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The gasdynamic consequences of  the explosion of a meteoroid in a dense atmosphere are studied. The gas motion is simulated on the 
basis of  a high-accuracy numerical method using adaptive movable networks. Some effects which could not be reproduced using coarser 
networks are revealed. 

In the problem of gas cloud motion, the domain of the phenomenon under study may change considerably in size 
and spatial position; therefore, the computational domain must also change in the course of the calculations. Moreover, 
the problem is complicated by the presence of relatively large gradients caused by shock waves and contact 
discontinuities. 

The flight of cosmic bodies such as asteroids, cometary nuclei and fragments, and meteoroids in planetary 
atmospheres is accompanied by high aerodynamic and thermal loads, the action of inertia forces caused by the 
deceleration of the body, and intense ablation. Various scenarios of the interaction of the body with an atmosphere are 
possible depending on the body parameters, such as its size R0 and density P0, the rupture stress o', the heat of ablation, 
the specific energy of sublimation Q, the entry velocity V., the scale length H=D(h)/sinw characteri73ng the variation 
of the atmospheric density along the body path (D is the altitude scale with respect to density and w is the angle of 
inclination of the entry path to the horizon), etc. Small bodies with characteristic dimensions much less than the 
atmospheric nommiformity scale are totally evaporated in the upper atmosphere due to the intense radiative and 
convective heat flu~es. A whole series of papers (see, for example, [1--5]) has been de~3ted to estimates and approximate 
approaches to the problem of the breakup of large cosmic bodies. 

A hydrodynamic approach to the problem, based on the assumption that the mass of fragmentation products, as 
it is deformed under the action of the distributed aerodynamic load behaves like an incompressible fluid, was suggested 
in [3]. On the basis of simple estimates, an analytical model of meteoroid deceleration in a planetary atmosphere with 
allowance for the variation of the effective cross-section of the body was developed. By combining the numerical and 
analytical approaches it is possible to obtain the flow pattern in more detail. 

L MODEL OF METEOROID EXPLOSION 

The altitude in the atmosphere of a planet at which the deformation of fragmentation products is of the same order 
as their characteristic dimension can be estimated by evaluating the individual terms in the equations governing 
thedeformation of a quasi-liquid ~lume of the debris in a center-of-mass-fitted reference frame 

§ (v'v)v :---1 Vp 
Po 

In the initial deformation stage, we can neglect convection and evaluate the pressure gradient on the assumption 
that on the body scalelength the pressure varies from the stagnation pressure Po at the stagnation point to a value p << 
P0 on the lateral surface 

p0 R0 
(1.1) 

where p(h) is the atmospheric density at the altitude h and u is the radial velocity. 
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Integrating (1.1) for an exponential atmosphere, for the spreading velocity of the debris we obtain the estimate 

u(h)- PO) v 
Po Ro " 

Integrating with respect to time under the same conditions gives us an estimate for the deformation scale of the 
fragmentation products as a function of the altitude in the planetary atmosphere 

Po So 

Extrapolating the relations thus obtained to the altitude h. at which the scale of the deformation mused by the 
distributed gasdynamic load is of the order of the characteristic size of the object, 6R(h) - Ro, we obtain an expression 
for the atmospheric density at the altitude h. where the body breaks up totally 

Po 

For large-scale deformation, an estimate based on the equallty of the inertia forces and the gas pressure on the 
body surface [4] is usually employed 

u 2 1 Po(h) 

Ro po Ro 

This leads to the following simple approximate formula for the expansion velocity 

u(h)-( P(h) lm 
-Cff  J 

In the process of breakup, the gasdynamic action of the incident flow is insufficient for disintegration to be 
accompanied by any sionificant entrainment of debris or separation of large fragments even if the stagnation pressure 
is transmitted through fractures from the shock layer into the bulk of the body. The breakup process is progressive and 
leads to the formation of a large number of pieces within the initial meteoroid volume. A disintegrated fragment 
continues to move as a compact formation without any appreciable increase in the effective cross-sectional area. In 
accordance with the data of [6], the loss of body mass due to ablation does not e~ceed 1% up to the moment of total 
disintegration. 

The results of a numerical investigation based on a hydrodynamic approximation [7] considerably refined the 
dynamic pattern of body deformation under the action of the incident flow, especially as regards the estimation of the 
convective instability effect. The calculation of the motion of an icy body 200 m in diameter in the Earth's atmosphere 
within the framework of the hydrodynamic approaimation [4] (the equation of state for water was used) showed that 
convective instability on the windward side of the fragment strongly influences the liquid-l~ly dynamics. Simultaneously 
with the flattening of the liquid volume in the vicinity of the stagnation point, perturbations of the contact discontinuity 
develop. A depression is formed at the spreading point (break-through takes place in the near-axis region of the liquid 
body) so that the continuity of the volume is violated. The area of the liquid-gas interface increases many times, while 
the maximum body radius increases by about L4 times. A similar interaction pattern was obtained in [6] where the 
deceleration of a fragment of the comet Shoemaker-Levy 9 was simulated numerically. 

The deformation and loss of continuity of the quasi-liquid debris body is accompanied by the dispersion of particles 
of condensed phase in the high-temperature gas consisting of the sublimation products and the gas of the incident flow. 
As a result, the area of the high-temperature gas/condensed phase interface sharply increases. All this leads to a fairly 
rapid transition of the meteoroid material from the condensed to the gaseous state. This process has been called an 
"explosion" [8, 9]. The interpretation of the disintegration of a fractured cosmic body in a dense atmosphere as an 
explosion has resulted in a formulation of the problem based on the gasdynamic equations; this formulation can be 
characterized as "explosion in flight" [8]. 

In [8, 9] two control parameters, namely, the ratio of the kinetic energy of the body to its internal energy and the 
explosion altitude (or the body-to-atmosphere density ratio) were specified. In this study, we propose a formulation of 
the problem with a single indeterminate parameter, namely, the explosion altitude. Calculations show that if the error 
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in evaluatins the explosion altitude is less than the altitude scale (the atmospheric nonuniformity scale), it does not lead 
to a significant error in determinins the deceleration height. 

The internal energy of the gas incorporates the chemical binding energy, while the equation of state takes 
dissociation and ioni7ation into account. The heatins of the meteoroid material by intense thermal fluxes raises the 
sublimate pressure which can locally (in the vicinity of the phase interface) exceed the stagnation pressure, the main 
dynamic parameter of the meteoroid disintegration process. We will assume that at the moment of explosion, the 
meteoroid material is localized within a domain whose dimensions are of the same order as the initial dimensions of 
the body and then expands into the wake region and in the radial direction under the action of the stagnation pressure. 
This treatment of the lateral expansion is widely used in analytical models [4, 5]. 

We propose the following formulation of the problem in the gas approximation. We place a spherical volume in 
a stratified atmosphere at a conditional explosion altitude h (here, explosion is to be understood in the sense of [8, 9]). 
The volume contaln~ a homogeneous gaseous medium with the following parameters: (1) the mass of the gas is assumed 
to be equal to that of the ori~nal cosmic body, (2) the gas velocity is equal to the entry velocity, (3) the density 
corresponds to the cosmic body density, and (4) the static pressure is equal to the stagnation pressure at the given 
altitude 

po = 

At the stagnation point, the contact discontinuity is in equih'brium. On the other hand, the breakdown of the 
discontinuity in the lateral direction and in the direction opposite to the body motion constitutes gas expansion into a 
vacuum. A characteristic feature of this formulation is that it has only one free parameter, namely, the explosion altitude, 
since within the framework of this formulation the internal-to-kinetic energy ratio of the meteoroid material is uniquely 
determined by the atmosphere/gaseous body density ratio at the explosion altitude 

�9 2 p(h) 

K y - I  Po 

The explosion altitude can be estimated from the approximate solution [3]. It should be noted that the error in 
determinln~ the explosion altitude within the limits of the altitude scale only slightly affects the final height of cloud 
deceleration. Thus, the calculations for a kilometer-sized fraement of the comet Shoemaker-Levy 9 performed for 
explosion altitudes correspondins to p(h)/p0 = L88"10 "3 and 6-~'10 4 gave similar values for the depth of penetration 
into the Jovian atmosphere (the discrepancy in penetration depths was considerably smaller than the difference in 
explosion altitudes). 

Let us now consider some results of the numerical simulation of the gasdynamic consequences of an explosion. 
We used a second-order TVD-type difference scheme [10] for the numerical solution of the Euler equations. The 

movable computational grid was adapted to the solution. The grid was constructed on the basis of the solution of the 
variational problem [11, 12]. As a result, in the physical domain the computational grid was adapted to high gradients 
in the required solution, was close to an orthogonal network and fairly convex. 

2. PROBLEM OF GAS CLOUD MOTION FOLLOWING 
A METEOROID EXPLOSION 

Let a homogeneous gaseous medium at rest fill the entire space and be characterized at the initial moment by the 
pressure p= P~, the density p = p~, and the temperature T=T,. The gas in the atmosphere is assumed to be perfect, with 
the specific heat ratio y = L4, inviscid, and non-heat-conducting. At the initial moment, a spherical gaseous cloud of 
radius Re possessing the ~elocity II. is introduced into the atmosphere. It is assumed that at the initial moment the 
pressure inside the cloud is equal to the pressure on the stagnation line in the flc,,v past the solid meteoroid (P0 = PaV-2) �9 
The temperature and density of the gas cloud are initially equal to T= To and p = P0, respectively. We will assume that 
the cloud consists of a perfect (u = L4), inviscid, and non-heat-conducting gas. In this formulation, the flow accompanying 
the fli~ht of the gas cloud essentially depends on the following dimensionless parameters: the body density G = P0/Pa, 
the pressure in the gas cloud P=Po/P~, and the Mach number M= V./ao. We will specify G= 102, P= L26"103, and 
M = 30. From the given initial values it follows that the internal energy of the gas inside the cloud is much smaller than 
the kinetic energy: Eo/Ko=[O.5poV.~l[Po/(y - 1)]=0.05. An analogous formulation was considered in [8], but with 
another value of Eo/l~ moreover, in that study another numerical approach (Godunov method) based on a uniform 
grid was applied. 
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Fig. L Dynamic pattern of the forci'ng-through of a gas cloud. Density of the 
meteoroid material at the moments: a, t=0.1 and b, t=0.2. 
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F'~ 2. Adaptive network generated at the moment t = 0.3 (a) 
and the corresponding isolines (b). 
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F'~ 3. Adaptive network generated at the moment t = 0.7 (a) 
and the corresponding isolines (b). 

27 



The calculations were performed using difference networks with 32x16 and 64x32 cells; in these products the first 
and second cofactors relate to the x and y directions. Prior to adaptation, the network was rectilinear and uniform. The 
adaptation of the network began at the moment t=0.05; the calculations were carried out up to the moment t= 1.1 (time 
t is divided by Ro/V.). The quafitity lnp was used as the function with respect to which the netvmrk was adapted to the 
solution. 

For a short time, most of the cloud material is concentrated in a cup-shaped layer with a radius of about 2-5R0 and 
a thickness of about 0.6R 0. The edges of the cup are directed counter to the motion. The gas cloud owes its shape to 
the fact that the leading front of the cloud undergoes deceleration, while most of it continues to move at a velocity 
greater than that of the front. After the formation of the cup-shaped layer, the following process takes place. Under the 
action of the peak pressure at the nose, the cloud material is "forced through" on the axis of symmetry. This process 
starts at the moment t=OA and continues for a time interval of about 0.1. The dynamic pattern of this process is 
illustrated in Fig. L In th~ figure, as well as in Figs. 2 and 3, the results are presented in the cylindrical reference frame 
r, z. The �9 coordinate is measured from the axis of symmetry and z from the center of the spherical volume at the 
moment of explosion. The gas density divided by Pa is laid off along the vertical axis in Fig. 1. At the moment t=0.6 
a rarefaction zone is formed immediately behind the cloud, into which the atmospheric gas starts to stream. In the near- 
axis region of the rear part of the cloud, the gas flowing into the rarefaction zone undergoes deceleration, which 
subsequently results in the formation of a local shock. The pattern of the hydrodynamic flows thus formed is described 
in more detail in [13--15]. In this study, the motion of the gas cloud is investigated using movable adaptive grids [12]. 
In Figs. 2 and 3 we present the isolines of lnp obtained at various moments and the adaptive networks generated using 
lnp as a weighting function (for smoothl-g the pressure gradients). Clearly, the netv~rk traces the formation of a steep 
pressure gradient at the nose of the gas cloud. It should be noted that the "forcing through" of the meteoroid cloud by 
the incident flow in the peak pressure region is a "f'me" effect not revealed by calculations made using coarser netwurks. 
In what follows, we will consider another source of large-scale disturbances of the atmosphere initiated by meteoroid 
entry. 

3. SIMULATION OF THE CONSEQUENCES OF THE ATMOSPHERIC 
ENTRY OF A ME'rEOROID ALONG AN INCLINED PATH 

When the angle which the meteoroid entry path makes with the vertical is fairly large, part of the bow shock surface 
has a negative component of the normal relative to the gravity vector. The intensity of this part of the shock increases 
v~ith time so that it entrains atmospheric gas which is ejected to Kigher altitudes. A similar situation arose during the 
collision of the comet Shoemaker-Levy 9 with Jupiter; in that case the entry angle was 45" and the comet's velocity was 
60 km/s. The results of a numerical simulation suggest the following scenario for the interaction between a fragment 
and the Jovian atmosphere. The part of the bow shock propagating in the direction of exponential decrease in 
atmospheric density accelerates thank~ to the concentration of the wave impulse over a mass decreasing without bound. 

Thus, the atmosphere is "broken through', i.e., the shock wave moves off to infmity in a fmite time. A jet flow is 
initiated behind the shock front and in this flow the gas velocity and temperature increase with altitude. In the 
calculations, the time it took for the shock to arrive at the limb (h--700 kin) was 25 s, which is in agreement with the 
estimates and far ear.eeds the energy release time (the limb is the boundary between the parts of Jupiter visible and 
invisible from the Earth). An exponential increase in the shock speed D is accompanied by an even faster increase in 
the temperature (proportional to D2); for this reason, starting from a certain altitude, intense ionization occurs behind 
the shock front, so that when the shock is at an altitude observable from the Earth, the gas at a certain distance 
downstream of the front is fully ionized. 

In many foreign publications [7, 16] atmospheric break-through is attributed to the formation of a shock traveling 
through the hot wake flow. In our opinion, break-throngh can be caused by the upper part of the bow shock. 

Let us consider the propagation of a shock initiated by a cometary frao~nent moving in a planetary atmosphere. 
In an exponential atmosphere the fragment velocity varies with altitude as follows [3, 7]: 

V " V. exp (-2C .M(h) m -' ) 

where m is the fraoment mass and M(h) is the mass of atmospheric gas within the volume formed by the effective radius 
of the meteoroid as it travels down to the altitude h. In an atmosphere with an exponential density distribution with 
respect to altitude, we have 

M(h) -- p(h)H~RZlcos w 
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Fig. 4. T'nne dependence of the velocity at the peak temperature 
points behind the shock front. 
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Fig. 5. Isolines of lnp. The interval between isolines corresponds 
to a change in pressure by e times. 

The problem was solved in the plane of symmetry def'med by the gravity vector and the axis coinciding with the 
direction of meteoroid entry. The equation of state for hydrogen was used with account for the effect of dissociation 
and ioniT~tjon re.actions in the locol thermodynamic equilibrium approximation. The shock wave was initiated by a 
cylindrical explosion. The inclination of the cylinder corresponded to the entry angle of fraoments of the comet 
Shoemaker-Levy 9. The distribution of the gas energy behind the shock was calculated in accordance with [7] 
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with Cx=l, R0=l  km, V.=65 km/s, and p0=l g/cm 3, which corresponds to the flow past a solid sphere with a radius 
of 1kin. 

At a time t= 15 s from the generation of the shock, a bulge on the explosive cylinder (disturbed region) can be 
observed in the vicinity of the minimum of the altitude scale, which corresponds to an altitude of about 50 km (the 
tropopause). At the bulge site maxima of the gas velocity and temperature appear. 

The maximum velocity of the shock front rapidly increases. The time dependence of the velocity at peak 
temperature points behind the shock front is exponential (Fig. 4). At t=28 s, the shock reaches an altitude h =700 km 
which can be directly observed from Earth. 

The gas velocity at the point of maximum shock intensity is directed at an angle of 30 ~ to the local vertical. At the 
moment of shock arrival at the limb, the velocity reaches 60 km/s. The distance between neighboring isolines in Fig. 
5 in the undisturbed atmosphere corresponds to the local altitude scale with respect to pressure. The shock is most 
strongly accelerated (with subsequent arrival at the limb) on the near-tropopause section of the trajectory;, however, the 
energy released near thi~ altitude constitutes only a small fraction of the total energy of the body. On the lower part 
of the trajectory, the shock evolves slowly impartin~ relatively small vertical velocities to the atmospheric gas. 

Summary. The following qualitative differences between the results obtained in this study and the solution of the 
point explosion apprce~hnation should be noted. F'trsfly, the gas is ejected not in the vertical direction but at an angle 
to the horizon, which affects the final size and mass of the gas cloud. Secondly, the section of the trajectory on which 
the shock that leads to atmospheric break-through is formed does not coincide with the point of maximum energy 
release but lies somewhat higher, near the altitude corresponding to a pressure of 1 bar. This may result in the nature 
of the dependence of the shock arrival to the limb on the energy release differing from that in the IC, Jmpaneets solution 
for a point explosion [17]. 

The study was carried out with the support of the Russian Foundation for Fundamental Research (project No. 96- 
o]-oo,m). 
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