

MANCHEST 1824

Multi-resolution Bayesian regression for parametric imaging of [¹⁸F]FDG brain studies

Rainer Hinz¹, Paul Edison², David J. Brooks², Federico E. Turkheimer²

¹ Wolfson Molecular Imaging Centre, University of Manchester, UK

² Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, UK

Three approaches to obtain estimates of K_{μ}

- 1. Compartmental model
- 2. Spectral analysis (SA)

- \rightarrow region of interest (ROI) analysis only,
- \rightarrow ROI analysis and parametric images,
- 3. Graphical analysis (GA) of irreversible binding:
 - a) Traditional \rightarrow ROI analysis and parametric images,
 - b) Multi-resolution Bayesian regression (MBR) → parametric images only.

Data acquisition

- After bolus administration of 185 MBq [¹⁸F]FDG, dynamic 3D PET data were acquired for 60 min on the ECAT EXACT HR+ scanner.
- Images (28 frames) were reconstructed using filtered backprojection.
- The plasma input functions were generated using an online blood detector during the initial 15 min of the scan and 2 discrete samples for cross-calibration only, plus 6 additional discrete samples.

Spectral Analysis

 K_{I} .

Cunningham and Jones, JCBFM 13 (1993), 15 -23.

- Deconvolution of the tissue response function with the arterial input function to obtain the impulse response function (IRF),
 - Separates the signal into high and low frequency components,
 - For irreversible systems: $\lim_{t \to \infty} IRF(t)$

SA was used with 100 basis functions logarithmically spaced between 0.0001053 s⁻¹ and 0.1 s⁻¹ to generate parametric maps of the IRF at 45 min.

Graphical Analysis

Gjedde, *J Neurochem* **36** (1981), 1463 - 71. Patlak *et al.*, *JCBFM* **3** (1983), 1 - 7. Patlak and Blasberg, *JCBFM* **5** (1985), 584 - 590. Wong *et al.*, *JCBF* **6** (1986), 137 - 146.

Blood volume fixed.

How to chose appropriate weights for the data points?

Nonlinear fit.

Linear fit.

threshold: $exp(-\Theta \cdot x^*) < \varepsilon$, e.g. 10^{-3}

bigger intercept β and smaller slope α .

For the linear fit, data of the last 6 frames between 30 and 60 min were used.

Parametric images

Brain'07 and BrainPET'07

Osaka, Japan, May 22, 2007

0.06

Multi-resolution Bayesian regression

Turkheimer et al., Neuroimage 32 (2006), 111 - 121.

Idea

Looking at the brain as an organ, i.e. exploiting its self-similarity.

How is it done?

Multi-scale decomposition of PET dynamic images in wavelet space, example of spatio-temporal modelling, exploits the tree structure of the wavelet decomposition.

Which kinetic model is used?

Linear fit to straight line as in traditional Graphical Analysis of irreversible binding.

Principle of MBR

Brain'07 and BrainPET'07 Osaka, Japan, May 22, 2007

low resolution = low noise \rightarrow estimates with low variance

high resolution = high noise The priors are used to constrain the estimates thus reducing variance.

Is the bias acceptable?

Results

standard deviation for sampled pixels from parametric maps.

Results

Multi-resolution Bayesian Regression (MBR), slope (6 frames)

The multi-resolution Bayesian regression technique used in conjunction with the linear model of Graphical Analysis generates parametric images of good visual quality.

For $K_1 > 0.01$ min⁻¹, a very good agreement of the pixel values with Spectral Analysis is observed.

Advantage:

A continuously acquired arterial input function is no longer required because arterialised venous input functions are sufficient for Graphical Analysis.

Software for multi-resolution Bayesian regression (Piwave) is available. Email: federico.turkheimer@imperial.ac.uk

Future plans include the extension of MBR beyond linear models.