1.   NUCLEAR WINTER PROBLEM

It was shown that the fire source is breaking up if its radius is greater than 8 km.

Fig4

R=11h

Fire source breaking up

(R = 11km, qmax= 0.05 MBt/m2, t = 20min)

Maximum rise plume altitude vs time (R = 11km, qmax= 0.05 MWt/m2)

 

R=11Fieldt=60

Velocity field. R = 11km, qmax= 0.05 MWt/m2. t = 60 min

 

1.   Muzafarov, I.F. and Utyuzhnikov, S.V., "Numerical modeling of convective columns above a large fire in the atmosphere ", High Temperature, 1995, V.33, N4, pp. 588-595.

2.   Konyukhov, A.V., Meshcheryakov, M.V., and Utyuzhnikov, S.V., "Numerical simulation of the processes of propagation of impurity from a large-scale source in the atmosphere", High Temperature, 1999, V.37, N6, pp. 873-879.

3.   Utyuzhnikov, S.V., Onufriev, A.T., Safarov, N.A., Safarov, R.A., “Numerical and experimental simulation of large-scale conflagrations into the stratified atmosphere”, The Division of Fluid Dynamics Meeting of the American Physical Society, 1996.

4.   Utyuzhnikov, S.V., “Simulation of pollution spread over conflagrations in atmosphere”, ISSEP J., 2001, N4, pp. 122-127 (in Russian).

5.   Antonenko, M.N., Konyukhov, A.V., Kraginskii, L.M., Meshcheryakov, M.V., and Utyuzhnikov, S.V., “Numerical modeling of intensive convective flow in atmosphere induced by large-scale fire”, Int. J. of Computational Fluid Dynamics, 2002, V.11, N2, pp. 128-132.

6.   Utyuzhnikov, S.V., “Numerical and laboratory prediction of smoke lofting in the atmosphere over large area fires", J. Applied Mathematical Modelling, 2013, 37, 3 (1): 876-887.  

 

1.   METEORITE IMPACT

The impact of the Comet Shoemaker-Levy 9 with Jupiter had been modelled before the real event.  It was the publication that the depth of fragment penetration into the atmosphere was first predicted close to the future observation data.

1.   Klumov, B.A., Kondaurov, V.I., Konyukhov, A.V., Medvedev, Yu.D., Sokolskii, A.G., Utyuzhnikov, S.V., and Fortov,V.E., "Collision  of comet Shoemaker-Levy 9 with Jupiter: what shall we see?", J. Physics-Uspekhi,  1994,  V.164, N6, pp. 577-589.

2.   Klumov, B.A., Kondaurov, V.I., Utyuzhnikov, S.V., and Fortov, V.E., "Numerical simulations of the long-living consequences of a comet Shoemaker- Levy-9 impact with Jupiter ", Doklady Physics, 1994, V.337, N1, pp. 28-35.

3.   Gryaznov, V.K., Ivanov, B.A., Ivlev, A.B., Klumov, B.A., Utyuzhnikov, S.V., and Fortov, V.E., "Collision of the comet Shoemaker- Levy 9 with Jupiter: interpretation of observed data", Earth, Moon & Planets, 1994, V.66, N1, pp. 99-128.

 

The Tunguska meteorite “explosion” (1908) was first modeled in fully 3D statement. The developed numerical method is based on adaptive moving meshes.

 

kulik1

Fallen trees after the Tunguska explosion. (N.A. Strukov, 1928)

 

a94

Wind

Computational domain

Dynamical pressure on the Earth, Pa

1.   Utyuzhnikov, S.V., and Rudenko, D.V., “An adaptive moving mesh method with application to non-tstationary hypersonic flows in the atmosphere”, J. of Aerospace Engineering Part G, August 2008, V.222, NG5, pp. 661-671.

2.   Rudenko, D.V., and Utyuzhnikov, S.V., “Use of dynamically adaptive grids for modeling three-dimensional unsteady gas flows with high gradients”, J. of Computational Mathematics and Mathematical Physics, 2002, V.42, N3, pp. 377-390.

3.   Rudenko, D.V. and Utyuzhnikov, S.V., “Numerical simulation of large scale perturbation of the Earth atmosphere after explosion-like destruction of a cosmic body”,   Proceedings of the ISSW’23 (Shock Waves), Texas, 2001.

4.   Kondaurov, V.I., Konyukhov, A.V., Polukhin, V.V., and Utyuzhnikov, S.V., "Mathematical simulation of gas cloud motion following the atmospheric explosion of a meteoroid", J. of Fluid Dynamics, 1998, V.33, N1, pp. 24-30.

5.   Kondaurov, V.I., Konyukhov, A.V., Polukhin, V.V., and Utyuzhnikov, S.V., "Mathematical simulation of gas cloud motion following the atmospheric explosion of a meteoroid", J. of Fluid Dynamics, 1998, V.33, N1, pp. 24-30.

 

3. EVOLUTION OF TURBULENT THERMALS IN THE ATMOSPHERE

Evolution of large-scale thermals in the Earth atmosphere is studied. Different turbulent models are considered including the k-ε and RSTM.

 

1. Konyukhov, A.V., Meshcheryakov, M.V., Utyuzhnikov, S.V., and Chudov, L.A., "Nonlocal turbulent transport in a boyuant vortex ring during the ascent of a thermal in a stratified atmosphere", J. of Fluid Dynamics, 1999, V.34, N1, pp. 9-16.

2. Konyukhov, A.V., Meshcheryakov, M.V., Utyuzhnikov, S.V.,  and Chudov, L.A., "Numerical simulation of a turbulent large-scale thermal", J. of Fluid Dynamics, 1997, V.32, N3, pp. 394-401.

3. Konyukhov, A.V., Meshcheryakov, M.V., and Utyuzhnikov, S.V., "Numerical investigation of flow initiated in the atmosphere by a turbulent surface thermal ", High Temperature, 1995, V.33, N5, pp. 720-724.

4. Konyukhov, A.V., Mechsheryakov, M.V., and Utyuzhnikov S.V., "Motion of a large-scale turbulent thermal in a stratified atmosphere", High Temperature,  1994, V.32, N2, pp. 224-228.

5. Muzafarov, I.F. and Utyuzhnikov, S.V., "Numerical investigation of dissipation processes influence on motion of thermals in stratified atmosphere", Russian J. of Computational Mechanics, 1993, V.1, N3, pp. 103-114.