Parametric Imaging of [¹¹C]PIB Studies Using Spectral Analysis

Rainer Hinz¹, Gunnar Blomquist², Paul Edison³, David J. Brooks^{1,3}

¹ Hammersmith Imanet Ltd., London, UK
 ² Uppsala Imanet AB, Uppsala, Sweden
 ³ MRC Clinical Sciences Centre, London, UK

Introduction

- [¹¹C]PIB has previously been shown to be a marker of amyloid deposits in brain of Alzheimer's disease (AD) patients.
- Clinical question: Is a differential diagnosis of early dementia with imaging techniques possible?
- PET study design which is able to reliably distinguish between amyloid load in normal elderly, AD and other types of dementia is required.
- Because of the scattered occurance of focal amyloid deposits in AD, exploratory interrogation of parametric binding images with statistical parametric mapping (SPM) may be more appropriate than an *a priori* defined region-of-interest based analysis.

Focus of this presentation

Comparison between different methods of quantification using arterial plasma input function with a view on the generation of parametric images.

Methods

- Intravenous bolus administration of 370 MBq [¹¹C]PIB.
- 3D dynamic PET data acquired for 90 min, ECAT EXACT HR+ scanner.
- Metabolite corrected arterial plasma input function using online blood detector and discrete arterial samples, metabolite analysis on HPLC system.
- Regions of interest (ROIs) were defined on T₁ weighted MR images coregistered with the PET images summed from 10 min to 90 min.
- Graphical analyses of reversible binding (Logan plot) and of irreversible binding (Patlak plot), assuming a fractional blood volume of 5 % and defining the linear part of the plot from 35 min onwards. Outcome measures:
 - * the total volume of distribution from the Logan plot: VD,
 * the net accumulation rate constant from the Patlak plot: K_{acc}.
- Spectral analysis with functions logarithmically spaced between $\beta_{min} = 0.0008 \text{ s}^{-1}$ ($\log_{10} \beta_{min} = -3.0969$) and $\beta_{max} = 0.1 \text{ s}^{-1}$ ($\log_{10} \beta_{max} = -1$). From the obtained set of n peaks in the spectra (peak position β_i , peak height α_i), the following expressions were calculated:
 - * the impulse response function : $IRF(t) = \sum_{i=1}^{\infty} \alpha_i \cdot e_i$ (corrected for radioactive decay),

Uppsala

manet

* the volume of distribution (area under the curve of the IRF): $VD = \sum_{i=1}^{n-1} \frac{\alpha_i}{\beta_i - \lambda}$ (excluding the blood volume peak).

Hammersmith GE Healthcare

Results: tissue time-activity curves

cerebellar grey matter

Imanet

Hammersmith GE Healthcore

0

Uppsala

Imanet

15 kBq·cm⁻³ cerebellar white matter

Results: plasma input function

- No lipophilic metabolites were detected in the HPLC trace.
- The two metabolites 1 (blue) and 2 (green) have a considerably shorter retention time on the column than [¹¹C]PIB and overlap partially.
- The parent [¹¹C]PIB (red) is relatively rapidly metabolised.

Results: graphical analyses

Results: graphical analyses

		Loga	n plot		Patlak plot							
Region	contro	bl	AD su	bject	cont	rol	AD subject					
para-	slope		slope		slope		slope					
meter	VD	ratio	VD	ratio	K _{acc}	ratio	K _{acc}	ratio				
unit	ml·ml ⁻¹		ml∙ml⁻¹		min ⁻¹		min ⁻¹					
cerebellum	4.43		3.28		0.0125		0.0100					
frontal	5.35	1.21	6.17	1.88	0.0188	1.50	0.0232	2.32				
temporopar	4.95	1.12	5.43	1.66	0.0169	1.35	0.0211	2.11				
occipital	5.18	1.17	6.90	2.10	0.0184	1.47	0.0227	2.27				
mean		1.17		1.88		1.44		2.23				
	'				1			▶				
		61 %	6 increa	ise		55 %	increa	se				

Results: spectral analysis

Results: spectral analysis

Sportral analysis

	Specific analysis												
Region	control		AD sub	oject	contr.	AD							
para- meter unit	IRF ₇₅ min ⁻¹	ratio	IRF ₇₅ min ⁻¹	ratio	VD ml·ml ⁻¹	VD ml∙ml⁻¹							
cerebellum frontal temporopar occipital	0.0150 0.0177 0.0161 0.0156	1.18 1.08 1.04	0.0117 0.0268 0.0234 0.0241	2.28 1.99 2.06	4.53 4.70 4.52 4.38	3.54 6.14 5.32 5.52							
mean		1.11 90 %	increa	2.11 ➡ Se	spectral a are in age Logan plo	analysis VDs reement with ot VDs							

Imanet

Uppsala

manet

MRC Clinical Sciences Centre

Results: parametric images

IRF 75 min

Control subject

Alzheimer's patient

cerebellar white matter

VD

cerebellar grey matter

IRF 1min

See poster presentation BP-84: G. Blomquist et al. "Different patterns of PIB uptake in AD patients."

Hammersmith GE Healthcore

Uppsala

Conclusions

- Spectral analysis is a powerful tool for the generation of parametric images from [¹¹C]PIB studies. It separates the tissue response function into the early, blood flow dependent signal component and the later signal component indicative of [¹¹C]PIB retention to amyloid plaques.
- Imaging the IRF at late time produces a higher contrast than the VD image.
- The use of spectral analysis does, however, require the measurement of the plasma input function.
- Further work will include comparisons of reference tissue methods and whether shorter scan times are feasible.

