
hours) required for the whole variant in the case of computation on a uniform grid. The experiments were
carried out on a PC Pentium Pro 200.

Thus, the comparison of the results of computations 1-5 allows us to conclude that the algorithm sug-
gested can efficiently be used for modeling spatial unsteady gas flows with high gradients.

The importance of the phenomenon of separation of the dense gas cloud into fragments and its effect on
the further development of the flow are illustrated by results obtained in computations 6 and 7, which were
carried out on the grid consisting of 40 x 40 x 40 cells. The motion of the computational region was similar
to that in computations 1-5, and the velocities of the boundaries of the computational region were sclected
such that the head part of the shock wave was always inside the region. The computations started from 0.3 s after
the explosion and lasted until the shock wave reached the height of ~3 km. In computation 6, the uniform rectan-
gular grid was used, which was recalculated on each time step. For the initial data, the results of computation 3
were used. In computation 7, the adaptive grid was used, with the adaptation procedure being invoked on every
second time step. For the initial data and grid approximation, the results of computation 5 were used.

Computation 6 gave the following results. As the dense gas cloud spreads out and decelerates, the entire
picture of the flow changes. Starting from ~0.8 s, the shock wave takes the shape of a blunted cone with the

rounding racdius ~150 m; the wave-front velocity is ~14 km/s; P,,,, ~ 8.0 x 10° Pa; and T, ~ 10° K. A flow
of hot rarefied gas of density ~0.2-0.3 kg/m* and temperature ~4000 K follows the shock wave at the veloc-
ity ~17 km/s. The shock wave reaches the height of ~3.4 km (Z ~ 4.8 km) at ~1.5 s; at this moment, its veloc-
ity is ~8.2 km/s, and P, ~ 8.0 x 10° Pa (Fig. 7 for p [kg/m?*], where the cross section belongs to the plane
Y =0 km).

The results of computation 7 considerably differ from those of computation 6. By ~0.4 s, the dense cloud
is completely separated into several fragments, which considerably increases the cross section of the region
occupied by the flow and results in a noticeable deceleration of the fragments in the atmosphere. The picture
of the flow is now not symmetric with respect to the plane X = 0. As the cloud spreads out, the dense frag-
ments generate a system of shock waves followed by hot rarefied gas. The shock wave reaches the height of

~3.4 km later, at t ~ 3.6 s, when it has velocity ~1 km/s, characteristic cross size ~4 km, and P, ~ 6.0 X 10° Pa.
The flow of hot rarefied gas of density 0.1-0.2 kg/m? and temperature ~8 X 10° K follows the shock wave

at the velocity 3—4 km/s. The observed picture of the flow is represented in Figs. 8a (p [kg/m’], the cross

section in the plane Y =0) and 8b (p [kg/m?], the cross section in the plane Z = 6.78 km). The computational
grids for the cross sections in the planes Y = 0 and Z = 6.78 km are depicted in Fig. 9.
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Computation 8 illustrates the capa-
bilities of the algorithm to model large-
scale trregularities, such as, for exams-
ple, the wake formed by the passage of
a dense gas cloud consisting of explo-
sion products. This computation was
carried out on the dynamically adaptive
grid consisting of 40 x 40 x 40 cells.
The boundaries of the computational
region moved in space such that to hold
the head shock wave and the whole tra-
jectory of the exploston products inside
the computational region. The initial
data were taken the same as those for
computation 5.

In spite of the considerable differ-
ence In the characteristic dimensions
(at the moment ~3.6 s, the characteris-
tic size of the head part of the shock
wave along the OZ axis is ~5 km,
whereas the characteristic size of the
wake 1s about 25 km), the use of the
dynamically adaptive gnid allowed us
to reconstruct the basic features of the

gas cloud evolution and the behavior of WX
the head shock wave obtained in com- i

: 1\ INN
putation 7. For example, by ~3.6 s, the S NG TN e | TN
head of the shock wave is on the height :::::::::n'.ﬂ“"uu,"ln,'ﬁ="'::::
~5 km, has velocity ~1 km/s, and P, ~ et
3.8 x 10° Pa. The function IOE(P ) 1S T ll"'ll‘ﬂ_'llllllle::::::E
shown in Fig. 10a, and the cross section -4 -2 0 2 4 -4 -2 0 Z ¥ kri

of the computational grid in the plane ¥ =
0 km 1s depicted in Fig. 10b. Thus, the use Fig. 10.
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of the adaptive grid makes it possible to study both the wake formation and the motion of the gas cloud formed
by the explosion products in the framework of one computation.

8. CONCLUSIONS

The numerical algorithm for construction of three-dimensional dynamically adaptive grids has been sug-
gested. Based on the results of solving the problem on the consequences of the explosion of a cosmic body
in the Earth atmosphere, the conclusion is made that this algorithm can efficiently be used for computation
of essentially unsteady three-dimenstonal gas flows with high gradients.

The use of dynamically adaptive grids makes it possible to take into account specific features of the solu-
tion, which affect the qualitative picture of the flow, in computations on grids with relatively small number
of computational nodes. Dynamically adaptive grids allow us to examine flows generated by the motion of
high-gradient zones inside the computational region in the framework of one computation and in the same
computational region, even in the case where the characteristic size of the high-gradient zone is consider-
ably less than the size of the computational region. The use of the adaptive grids considerably reduces the
required computational resources, since, in the case of a uniform grid, in order to get the same step m a
region of high solution gradients as that used in the adaptive grids, we have to increase the number of nodes
in each direction by several times.
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