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Abstract

The paper is devoted to numerical implementation of the wall functions of Robin-type for modeling near-wall turbulent flows.
The wall functions are based on the transfer of a boundary condition from a wall to some intermediate boundary near the wall. The
boundary conditions on the intermediate boundary are of Robin-type and represented in a differential form. The wall functions are
formulated in an analytical easy-to-implement form, can take into account the source terms, and do not include free parameters. The
relation between the wall functions of Robin type and the theory of Calderon–Ryaben’kii’s potentials is demonstrated. A universal
robust approach to the implementation of the Robin-type wall functions in finite-volume codes is provided. The example of an
impinging jet is considered.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Turbulent near-wall flows appear in many industrial problems. It is well known that turbulence vanishes near a wall
due to both the no-slip boundary condition for the velocity and the blocking effect caused by the wall. In the vicinity
of the wall, there is a thin sublayer with predominantly molecular diffusion and viscous dissipation. The sublayer has
a substantial influence upon the remaining part of the flow. An adequate resolution of the solution in the sublayer
requires a very fine mesh because of the thinness of the sublayer and high gradients of the solution. As a result, up
to 50% boundary-layer nodes are situated in the near-wall region [17]. It makes the model to be time consuming and
often it is not suitable for real design.

The models that resolve the sublayer are called low-Reynolds-number (LR) models because of the low turbulent
Reynolds number in the sublayer. In turn, the high-Reynolds-number (HR) models do not resolve the viscous sublayer.
They significantly save computational efforts [7,19]. In the HR models, the boundary conditions or near-wall profiles
are represented by wall functions. Wall functions are usually semi-empirical and have quite limited applications.
A substantial disadvantage of many wall functions is a strong dependence on the near wall mesh used. To avoid this
problem, the scalable wall functions are suggested in [11]. Wilcox assumes [30] that the pressure gradient must be
taken into account to avoid the mesh dependence. Yet, the recently suggested adaptive wall functions [15] overcome
this limitation by using look-up tables for turbulent quantities and skin friction. This approach is extended to separated
flows in [17].
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In [7,8] source terms, such as the pressure gradient, are taken into account in the wall functions via the approximate
integration of the near-wall governing equations. The numerical comparisons [7,8] showed that such advanced wall
functions give substantially better prediction than the standard wall functions. In [8], the analytical wall functions are
obtained by approximate integrating boundary-layer-type equations in the wall vicinity. The wall functions [7,8] are
only represented in a finite-difference form rather than a differential form. In computations, the numerical flux to the
wall is taken into account by iterations as it is performed in the case of the standard wall functions.

The method of boundary condition transfer is suggested in [27,29]. The method allows us to transfer a boundary
condition from the wall to some intermediate surface. The boundary condition is transfered either approximately (an-
alytically) or exactly (numerically). The boundary conditions on the intermediate surface are always of Robin-type (or
mixed type) and represented in a differential, mesh independent, form. These boundary conditions are interpreted as
Robin-type wall functions (RWF). They are simultaneously set on both a function and its normal derivative. Therefore,
the realization of RWF does not require any additional iterations between, for example, the velocity and skin friction.
It is important to emphasize that this property of RWF brings an additional robustness to the algorithm of their im-
plementation. Another advantage of RWF is related with their universal formulation for all dependent variables. It is
also worth noting that the boundary conditions represented by RWF are similar to the “slip boundary condition” at the
edge of the Knudsen-layer in aerodynamics.

RWF take into account the influence of the source terms in the governing equations in a unit manner. The location
of the point, to which the boundary conditions are transferred, does not make any considerable effect on the mesh
distribution nearby this point. The wall functions can be implemented in both finite-difference and finite-volume
approximations. Tests for channel flow [28] and impinging jet [29] have shown promising results in the terms of both
accuracy and efficiency gains. In comparison to the analytical and numerical wall functions [7,8], the key advantages
of RWF are related with their robust implementation and universal differential formulation.

In the paper below RWF are derived via the theory of Calderon–Ryaben’kii’s potentials. From this theory it follows
that RWF provide the sufficient and necessary condition for the functions to be extended to the domain of the main
flow. They do not depend on either the external domain or the differential operator used there. Thus, RWF can be used
not only for the Reynolds Averaged Navier–Stokes equations (RANS) but for Large Eddy Simulation (LES) as well.
They can be realized in a separate routine which can be used in different RANS and LES codes. A universal approach
to realizing RWF in existing finite-volume codes is provided. The approach is applicable to all governing equations in
a unit manner. As an example, RWF are implemented in the k–ε model and applied for the axisymmetric impinging
jet problem. A wide range of geometries and operating regimes for the impinging jet is considered. The computational
results are compared against available experimental data. These test results supplement the results obtained in [29]
for the impinging-jet test case to different geometries and operating regimes. The important conclusion from the
calculations done is that the wall functions are applicable to completely different regimes and mesh sizes without the
use of any free parameters.

2. Robin-type wall functions

To formulate RWF, first let us assume that a governing equation is written in the following form:

Lu ≡ (μuy)y = Rh(y), 0 � y � ye, (1)

with Dirichlet boundary condition on the left-hand side:

u(0) = u0. (2)

It is to be noted here that the Dirichlet boundary condition is not a limitation for the use of RWF [27], and the case
of general boundary conditions is considered in the next section. Eq. (1) represents the general form of the boundary-
layer-type equation. The right-hand side Rh is an appropriate source term including, e.g., the pressure gradient and
convective terms in the momentum equation.

RWF are formulated as follows [27,29]:

u(y∗) = u0 + f1
du

dy
(y∗) −

( y∗∫
Rh dy

)
f2

y∗μ(y∗)
, (3)
0
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where

f1 =
y∗∫

0

μ(y∗)
μ(y)

dy, f2 = y∗
y∗∫

0

μ(y∗)
μ(y)

(
1 −

∫ y

0 Rh dy∫ y∗
0 Rh dy

)
dy. (4)

Relation (3) is interpreted as the boundary condition of Robin-type obtained by the transfer of the boundary condition
from the wall (y = 0) to some point y∗. This boundary condition can be either exact (if the exact function μ is
used in (4)) or approximate (if μ is approximated by one way or another). One should emphasize that the Robin-
type boundary condition is simultaneously set for both a function and its derivative. It is easy to see that the mesh
distribution nearby the wall can be independently chosen on the location of the value y∗. Implementation of Robin-
type conditions to both finite-difference and finite-volume schemes are considered further.

Having assumed that the coefficient varies piece-wise linearly

μ =
{

μw, if 0 � y � yv,

μw + (μ∗ − μw)
y−yv

y∗−yv
, if yv � y � y∗,

(5)

it is possible to obtain analytical expressions for f1 and f2 if Rh = const and yv � y∗:

f1 = αμyv(1 + θ lnαμ), f2 = αμyv

[
(1 − θ)y∗ + yv(θ

2αμ lnαμ − 1/2 + θ)
]
, (6)

where αμ = μ∗/μw, θ−1 = μ∗−μw

μw

yv

y∗−yv
. Here, the value yv is the thickness of the viscous sublayer near the wall; the

parameter θ represents cotangent of the inclination angle of the dependence μ/μw on y/yv .
Assume now that the governing equations correspond to the Reynolds averaged Navier–Stokes equations (RANS)

closed by the HR k–ε model. Then, the method of boundary condition transfer technique can be used to derive the
wall functions for the tangential and normal velocity components, the temperature and the turbulent kinetic energy.

Having neglected diffusion parallel to the wall, the momentum, enthalpy and kinetic energy transport equations
can be written in the Cartesian coordinate system (x, y):

∂

∂y

[
(μl + μt)

∂U

∂y

]
= ρU

∂U

∂x
+ ρV

∂U

∂y
+ ∂P

∂x
, (7)

∂

∂y

[
(μl + μt)

∂V

∂y

]
= ρU

∂V

∂x
+ ρV

∂V

∂y
+ ∂P

∂y
, (8)

∂

∂y

[(
μl

Pr
+ μt

Prt

)
∂T

∂y

]
= ρU

∂T

∂x
+ ρV

∂T

∂y
, (9)

∂

∂y

[(
μl + μt

Prk

)
∂k

∂y

]
= ρU

∂k

∂x
+ ρV

∂k

∂y
− Pk + ρε. (10)

Here μl and μt are the laminar and turbulent viscosities, respectively; Pr, Prt and Prk are Prandtl numbers; U and V

are the velocity components in the (x, y) coordinate system; ρ is the density; P is the pressure; T is the temperature;
k is the turbulent kinetic energy; Pk is its production; ε is the dissipation of k.

Thus, the governing equations for the considered variables have form (1). Evidently, the efficient coefficient μ

in (1) must take into account the appropriate Prandtl number [29]. Upon substitution U , V , T or k instead of u in (3),
we obtain RWF for these functions. The right-hand side Rh can be evaluated at y = y∗ as follows [29]:

Rh = Rhu ≡ ρ

(
U

∂U

∂x
(y∗) + V

∂U

∂y
(y∗)

)
+ ∂P

∂x
(y∗), (11)

Rh = Rhv ≡ ρ

(
U

∂V

∂x
(y∗) + V

∂V

∂y
(y∗)

)
+ ∂P

∂y
(y∗), (12)

Rh = Rht ≡ ρ

(
U

∂T

∂x
(y∗) + V

∂T

∂y
(y∗)

)
, (13)

Rh = Rhk ≡ ρ

(
U

dk
(y∗) + V

dk
(y∗)

)
+ ρε − μt

(
dU

)2

. (14)

dx dy dy
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Thus, all the terms of the parabolized (reduced) Navier–Stokes equations (PNS) [22] are taken into account in
RWF. It is worth noting that in RWF for the normal velocity it is not assigned to be zero. Thus, these wall functions
do not have direct restrictions to their exploration in modeling separated flows.

In contrast to the other functions, the right-hand side Rh = Rhk for the turbulent kinetic energy is variable. It
includes the dissipation ε and derivative dU/dy. The former term is taken from (17) while the latter term can be
evaluated in the interval [0, y∗] [31] by:

(μl + μt) dU/dy = [
(μl + μ∗

t )U(y∗) + f 2Rhu

]
/f 1 + (y − y∗)Rhu, (15)

where the turbulent viscosity μt is approximated by a piece-wise function as in [7,8]:

μt =
{

0, if 0 � y � yv,

μ∗
t

y−yv

y∗−yv
, if yv � y � y∗.

(16)

In distinguish to all the other variables, ε is set by a Dirichlet boundary condition [8]:

ε(y) =
⎧⎨⎩

(k∗)3/2

Clyd
, if y < yd,

(k∗)3/2

Cly
, else,

(17)

where yd = 2Clμl/(ρ
√

k∗).
RWF include the sublayer thickness yv which is evaluated as follows [29]:

yv = Revμl/
(
ρ
√

k∗), (18)

where Rev = ρ
√

k∗yv/μl .
The value Rev is varied between 10.8 and 20 [8,3]. The boundaries of this interval correspond to the upper limit

of the viscous sublayer and the point at which the linear and logarithmic parts of the velocity profile intersect for the
channel flow [20]. In all computational results given below, Rev = 12 only for sake of determination.

The coefficients f1 and f2 in wall functions (3)–(6) depend only on y∗ and k∗. The latter value is determined from
the solution of the HR model at the boundary point y∗. Hence, the intermediate boundary conditions (3) at y = y∗
complete the boundary value problem in the interval [y∗, ye]. Thus, the developed wall functions can be applied to all
dependent variables but ε in a uniform manner. It is worth noting that the coefficients f1 and f2 can be determined
analytically even in the case of the turbulent kinetic energy k. Since the laminar sublayer is not resolved proper in the
approach based on the piece-wise approximation (5), one cannot expect the entire consistence of RWF (as any other
wall functions) with the LR model. Meanwhile, the coefficients f1 and f2 can also be determined by integrating LR
equations in the interval [0, y∗] [29]. It results in a decomposition method. Although the k–ε model is only considered
here, it is clear that the same approach to the construction of RWF can be applied to any other turbulent model.

It is to be noted that RWF utilize the assumption on the near-wall direction is predominant in the flow. In some areas,
for example, in the vicinity of the axis of symmetry considered further, this assumption can be violated. Meanwhile,
the same wall functions might formally be used there. A similar case appears for the Parabolized Navier–Stokes
equations [22], and RWF are based on this model.

3. Robin-type wall functions and the theory of potentials

There is a deep relation between the Robin-type wall functions and the theory of Calderon–Ryaben’kii potentials
[23,24] briefly described below.

Let us consider some domain D0 ⊂ R
n and subdomain D ⊂ D0 having a boundary Γ , and set the following

boundary value problem:

LD0U = F, U ∈ ΞD0 . (19)

Assume that the space ΞD0 such that the solution of problem (19) exists and unique.
Then, we introduce a potential as follows [23]:

PDVD(x)
def= VD −

∫
G(x,y)LV (y) dy. (20)
D
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Here and further, VD is the value of some function V ∈ ΞD0 on D; G is Green’s function of the boundary value
problem (19). It is to be noted that its value does not depend on the complementation of VD to any function V ′ ∈ ΞD0 .

It is possible to prove [23] that the potential satisfies the homogeneous equation in the domain D: LD0PDVD|D =
0D .

In [23], it is introduced the notion of a clear trace TrΓ UD in such a way that:

TrΓ VD = TrΓ WD ⇒ PDVD = PDWD (21)

if V ∈ ΞD0 , W ∈ ΞD0 .
Then, it is possible to introduce the potential with a density ξΓ :

PDΓ ξΓ
def= PDVD (22)

where ξΓ = TrΓ VD .
In [23], it is proved that the following equality

ξΓ = TrΓ PDΓ ξΓ + TrΓ

∫
D

G(x,y)F|D(y) dy (23)

provides a necessary and sufficient condition for ξΓ to be a clear trace of a function VD :

LD0V|D = F|D. (24)

It is to be noted that equality (23) applied to an external boundary value problem, for example in solving the Navier–
Stoked equations, leads to artificial nonlocal boundary conditions on an artificial boundary [26]. These boundary
conditions are formulated in the form of a pseudo-differential boundary equation

∂U

∂n |Γ
= AΓ UΓ , (25)

where AΓ is a nonlocal operator of Poincaré–Steklov type. As noted in [26], the exact transfer of boundary conditions
from one boundary to another (artificial) boundary must lead to nonlocal boundary conditions of the kind of (25).
Another particular class of the Poincaré–Steklov operators are provided by the Dirichlet-to-Neumann (DtN) maps
[16,12,13].

It is also worth noting that although Green’s function is used in the definition of the potential (20), (22), in practical
applications explicit Green’s function is not required. Instead, its use is efficiently replaced by the Green operator ĜD0

to be inverse to the operator LD0 .
Let us now suppose that the interval [0, y∗], (y∗ < ye) corresponds to the domain D ⊂ D0 where D0 := [0, ye].
Assume that in the interval [0, y∗] the operator LD0 coincides with the differential operator L of Eq. (1). Suppose

that we have the following boundary condition on the left-hand side:

lu(0) = α0. (26)

Here l is a local operator.
We introduce the following function of v at the boundary Γ :

TrΓ vD =
(

lv(0), v(y∗), dv

dy
(y∗)

)T

. (27)

Vector (27) corresponds to a clear trace associated with the potential PDvD . To prove this statement, it is enough to
demonstrate that if TrΓ wD = 0 and w ∈ ΞD0 then PDwD = 0D .

Indeed, if TrΓ wD = 0Γ , then the function wD can smoothly be extended to the entire domain D0 by the nil-
function:

w(x) =
{

wD if x ∈ D,

0 if x ∈ D0\D.

It is easy to see that w ∈ ΞD0 and
∫
D

G(x,y)Lw dy = ∫
D0 G(x,y)Lw dy = w. Thus, from the definition, PDwD =

0D and vector (27) represents the clear trace.
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To demonstrate the application of the potential theory, let us sequentially consider the cases of homogeneous and
nonhomogeneous equations (1).

First, introduce into consideration the following boundary value problems in the interval [0, y∗]:
Lu1 = 0,

lu1(0) = 1, (28)

u1(y
∗) = 0,

and

Lu2 = 0,

lu2(0) = 0, (29)

u2(y
∗) = 1.

1. Assume now that Rh ≡ 0. Then, from (23)

ξΓ = TrΓ PDΓ ξΓ . (30)

We represent the function u as follows:

u = α0u1 + u(y∗)u2. (31)

If ξΓ = (lu(0), u(y∗), du
dy

(y∗))T , then in equality (30) the first two equations are automatically valid. The third equa-
tion gives us RWF:

u′(y∗) = α0u
′
1(y

∗) + u(y∗)u′
2(y

∗). (32)

It is worth noting here that equality (32) is equivalent to the application of Poincaré–Steklov operator to u(y∗) at the
interface boundary y∗.

2. If Rh 	= 0, then

ξΓ = TrΓ PDΓ ξΓ + TrΓ (GRh). (33)

The Green’s function of the problem is given by:

G(x,y) =
⎧⎨⎩

u1(x)u2(y)
μw(u2,u1)

if 0 � x � y,

u1(y)u2(x)
μw(u2,u1)

if y � x � y∗,
(34)

where w(u2, u1)
def= u2u

′
1 − u′

2u1 is the Wronskian of u2 and u1. Then, the solution of the following boundary value
problem

Lu3 = Rh,

lu3(0) = 0, (35)

u3(y
∗) = 0

is given by convolution u3 = G ∗ Rh or:

u3(x) = 1

μ(0)w(0)

[
u1(x)

x∫
0

u2(x)Rh(y) dy + u2(x)

y∗∫
x

u1(y)Rh(y) dy

]
. (36)

Here, we used the Liuville identity: μw = const.
Then, the function u is now represented by

u = α0u1 + u(y∗)u2 + u3. (37)

Since lu3(0) = 0 and u3(y
∗) = 0, then the first two equations in (33) are valid.
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The last equation gives us the following RWF:

u′(y∗) = α0u
′
1(y

∗) + u(y∗)u′
2(y

∗) + u′
3(y

∗)

=
(

α0 + 1

μ(0)w(0)

y∗∫
0

u2(y) dyRh(y) dy

)
u′

1(y
∗) + u(y∗)u′

2(y
∗). (38)

If the boundary condition on the left-hand side corresponds to (2), then

u1(y) = 1 − C0

y∫
0

dx

μ
,

u2(y) = C0

y∫
0

dx

μ
,

μ(0)w(0) = C0,

C−1
0 =

y∗∫
0

dx

μ
(39)

and

u(y∗) = u0 + f1u
′(y∗) − 1

μe

y∗∫
0

(
Rh(x)

x∫
0

μ

μe

dy

)
dx. (40)

This equality fully coincides with (3), (4). The identity of the last term in (40) can be shown via integrating by parts.
According to [23] RWF represent so-called “internal” boundary conditions which are completely independent

from the external problem. Since the solution u of boundary value problem (1), (2) is smooth across the intermediate
boundary y∗, the same condition (40), on the function and its normal derivative, is to be set in the “main” external
flow.

It is to be noted that all known wall functions including RWF are locally one-dimensional. The representation of
RWF in the form of boundary equation (23) opens a way to construct nonlocal wall functions. In multidimensional
case (23) leads to a nonlocal relation between the function and its normal derivative represented by a nonlocal pseudo-
differential equation. It can be written in the form of (25) or its nonhomogeneous analog. In this case, a clear trace
operator is given by the following vector

TrΓ UD =
(

lU|Γ0,U|Γc ,
∂U

∂n |Γc

)T

, (41)

where Γ0 := ∂D0, Γc := Γ0\Γ . This statement can be proved completely similar to the 1D case considered above. The
solution of the nonlocal equation can effectively be realized via the difference potential method by Ryaben’kii [23]. It
is to be noted that an important advantage of the Calderon–Ryaben’kii potentials is that they allow one to obtain the
boundary equation (23) without the use of Green’s function. Thus, they are applicable for RANS models and complex
geometries.

4. Comparative analysis against analytical wall functions

The analytical wall functions (AWF) and RWF have the same nature since they are derived on the same basic
assumptions. In some realizations they should provide identical results.

Meanwhile, there are a number of substantial distinctions. They are mostly related to the fact that AWF are inte-
grated to the finite-volume scheme used while RWF are represented as mesh independent differential Robin boundary
conditions. They are not dependable on the approximation used in the external domain and can be incorporated in
finite-difference and finite element approximations, as well.
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The incorporation of AWF is equivalent to the replacement of the numerical integration in the near-wall cell by a
higher order integration. In particular, for the standard second-order approximations, a piece-wise linear approxima-
tion across a computational cell is used for the coefficient μ instead of the linear approximation. Via the consideration
of a differential approximation it is possible to demonstrate that piece-wise approximation (5) leads to a singularity
because of the lack of smoothness of the coefficient μ. This might cause a nonstable numerical solution in the applica-
tion of AWF [8]. This problem was overcome in [8] by the use of a hyperbolic approximation for μ resulting in a much
weak singularity. Meanwhile, in the case of RWF such a problem does not appear because they are based only on a lo-
cal integration. A numerical differentiation is only used in the external domain where the solution is locally smooth.

Because AWF are incorporated into numerical integration, the value y∗ is inevitably related to the near-wall mesh
distribution. The value of y∗ cannot substantially differ from the next mesh size in the normal direction, otherwise
it affects the approximation and robustness of the algorithm. Meanwhile, RWF are mesh independent, and they are
independently formulated from the external problem.

As it follows from the general theorem [23] formulated for the internal boundary conditions, RWF can be used for
different external problems, for example in LES. Their formulation does not depend on either the scheme or equations
used in the external domain. Hence, they can be realized in a separate routine which can be implemented to different
codes. In this case, the two values characterizing a Robin boundary condition are to be transferred from the routine to
the main code at each node along a wall.

In addition, RWF are formulated in a unified form for all dependent variables but ε. In the case of linear equations,
their realization does not require any iterations. Therefore, their realization for nonlinear problems does not bring any
additional iterations into the entire iteration process.

As shown in the previous section, RWF can be derived via the theory of Calderon–Ryaben’kii’s potentials. This
provides an opportunity to generalize them to the nonlocal formulation having the form of boundary equation (25) or
its nonhomogeneous analog.

5. Numerical implementation of RWF

RWF can be implemented to both finite-difference and finite-volume RANS approximations. In this section, some
aspects of their robust implementation are considered.

A general remark related with robust implementation is the following. Boundary conditions of Robin-type are set
on both a function and its derivative. Upon approximating the derivative, both terms should be considered at the same
iteration (or time step). Taking into account one of the terms from a previous iteration leads to additional iterations,
at least. It is easy to see this property in the case of a linear equation. Only simultaneous consideration of both terms
provides an iterationless solution.

It is to be noted that the boundary condition is represented by (3) for any y∗ in the vicinity of the wall even if y∗
vanishes [29]. This boundary condition fully replaces the original boundary condition u(0) = u0.

In numerical simulation of turbulence, the finite-difference numerical schemes preserving positiveness of a solution
[18] are very efficient because unknown variables such as the turbulent kinetic energy k or its dissipation ε must be
positive. The following numerical procedure can be used for developing the positive definite schemes in solving
boundary-value problems with Robin-type boundary conditions [29].

Boundary condition (3) can be rewritten in the following general form:

u(y∗) = α du/dy(y∗) + β, (42)

where both the function u and its derivative du/dy are positive. It is valid in the case of real physical problems for
the turbulent kinetic energy in the wall vicinity. The coefficient α is positive because f1 is always positive but the
coefficient β can be negative (mostly, where ε > Pk). In computations it can lead to a negative value of u. To avoid
such a case, it is suggested to rewrite (42) in the following form if β < 0:

u(y∗) = α du/dy(y∗) + β
u(y∗)
u−(y∗)

,

or

u(y∗) = α̃ du/dy(y∗), (43)

where α̃ = α
− ∗ and u−(y∗) is the value of u(y∗) taken from the previous either time step or iteration.
1−β/u (y )



S.V. Utyuzhnikov / Applied Numerical Mathematics 58 (2008) 1521–1533 1529
Although Robin-type boundary condition (3) can be set at the wall, its implementation to existing codes based on
finite-volume schemes is more easy in the following interpretation. Assume that unknown variables are defined at
the centers of cells. For sake of simplicity let us consider 1D approximation in the normal to the wall direction. It is
enough to consider approximation at the nearest to the wall cell since the rest approximation is remained without any
modification. Let us denote values at the center of the cell by index 1/2 and values at the edge, opposite to the wall,
by index 1. Then, considering y∗ = y1/2 we have a relation in the following form:

u1/2 = uw + f1
du

dy |1/2
+ f̃2, (44)

where f̃2 = −
∫ y1/2

0 Rh dy

y1/2μ(y1/2)
f2. At the first cell the governing equation (1) is then integrated only from y1/2 to y1:

μ
du

dy |1
− μ

du

dy |1/2
=

y1∫
y1/2

Rh dy. (45)

Eq. (45) represents the approximation of the governing equation in the near-wall cell. Here, the flux μdu
dy |1 is approx-

imated by an ordinary approach while the flux at y1/2 is obtained from (44). A typical approximation can be written
as follows:

μ1
u3/2 − u1/2

y1
− μ1/2

u1/2 − uw − f̃2

f1
=

y1∫
y1/2

Rh dy. (46)

This kind of approximation is used for all the variables, but ε, including k. In the last case, the right-hand side is
rapidly changed and the integral in the right-hand side must be evaluated accurately enough. It can be easily done
either numerically or analytically using the analytical expression for the velocity gradient (15).

At last, a brief comment can be done with regard to a staggered mesh. In this approach the velocity is defined at
the vertexes of a cell. In our consideration this means u1 is known instead of u1/2. In this case, the simplest way to
remain the uniform approach is based on the Taylor expansion:

u1 = u1/2 + y1/2
du

dy |1/2
+ y2

1/2

2

d2u

dy2 |1/2
. (47)

This yields a required relation between u1/2 and u1 since the first derivative takes place in (44) and the second
derivative can be evaluated via the right-hand side Rh. Thus, the flux at the nearest to the wall cell is as follows:

μ1/2
du

dy |1/2
= μ1/2

u1 − uw

f1 + h/2
− Rh

h2/8 − f̃2

f1 + h/2
. (48)

The same technique with slight modifications can be used for implementation to unstructured codes.

6. Impinging jet test case

The heat transfer problem on a turbulent circular jet impinging onto a flat is well studied experimentally [6,2,31].
Therefore, it became a widespread test case for different turbulent models including the LR [9,25,14,10,21] and HR
k–ε models [11,14,1].

The problem is formulated as follows. A fully turbulent air jet, generated in a pipelike nozzle, impinges on a flat
surface at the right angle. The Reynolds number, based on the nozzle diameter D and the bulk velocity, equals to
Re = 23 000 and Re = 70 000. The distance L between the nozzle and the surface is varied between 2D and 14D.
Air is treated as an ideal gas and considered under normal conditions at temperature 293 K. The heated surface has
constant temperature Tw = 314.9 K.

The computational domain spans 13D in the radial direction. The grid includes 150 × 100 (axial × radial) nodes
and 150×200 nodes. For the validation purposes, preliminary comparisons of the results obtained on different meshes
were done to check grid sensitivity. The boundary conditions at the edge of the nozzle are specified using the profiles
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for a fully developed turbulent pipe flow. The computations of the local Nusselt number are done for the different
values of y∗ or Rey∗ ≡ ρ

√
k∗ y∗/μl calculated at the stagnation point.

It is well known that linear eddy-viscosity models (EVM) drastically overpredict the turbulent kinetic energy in the
stagnation point region by an order of magnitude [1]. It inevitably leads to the considerable overestimation of the heat
flux. As a result, the linear LR k–ε models give unacceptable overprediction by a factor of two, even more [21,25].
Furthermore, the linear k–ε model, as well as other EVM, is not entirely justified around the stagnation point because
of the anisotropy of the flow. To improve prediction, along with the nonlinear EVM, some modifications of the EVM
can be used.

It is important to note that the primary goal of the current consideration contains numerical aspects of RWF im-
plementation rather than the justification of the turbulence model used. It includes robustness of the computational
algorithm, weak dependence of the solution on the near-wall mesh distribution and applicability of RWF to different
operating regimes without any free parameters.

RWF are applied in [29] to simulation of the impinging jet at Re = 23 000 with L/D = 2 and L/D = 6. Apart
from the heat flux, the prediction of the wall friction is considered in [29]. As noted above, the overprediction of the
heat flux was obtained in the computational solution. The same effect but more expressive is observed at Re = 70 000.
In Fig. 1, the computational results are compared against the experimental data for L/D = 2. Here and below, the
local Nusselt number is scaled by Re0.7Pr0.4 where Pr = 0.9. The solution [9] based on the LR k–ε model predicts a
substantially higher heat flux than the HR model. This effect was obtained in many other publications including cited
above. The solution based on the wall functions corresponds to Rey∗ = 109.

The HR model with RWF provides much better prediction than the LR model in the vicinity of the axis of the
symmetry. The explanation of this, at first glance, counterintuitive result is as follows. The overprediction of the
isotropic LR model is related to the high production of the turbulent kinetic energy Pk in this area characterized by
high anisotropy of the flow. RWF are based on the parabolized Navier–Stokes equations and take into account only
the wall shear stress component of the stress tensor in the production term Pk included in (14). Thus, the inconsistent
terms of the LR model appear to be not included in the RWF model. A similar situation arises in the problem of heat
transfer in the vicinity of a stagnation point for hypersonic gas flow over a blunt body. At very low Reynolds numbers
the asymptotic viscous shock layer equations provide results well consistent with the free-molecular regime, while the
full Navier–Stokes equations completely fail [5,4].

Fig. 1. Local Nusselt number for the impinging jet. Comparison between HR, LR solutions and experiment for Re = 70 000 and L/D = 2.
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Fig. 2. Local Nusselt number for the impinging jet. Comparison of computational solution for different y∗ against experiment for Re = 70 000 and
L/D = 4.

In the next example with L/D = 4, the solutions corresponding to different values of Rey∗ are shown in Fig. 2.
Although the value of y∗ is varied by an order of magnitude, the curves are quite close each other. It is to be noted
that the dependence of the solution on the parameter y∗ is quite weak.

The mean velocity profiles divided by the bulk velocity are shown in Fig. 3 for L/D = 6. The experimental data
are represented by square symbols while the computational results are shown by the curves. At the region of the low
mean velocity nearby the axis of symmetry (r/D = 0.5) the prediction of the velocity is quite accurate. At r/D = 3,
where the flow is decelerated, the prediction is not so good. At this location, substantial underprediction of the velocity
in the near wall region and overprediction in the outer region were earlier noted for both the LR and HR linear k–ε

models [11,9].
In Fig. 4 the distribution of the local Nusselt number is shown for Re = 23 000. It is given a comparison between

the computational results and experimental data for L = 10D and L = 14D. In contrast to the previous examples
considered, in these regimes the wall is located far enough from the nozzle, and the overprediction of the heat flux
nearby the axis of symmetry is not observed.

7. Conclusion

A general robust approach to implementing RWF into finite-volume algorithms has been suggested. RWF are
derived in a unit manner for all leading variables. The computational algorithm can be easily realized in existing
finite-volume codes. In addition, RWF can be implemented in a separate routine which can be used for different
codes and models. The relation between RWF and the theory of Calderon–Ryaben’kii potentials has been shown.
This provides a way to the generalization of RWF on a new type of nonlocal wall functions.

The performance of RWF has been considered for the impinging jet test case. The computational results demon-
strate a reasonable correspondence to the experimental data and weak dependence of the solution on the distance
from the wall to the point, where the boundary conditions are set, for the wide variation of geometries and operating
regimes.

Further development will focus on the implementation of RWF in LES and the extension of the RWF strategy to
complex geometries (nonlocal wall functions).
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Fig. 3. Mean velocity in the impinging jet at r/D = 0.5;3. Comparison of computational solution against experimental data for Re = 70 000 and
L/D = 6.

Fig. 4. Local Nusselt number for the impinging jet. Comparison computational solutions against experimental data for Re = 23 000 and
L/D = 10;14.
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